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Abstract: The detection and localization of the ball in sport videos is crucial to better understand
events and actions occurring in those sports. Despite recent advances in the field of object detection,
the automatic detection of balls remains a challenging task due to the unsteady nature of balls in
images. In this paper, we address the detection of small, fast-moving balls in sport video data and
introduce a real-time ball detection approach based on the YOLOv3 object detection model. We apply
specific adjustments to the network architecture and training process in order to enhance the detection
accuracy and speed: We facilitate an efficient integration of motion information, avoiding a complex
modification of the network architecture. Furthermore, we present a customized detection approach
that is designed to primarily focus on the detection of small objects. We integrate domain-specific
knowledge to adapt image pre-processing and a data augmentation strategy that takes advantage of
the special features of balls in images in order to improve the generalization ability of the detection
network. We demonstrate that the general trade-off between detection speed and accuracy of the
YOLOv3 model can be enhanced in consideration of domain-specific prior knowledge.

Keywords: sports ball detection; small object detection; YOLO; data augmentation; speed-accuracy
trade-off

1. Introduction

Data analysis in sports has garnered significant attention in recent years. A growing
awareness of the capabilities of data analysis and statistics as well as the availability of
new tracking technologies are driving forces for this evolution. The analysis of position
and motion data in sports does not only provide important insights for training purposes
but is also an increasingly important source of information for spectators’ engagement
and broadcast enhancements at professional sports events [1]. Especially during times
of COVID-19 and the consequent exclusion of spectators, sports events lose their most
important emotional component. Thus, new data analysis and broadcast enhancement
technologies can enrich the viewing experience and help to increase the attraction of sport.

Balls are the major point of attention in many sports and games. In these ball sports,
the position of the ball is a valuable input for tactical considerations, training methodology
studies or other analyses and evaluations that aim for a better understanding of events
and actions occurring in those sports. A common tool for the determination of the ball’s
position is tracking of ball movements in ball based sports video sequences or in video
streams gathered from cameras that capture the field of play. Detection of the ball in images
is the first and potentially the most important step of ball tracking [2].

Sensors 2021, 21, 3214. https://doi.org/10.3390/s21093214 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21093214
https://doi.org/10.3390/s21093214
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21093214
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21093214?type=check_update&version=2


Sensors 2021, 21, 3214 2 of 28

Despite recent advances in the field of computer vision, the detection of fast moving,
small objects like balls in images remains a challenging task [3]. Compared to the detection
of larger objects in images, the performance of small object detection is still relatively
low [4]. The detection of balls in particular is subject to manifold difficulties: Considering
sports video footage, sport balls often appear as small, fast moving objects that need to
be detected in large and complex scenes. Continuously changing backgrounds as well as
motion blurring and frequent changes in size, position, and orientation impair the detection
and, accordingly, the tracking processes [5]. Balls cover only a small area of the entire input
image. Accordingly, the training of object detectors for ball detection is a complex task, as
the small ground truth objects overlap the predicted bounding boxes of the detector only
occasionally. In contrast to general object detection tasks where just a few images contain
small objects, balls are present in a large number of captured images, since the ball is often
the object of interest in the respective sports. For most sports, merely one ball is present in
an image, which often covers only specific areas in a captured scene. Accordingly, a ball
detection model needs to be trained on a great number of images that capture the ball
under different conditions and in various backgrounds before it is able to generalize.

In addition to the accuracy of detection, the detection speed plays a critical role
in various application areas. In order to achieve a real added value for the use of ball
tracking systems for fan engagement or the application in training systems, ball position
information must be available immediately, without noticeable delays. Therefore, the
respective detection algorithms must work in real time, optimally with processing speeds
of more than 30 frames per second [6]. For many modern state-of-the-art object detection
systems, the adaption to a specific detection task involves a trade-off between detection
speed and accuracy. Since ball detection requires both high accuracy and high speed, the
mastery of this trade-off represents an extremely complex task.

A specificity of ball detection is that the sports balls often appear as rather abstract
objects in the respective video footage, which have hardly any special visual characteristics.
This is partly caused by the low resolution of these balls in the image data. Details on the
surface of a ball disappear due to undersampling in image space. Furthermore, fast moving
balls are often prone to motion blurring due to high exposure times. In some sports, for
example with a single-colored ball, the ball itself has no special visual texture. In these
cases, the detection task is limited to the recognition and localization of monochromatic,
circular blobs in the image.

Due to these special characteristics, the ball is not even clearly visible to the human eye,
when individual images are considered. In contrast, when video sequences are examined,
it is easier for the human observer to identify the ball in a single frame. Many of the
widely used detection models perform the detection task on individual images. They treat
video object detection as separated detection steps on individual images in a sequence of
images. It is often ignored that these images cannot be viewed independently, since they
are temporally related.

In this paper, we present an enhancement of the speed-accuracy trade-off for the
detection of small, fast-moving objects by enabling accurate detection while preserving
fast processing speed:

We introduce a real-time ball detection approach based on the YOLOv3 object de-
tection model and apply specific adjustments for the detection of balls: First, we present
an adapted multi-resolution feature extraction which is designed to find primarily small
objects in the image. In order to improve detection accuracy, we integrate domain specific
knowledge to improve image pre-processing. Second, we add the temporal dimension
to the problem of ball detection by facilitating an efficient integration of motion infor-
mation, while avoiding complex modifications of the network architecture. Third, we
implement a data augmentation strategy that takes advantage of the special features of
balls in images in order to enhance the generalizability of the detection network. Finally,
we optimize the detection models for high-performance inference in order to use them for
real-time applications.
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2. Related Work
2.1. Object Detection in Images

Object detection refers to a classical task in computer vision which comprises the
integrated localization and classification of objects in images [7]. The localization of the
detected objects can be achieved in different ways. Simpler approaches are limited to the
detection of bounding boxes around the detected objects or the abstraction of the object
positions to a single point. Segmentation methods, on the other hand, provide image masks
containing all pixels that belong to a specific object.

Object detection, as one of the central problems in computer vision, has been an active
field of research for many years. Traditional object detection models typically apply a
pipeline of three different stages: region selection, feature extraction, and classification.
Region selection algorithms are applied to extract possible positions of objects in the
image. The generation of candidate regions is mainly based on sliding window methods or
subsets of regions in the image. Often times, this is inefficient and inaccurate or produces
redundant candidate regions [7]. Feature extraction methods, such as SIFT [8], HOG [9],
or Haar-like methods [10], are applied to extract robust visual features that describe the
objects in the image. Finally, classificators, such as SVM [11] or Viola-Jones [12], are used
to identify objects in the image and to distinguish different object classes. However, the
combination of manually designed feature descriptors and shallow classification models is
often not sufficient to solve complex detection tasks [7].

Due to the increase in computing power of the required training hardware and es-
pecially the availability of large annotated data collections [13,14], deep learning-based
detection models have evolved to state-of-the-art approaches for object detection during the
last decade. These detection models are typically based on convolutional neural networks
(CNN) and have deeper architectures and, therefore, a higher capacity to learn complex
features than traditional models. The application of deep learning algorithms allows for
learning meaningful object representations without having to design features manually.

Among the variety of specific models for object detection, some fundamental de-
tection model architectures have become generally accepted. State-of-the-art object de-
tector architectures can mainly be divided into two groups: two-stage and single-stage
detectors [15]. Two-stage detectors, such as Faster-RCNN [16] and Mask-RCNN [17] or
R-FCN [18], treat object detection as a two-step process. At a first stage, a Region Proposal
Network proposes a set of bounding boxes which may probably contain relevant objects.
In a second stage, these proposals are classified using a common deep learning-based
classification architecture.

Single-stage or single-shot detectors, such as SSD [19] or models from the YOLO model
family [6,20,21], combine the detection and classification step in a single stage by treating
the bounding box and class probability predictions as a regression task. Instead of an
additional network that generates region proposals, single stage detectors use predefined
anchors which represent different spatial positions, sizes, and aspect ratios of potential
objects distributed over the input image. Object bounding box coordinates and class
probabilities are predicted relative to these predefined anchors.

The selection of an appropriate architecture for a detector to handle a specific detection
problem is not a straightforward task. It is always a trade-off between accuracy and
speed [22]. Two-stage detectors are typically characterized by high accuracy rates, but
at the cost of decreased detection speed. In contrast, single-stage models achieve lower
accuracies but work with significantly higher speeds since all computations are integrated
in a single network. Therefore, single-stage object detectors are even able to achieve
real-time capability under certain circumstances.

Common object detection models are designed to provide valuable information for
the semantic understanding of an image. Thus, these models are trained to recognize
different types of objects and to locate them within an image. For more specific detection
tasks, such as ball detection, where the object of interest is defined in advance, it is not
required to detect a multitude of different object classes. Instead, these predefined object
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types should be detected reliably under changing conditions. Existing works in the field
of ball detection [23,24] re-train existing detection model architectures on custom data
sets. However, they limit the adaption of the detection networks, such as YOLO [20],
to the simple adjustment of hyperparameters, e.g., the adaption of the network input
resolution. Due to prior knowledge about the characteristics of balls in image data, there is
room to enhance detection, both in terms of accuracy and speed, by adapting the network
architecture and the training process for ball detection.

A large number of papers focus exclusively on the improvement of the detection
accuracy. Only a small portion of previous research in the field of object detection focuses
on the processing speed as a feature of detection, for example R-FCN [18], SSD [19], and
YOLO [21]. However, this consideration is often limited to a simple statement about
the latency or speed of detection. Thus, several papers deal with the development of
guidelines for the appropriate selection of a detection network architecture that achieves
the right balance between speed and accuracy [15,22] for a given detection task. Thereby,
the trade-off between speed and accuracy depends primarily on the choice of the network
meta-architecture, the selected feature extractors, and other relevant parameters, such as
the input image size [22]. Only limited attention has been paid to the enhancement of this
trade-off with regard to the specific task of ball detection to enable both fast processing
speeds and accurate detection.

One approach to overcome the problems of small object detection is the augmentation
of training image data by oversampling images with small objects. Each image gets aug-
mented by copy-pasting small objects many times [25] in order to increase the occurrence
and the diversity of locations of these objects in the training images. Another common ap-
proach are methods for synthesizing images to increase the size of the training dataset [26].
We adapt these approaches in order improve the training of the ball detection model.

2.2. YOLOv3

In this paper, we use YOLOv3 (Figure 1) as the baseline for adaptions to the specific
task of ball detection. In order to be able to better describe the subsequent enhancement
steps, we briefly introduce the general concept of YOLOv3 and explain the features that
are important for the subsequent modifications.

The YOLO model family is a popular family of object recognition models for detection
in real-time. Generally, YOLO uses a single convolutional neural network to predict
bounding boxes and class probabilities from an image in a single regression step. The
network can be trained end-to-end to predict box coordinates and class label for each
bounding box directly.

YOLOv3 is an “incremental improvement” on YOLOv2 [20], introducing a set of
design changes that were inspired by recent advances in the object detection world [27].
YOLOv3 retains the essential characteristics of YOLOv2, but introduces updates that
significantly enhance the performance of the detection of small objects.

Darknet-53: YOLOv3 uses a neural network to perform feature extraction, called
Darknet-53. Darknet-53 has 53 convolutional layers instead of 19 in its previous version.
Darknet-53 is based on successive 3×3 convolutions for feature extraction and 1×1 convo-
lutions for the reduction of the output channels. Furthermore, shortcut connections are
added, comparable to the residual network in ResNet [28].

Detection across 3 scales: One architectural change that significantly enhances the
detection performance on small objects is the introduction of multi-scale predictions.
Similar to feature pyramid networks (FPN) [29], YOLOv3 predicts bounding boxes at three
different scales. To achieve this, several convolutional layers are added to the Darknet-53
feature extractor network forming three branches, each responsible for the detection of
objects at a different scale. The scales are defined by downsampling the dimensions of the
input image by 32, 16, and 8, respectively. Each branch uses information from different
parts of the feature extractor network. The last branch uses information from the last layers
of Darknet-53 where the input data are downsampled by the factor 32. The respective
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feature map is used to predict the boxes for larger objects in the input image. The two other
branches further use information from previous layers in Darknet-53 in order to preserve
finer-grained information. Feature maps from the rear layers of the network are upsampled
and concatenated with previous feature maps in the network. This method allows for
using meaningful semantic information from upsampled features and to preserve finer-
grained information from earlier feature maps [21]. The combination with finer-grained
information facilitates better detection of small objects.

Figure 1. Architecture of the original YOLOv3 with 416×416 pixels input resolution.

YOLOv3 only uses convolutional layers for prediction, making it a fully convolutional
network (FCN). No pooling layers are used. Instead, convolutional layers with stride 2
are applied to downsample the feature maps. This prevents the loss of low-level features
that are required for the detection of small objects. Furthermore, it allows for changing
the input image resolution without any changes on the network architecture. Accordingly,
YOLOv3 is invariant to the size of the input image. For example, if height and width of the
input image are doubled, the number of output grid cells gets quadrupled and, accordingly,
four times more boxes are predicted.

As the network downsamples the input data by a factor of 32 at maximum (in the last
branch), the given input image dimensions should be a multiple of 32. With the standard
input resolution of 416×416 pixels, the produced output feature maps have dimensions of
52×52, 26×26, and 13×13 pixels for the respective scales.

The output of YOLOv3 is generated by applying 1×1 detection kernels on feature
maps at the last convolutional layers in the respective scale branches. The predicted 3D
tensor encodes the respective offsets for the predicted bounding boxes, the objectness
scores, and the class predictions [20]. For YOLOv3, trained on the MS COCO dataset,
the tensor encodes the class probabilities for all 80 classes in the dataset. At each scale,
three boxes are predicted for every grid cell. Accordingly, the tensor dimensions are
given by N × N × [3× (4 + 1 + 80)] at each branch, where N is the feature map size at
the respective scale. For each detection box, four bounding box offsets, the objectness
score, and 80 class probabilities are calculated. The total number of predicted boxes for
YOLOv3 trained on the COCO are 10, 647: 13× 13× 3 = 507 boxes in the big objects
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branch, 26× 26× 3 = 2028 boxes in the mid-size objects branch, and 52× 52× 3 = 8112
boxes in the small objects branch (see Figure 1).

Non-Maximum Suppression: YOLO applies thresholding to the objectness scores of
the predicted bounding boxes in order to filter out boxes having scores below a certain
objectness score. Generally, this threshold is set to 0.5. However, it is possible that the
YOLO detection network detects more than one bounding box for the same object. In
order to avoid duplicated detections in the final predictions, YOLO applies non-maximum
suppression (NMS) to remove duplications that have lower confidences.

Input image size: Merely convolutional layers are used for prediction, which allows
for changing the input image resolution without any changes on the network architecture.
Accordingly, YOLOv3 is invariant to the size of the input image. The variable input size
allows for an easier trade-off between speed and accuracy. Accordingly, a higher input
resolution may potentially facilitate the detection of smaller objects, taking into account a
possible loss of detection speed.

Anchor Boxes: Analogous to Faster R-CNN, YOLOv3 uses the concept of anchor boxes
(or prior boxes). Anchor boxes are pre-defined bounding boxes that represent the shapes
and sizes of objects that are present in the training data set. The detection network uses
these pre-defined boxes in order to predict offsets on how to move and reshape the anchor
boxes relative to a grid cell instead of predicting the actual position and size of a bounding
box directly. In that sense, anchor boxes are a tool to tune the network to detect objects of a
given size and shape. If the predefined anchor boxes are not selected correctly for the given
data, the network may not know about the existence of specific irregular sized objects and
is therefore not able to detect these objects correctly. At each scale, YOLOv3 uses three
anchor boxes for predictions, accordingly nine boxes in total.

YOLOv3 is able to learn how to adjust the anchor boxes appropriately independent of
the specified sizes and shape. However, it is easier for the network to learn if the specified
anchor boxes represent the data set well. Instead of a manual selection of prior boxes, the
selection of appropriate anchor boxes for YOLOv3 is done prior to the training process by
analyzing the training dataset using k-means clustering.

2.3. Object Detection in Videos

Although established detection methods have largely focused on the processing of
individual images, the publication of research papers dealing with detection in video data
has increased in recent years. Especially since the release of large-scale video datasets, such
as ImageNet VID [30], more research focused on the integration of the temporal component.

One way to integrate additional temporal information without changing the actual
architecture of the detection network is to modify the post-processing step of the object
detection pipeline. Methods, such as Seq-NMS [31], link the detection results of succes-
sive images and modify the detection confidences based on previous results in order to
avoid mis-detections and to stabilize the detection quality. The actual detection is still
performed per frame, but these methods require overlapping of object bounding boxes in
successive frames. Since balls can change their position quickly and unpredictably within
two consecutive frames, these methods are unsuitable for the application in robust ball
tracking applications.

As the integration of temporal information adds another dimension to the detection
problem, the application of 3D convolutions is an intuitive solution. 3D convolutional
approaches [32–34]) have proven their ability to extract features for spatio-temporal data,
especially for action recognition and image segmentation, and can be transferred to video
object detection tasks. Even though the accuracy and stability of detection might get
improved by the application of 3D convolutions, the complexity of the underlying models
and the high computational effort for the detection using multi-dimensional matrices does
not allow processing speeds of 30 FPS or more and inhibits real-time processing.

A common solution to consider the temporal context of a data series is the application
of recurrent neural networks, such as LSTMs and GRUs. Recent video detection approaches
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that incorporate recurrent neural networks proved increased detection accuracy compared
to static methods [35] and can even run at higher frame rates [36]. However, these methods
are commonly trained end-to-end and require a huge amount of related annotations of
continuous video sequences for the model training. Accordingly, existing large datasets
for single image object detection can only be used for transfer learning to a limited extent.
To train on custom video data, the data annotation process is more complex and time-
consuming compared to static image object detection methods.

The most explored field that takes advantage of the temporal dimension of video
object detection is optical flow. Optical flow estimates the visible motion of objects in two
consecutive frames in a video. The outputs of dense optical flow methods are usually two-
dimensional vector fields where each vector represents the displacement of a pixel from
one image to its successor. In recent years, traditional methods, such as the Lucas–Kannade
method [37], have been replaced by deep learning-based approaches, such as variants of
FlowNet [38,39], SPyNet [40], or PWC-Net [41]. Approaches that compute the optical flow
using deep neural networks generally take consecutive frames as the input and output the
optical flow as color coded images representing the optical flow field.

Scientific works, such as that of Zhu et al. [42,43,44], utilize optical flow computation
to create feature connections across multiple frames in order to improve accuracy or speed
of object detection in videos. They integrate optical flow to increase the inference speed
for video object detection. Most state-of-the-art object detectors are too slow to be applied
to every frame of an input video. Zhu et al. [42] use the concept of sparse key frames.
The input video is divided into image sequences with fixed lengths. The expensive object
detector is exclusively applied on the first frame in each sequence, called the key frame.
The deep feature maps of the detector are propagated to the subsequent frames via a flow
field. Since flow computation methods are relatively fast compared to common object
detectors, this approach achieves a significant speedup for inference.

Zhu et al. [43] use flow-guided feature aggregation across multiple frames to increase
the accuracy of video object detection. A feature extraction network is applied on indi-
vidual frames to predict the individual feature maps. An optical flow network estimates
the motion between nearby frames. The flow information is used to warp feature maps
from nearby frames and aggregate them relative to a given reference frame. These aggre-
gated feature maps are passed to a detector, which calculates the detection results for the
respective reference frame.

Even though these methods are even trainable end-to-end, the computation of optical
flow using deep neural networks requires large amounts of training data. Furthermore,
these methods are often designed for large and mid-sized objects in videos that do not
show larger displacements and significant changes in appearance between subsequent
frames. For small and fast moving objects, however, these methods achieve relatively poor
results [43].

3. Methods
3.1. Adaptions of YOLOv3

YOLOv3 is a general purpose detector that is designed to detect different object
types simultaneously [6]. However, for specific, single class detection tasks, such as the
detection of balls, the detector can be highly customized using prior knowledge. The more
restrictions and adjustments can be implemented for a specific detection task, the less the
detector has to deal with variations. Even though YOLOv3 is better at detecting small
objects than its previous versions, there is still room to improve the detection on small,
fast moving objects. In the following paragraphs, we introduce different adjustments to
the standard YOLOv3 architecture and training process (Figure 2) that are designed to
enhance the detection accuracy, while preserving sufficient processing speed for real-time
applications.
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Figure 2. High-level overview of the adapted YOLOv3 training and inference pipeline. For training, we apply data
augmentation to every frame by inserting additional balls. For each frame, we consider the previous images to calculate
motion information. The value channel of the resulting motion frame is added to the network in addition to the original RGB
image. We limit the bounding box prediction to the small objects branch in order to focus detection on small objects only.

3.2. Input Size

The standard input resolution for YOLOv3 is 416×416 pixels. Since the original
images usually have higher resolution, they need to be down-sampled to an input size of
416×416 prior to the input into the network. With regard to the task of ball detection, this
downsampling procedure has two major disadvantages. First of all, fine-grained visual
features that are required for the recognition of small, abstract objects, such as balls, may
get lost due to potential subsampling of the image. This effect is further reinforced by
the fact that for the standard YOLOv3, often equal aspect ratios are used for the network
input. Often times, sports footage has an aspect ratio of 16:9, usually Full-HD or even
4K resolution. Resizing to a squared format causes an elongation of objects in the image
which results in a change in the characteristic shape of balls in particular and contributes to
further distortion of visual characteristics of balls (see Figure 3). If the network is trained on
these resized images, the filters are adjusted to the distorted image content. Even though
YOLOv3 is invariant to the size of the input image, objects should have a similar distortion
during inference as during training to not risk a loss of detection performance.

We try to preserve as much fine-grained visual information as possible on both image
axes by training our networks on rectangular input images with limited downsampling
factor. For Full-HD video footage in our custom dataset, we observed that an input size of
960× 544 pixels preserves most of the important image features on both image axes for
the subsequent detection steps. By downscaling the input image resolution to 960× 544
pixels, we obtain an aspect ratio of 16:9.1, thereby practically preserving the original input
ratio and meeting the requirement that the image dimensions should be a multiple of 32.
In this way, we reduce image distortion due to previous downscaling of the image to a
minimum, compared to square input images. Accordingly, our network learns to recognize
balls as almost circular objects in the input image. This offers the freedom to slightly
change the aspect ratio during inference without having to expect a significant drop in
accuracy. Furthermore, it simplifies the application of cropping before the network input,
since resizing effects do not need to be considered. Prior cropping of a region of interest
can improve the detection performance. Image areas that are prone to increased error
detections can be excluded from the observation area for detection. A further essential
advantage of rectangular image inputs is the reduction of the computing effort during
training and inference. We reduce the number of pixels that need to be processed to less
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than 57 percent compared to a respective squared image input of 960× 960 pixels that
preserves the same horizontal resolution.

Figure 3. Cut-out of the ball from the original input image in different scales. Downscaling of the
original image with a 16:9 aspect ratio to quadratic resolution of 960× 960 pixels causes an elongation
of the ball. Even though the downscaling to 960× 544 pixels does not preserve the original aspect
ratio, the characteristic circular shape of the ball is still maintained.

We do not consider variable input resolutions due to the following reasons: first, we
want to preserve the possibility of batch processing for further development. Images in
batches can be processed in parallel by the GPU which can significantly speed up the
inference process. For batch processing, images of fixed height and width are required.
Second, arbitrary scaling and cropping of individual frames might have an effect on the
size, position, and appearance of the ball in the input images. If these changes are not
considered during training, the detection accuracy may decrease in these situations.

3.3. Anchor Boxes

YOLOv3 uses k-means clustering on the bounding boxes in the training dataset in
order to find good initial estimates for the anchor boxes. Beyond that, we use our prior
knowledge about annotated balls in image data. For the detection of uncovered circular
balls, the respective annotated bounding boxes are always square-shaped. Therefore, we
limit the aspect ratio of the given anchor boxes to be square-shaped as well. If balls are
obscured in an image, the respective bounding box may be rectangular, as the covered
parts of the ball are not enclosed in the bounding box. For our internal training dataset, we
explicitly exclude these cases from the annotated data. Balls are only annotated, if more
than half of the ball is visible and sufficiently visible to place a squared bounding box. The
bounding box size depends on the size of the ball in the image. The ball size may vary
according to the selected lenses and the specific camera settings that are used to capture
the game situation but also according to the distance of the ball to the camera. Considering
these different distances and image acquisition conditions, we use three scales of anchor
boxes for our training dataset, 30× 30, 45× 45, and 60× 60 relative to the original Full HD
image resolution.

3.4. Architecture Changes

In order to better adapt the YOLOv3 network to our detection task, we apply slight
changes to the network architecture (Figure 4).

We use the original Darknet-53 architecture without adjustments and significant
changes. By preserving the original architecture, we are able to use the weights and,
respectively, the learned feature maps from pre-trained versions of Darknet-53 for transfer
learning. All presented models use the weights of the publicly available implementation of
Darknet-53 pre-trained on MS COCO dataset [21] as the baseline for training. In order to
preserve context information from higher scales, we keep the branches for all three scales.
In contrast to the original YOLOv3, we trim the branches for big and mid-size objects, as
we do not need their output for the final bounding box predictions.



Sensors 2021, 21, 3214 10 of 28

The dimension of the feature map that predicts the final bounding boxes is defined by
downsampling the input image resolutions by the factor 8. For input image dimensions of
960× 544 pixels, the resulting grid has a size of 120× 68 pixels. Each grid cell predicts three
bounding boxes using three square-shaped anchor boxes. The total number of predicted
boxes is 120× 68× 3 = 24,480 boxes. Compared to the standard YOLOv3, our models
calculate more bounding boxes, but all boxes are predicted for small objects using a higher
resolution grid. Due to the restriction to a single ball class, the adapted network predicts a
final output tensor of size 120× 68× [3× (4 + 1 + 1)] = 146,880. This is a reduction of the
output tensor size by 84% compared to the standard YOLOv3, trained on the 80 classes
of the COCO dataset, with an output tensor size of 904, 995. All networks on which we
have implemented the described architectural adaptations to a single scaling level for small
objects we refer to as YOLOv3 micro.

Figure 4. Comparison of the architectures of the standard YOLOv3 with an input resolution of 416×416 pixels and the micro
model using motion channel and an input resolution of 960×544 pixels.

3.5. Motion Channel

The literature research showed that temporal information can provide important
cues for object detection. However, the original YOLOv3 does not make use of temporal
information. For the incorporation of this information in the detection pipeline, we aim
to integrate the temporal context of the ball movement for detection by providing motion
information to the network.

A common approach in video object detection is to provide optical flow fields in order
to enhance detection using state-of-the-art object detectors. This either aims to improve
detection accuracy by including additional motion information or to increase detection
speed as, due to the additional information, not every image has to be processed. Inspired
by deep learning-based optical flow methods that output the optical flow field as a color-
coded image, we adapt the idea of providing images that encode the motion within multiple
contiguous frames of a video sequence. Instead of including an additional neural network
for optical flow estimation, we use traditional image differencing approaches in order to
keep the architectural complexity low and maintain a simple end-to-end training pipeline.
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Numerous traditional approaches for ball detection that are based on conventional
image processing algorithms take advantage of difference images in order to investigate
the temporal changes between two or more frames. Difference images contain meaningful
information about the changes in a sequence of images. Specifically, for the detection of
balls, difference images can considerably assist the detection process. In many situations,
the ball is the fastest object in the scene and is clearly distinguishable from other moving ob-
jects, even when the camera is moving. Especially in front of highly complex backgrounds,
on which the ball can not be identified based on the information in a single image only,
moving balls show characteristic structures in the respective difference images.

Instead of changing the overall architecture of our detection network, in order to
include the temporal dimension, we change the input information provided to the network
by including difference images into the network input. To keep the additional processing
effort during training and inference low, we do not calculate the differences per channel
on the original RGB images. Instead, we apply the image differencing algorithm to the
HSV representation of the current input image and its predecessor. We provide only the
value channel of the resulting HSV image to the motion channel and discard the hue and
saturation channel. Multiple experiments showed that the integration of these two channels
did not lead to a noticeable advantage for detection, but increased the computational
workload during training and inference. Therefore, we can limit the complementary input
to the detection network, in addition to the three color channels of the RGB input image, to
a single channel. We refer to this fourth input channel as motion channel.

Image differencing algorithms often take the difference between two images and apply
thresholding in order to identify the areas with a significant change in image information.
We do not apply any kind of thresholding and leave the selection of relevant information
for detection to the network. The HSV difference images, which we refer to as motion
frames, are calculated according to the following equation:

mt = (1− α) · 2 · (HSV( ft−1)− HSV( ft)) + α · (mt−1 − 128) + 128 (1)

where mt denotes the motion frame for an input frame ft at the specific time t. The variables
ft−1 and mt−1 denote the previous input frame and the previously calculated motion frame,
respectively. The variable α represents the motion fade ratio.

The HSV representation of a frame is calculated according to the following procedure:

V ← max(R, G, B)

S←
{

V−min(R,G,B)
V if V 6= 0

0 otherwise

H ←


60(G− B)/(V −min(R, G, B)) if V = R
120 + 60(B− R)/(V −min(R, G, B)) if V = G
240 + 60(R− G)/(V −min(R, G, B)) if V = B

Image areas without changes are grey, image areas that show an decreased brightness
compared to previous images appear brighter, and image areas with increased pixel
intensity appear darker in the resulting difference image.

For fast moving balls, the positional change of the ball between two consecutive
frames is sufficiently large to generate characteristic structures in the difference image. For
slower moving balls showing merely slight displacements between two frames, however,
it may be beneficial to consider longer image sequences. We therefore apply the motion
fade ratio α that indicates the influence of previous frames to the current motion frame
calculation. Based on this ratio, we calculate a weighted average of the current difference
image and the previous motion frame (Equation (1)). Accordingly, the influence of earlier
motions fades over time.
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Figure 5 shows the influence of different motion fade ratios on the input of the motion
channel. For the considered video material for beach volleyball, we use a motion fade ratio
of 0.0 as the captured balls usually move fast enough between two consecutive images to
create characteristic structures in the respective difference image. For other applications
where the object displacement between two consecutive frames is not high enough, either
due to slower movements or due to higher frame rates, larger motion fade ratios may
have a positive effect on the detection performance. Furthermore, larger motion fade ratio
values can help to compensate a relative movement of the camera.

Before each inference step, we calculate the respective motion image for each frame
and insert the value channel of the motion image into the original frame as an additional
channel. Accordingly, we adapt the network input to accept 4-channel input images.
The original Darknet-53 architecture itself is unchanged except for the input layer. The
feature extractor needs to consider an additional source of information during training and
inference.

(a) Current video frame. (b) Motion channel input using motion
fade ratio of 0.5.

(c) Motion channel input using motion
fade ratio of 0.0.

Figure 5. Examples of calculated motion channel inputs for a given input frame using different motion fade ratios.

3.6. Data Augmentation

In a first step, we focus on the objective to increase the expected intersection between
annotations in the training data and predicted bounding boxes during training by applying
data augmentation prior to the training process. We achieve this increase by copying
labeled balls from the original image and inserting a large number of copies of the ball
back into this image. These copies are spread over the entire image in order to account for
different possible backgrounds in the image (Figure 6b). The balls are cropped using the
inscribed circle (incircle) of the annotated bounding boxes. If the annotations are not square-
shaped, we normalize the bounding box to a squared shape by extending the small side of
the rectangle until the aspect ratio is equal, while preserving the original center point of the
annotated bounding box. To simulate realistic conditions, we blur the edges of the cropped
circular patches in order to remove hard cutting edges and to emulate depth perception.
Thus, the snippets blend in better into their new background and the network does not
learn to recognize synthetically generated, hard edges that are not present in the original
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image data. Prior to inserting these copies into the image, we apply image transformation
to the extracted ball patches in order to simulate different possible conditions. The cropped
ball snippets are rotated randomly around their center. To simulate different lighting
conditions, the brightness of the snippets is varied randomly by converting the RGB
color snippets into their HSV representation and varying the respective brightness value.
Depending on the probability of motion blurring in the relevant image/video sequences,
we recommend to blur a subset of the ball duplicates by applying Gaussian blur to the
snippets. We refer to this data augmentation method as static augmentation.

(a) Current video frame. (b) Augmentation using copies of the
original ball.

(c) Augmentation using artificial balls.

Figure 6. Different augmentation strategies for a given input frame. (b) shows the augmentation using multiple copies of
the original ball (as used for static augmentation). (c) shows the augmentation using previously captured and randomly
modified samples of beach volleyball balls (as used for motion augmentation). The red and blue trajectories visualize the
simulated movement of two exemplary artificial balls over multiple frames.

Especially for extremely small balls, we observed that the possibilities for these image
transformation steps are very restricted since excessive transformation steps often lead to
unnatural artifacts for low resolution objects. Furthermore, it is often difficult to cut out the
original balls precisely without any cutting artifacts from the original image due motion
blur or other blurring and occlusion effects.

Therefore, we introduce a second approach for ball data augmentation. We use
previously taken photos of the official game ball for beach volleyball, captured from
different perspectives, as the base for augmentation. We cut out the ball from these images,
apply the mentioned transformations, and finally insert the resulting “artificial” balls into
the original image (Figure 6c). Since these previously taken photos are available in higher
resolution and the balls can be captured under predefined conditions, the cutting process is
more straightforward and the options for transformation are more diverse compared to the
low-resolution balls cut from the original images. Therefore, we extend this approach by a
temporal component and simulate ball motion across multiple frames. If only individual
frames without any temporal context are considered for augmentation, there is a risk of
unnatural overlapping and artifacts when calculating the difference images for the motion
channel. Accordingly, we simulate the movement of balls across multiple contiguous
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frames and insert balls according to natural trajectories into the images. We imitate two
types of trajectories to account for the characteristics of the ball movements in beach
volleyball: First, we simulate the movement of the ball during pass situations (digging,
setting). Second, we simulate fast, almost straight trajectories for fast spikes or serves. We
refer to this approach as motion augmentation.

For sports with no uniform or predetermined ball design, for example handball, data
augmentation can help to improve the generalization ability of the ball detection model.
For sports with changing ball designs, we enrich the training data by inserting different
ball models. These models do not need to be present in the original data but can be
taken from example images instead (for example annotated sports balls from MS COCO
dataset [14]). We use different types of balls in the image, in order to train the detector on
different models/types of balls and avoid overfitting of the detector on specific balls that
are over-represented in the original training data.

3.7. Speed Optimization

In order to use the YOLOv3 micro model architecture for real-time analyses, we
optimize the detection models for higher inference speeds using NVIDIA TensorRT [45].
Since not all required operations in our custom detection network implementation are
supported in the utilized version of TensorRT, we are forced to split the detection model for
inference. YOLOv3 applies thresholding and Non-Maximum Suppression (NMS) to remove
duplicated bounding boxes with lower confidences. We split off this post-processing step so
that we get a two-part inference model. The first network part, including feature extraction
and bounding box prediction, is accelerated using TensorRT. For TensorRT optimization, we
use FP32 precision in order to match the evaluated accuracy of the developed Tensorflow
models best. In terms of latency, there is still room for improvements by changing the
specified precision to FP16 or even INT8.

For the post-processing part, we use TensorFlow Lite [46] for inference. Again, we do
not apply further optimization steps, such as quantization, which could further accelerate
inference but potentially at the expense of accuracy.

4. Experiments
4.1. Datasets

We evaluate the performance of our detection models on the detection of beach
volleyball balls in images captured at professional beach volleyball competitions. We
installed cameras around the field of play at three professional venues during competition.
We use the data of two venues to train our detection models and evaluate their detection
quality and performance on data captured at the third venue. In order to maximize the
diversity in the training data, we captured images from different perspectives and under
different conditions, such as changing lighting conditions, varying backgrounds, and
different recording procedures, such as varying camera settings. In all recorded sequences,
the same ball model is used.

The training data set includes 10,363 samples. Each sample consists of an image that
captures a real game situation. We manually labeled the bounding box around the game
ball, if more than 50 percent of the ball surface was visible in the image. Balls other than
the currently used game ball, for example spare balls outside the field of play, were not
considered during data annotation. For each sample, we further employed the sequence
of the previous images of the captured game situation in order to calculate the current
motion frame, which is passed to the motion channel during training. The side lengths
of the square-shaped annotated ball bounding boxes in the training data set range from
at minimum 10 pixels up to 52 pixels, depending on the distance of the balls from the
statically installed cameras. The average bounding box size in the training data set is
22× 22 pixels in relation to the 1920× 1080 pixels resolution of the original images.

The test data set includes 2192 samples, recorded at the third venue. The images were
taken from ten different game situations which were recorded in ten individual continuous
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video sequences. The different game situations show clear differences in the recording
conditions, including different athletes, changing situations in the spectator area of the
arena as well as different times of day and, thus, lighting conditions during data acquisition.
The average size of the annotated boxes in the test data set is 21× 21 pixels.

4.2. Models

To evaluate the influence of the presented adaptions of the network architecture and
training process compared to the standard YOLOv3 framework, we defined different
models that we trained on the custom training data set (Table 1). All architectures share
the same feature extraction backend Darknet-53. Therefore, we do not need to train these
networks from scratch but instead import the network weights of the Darknet-53 backend,
pre-trained on the COCO dataset, from the original YOLOv3 website [21].

Table 1. Overview of all evaluated model variants, including the respective input image size and the applied augmentation
strategy (static augmentation or motion augmentation). Column “Motion” indicates whether motion information is
considered by the model. We denote all (intermediate) model variants which are trained following the refinement training
approach with the suffix _rt indicating “refinement training”.

Model Augmentation Motion Input Width Input Height
regular_416×416_COCO 416 416
regular_416×416 416 416
regular_608×608 608 608
regular_960×960 960 960
regular_960×544 960 544

micro_960×544_augmentation_static_75 static 960 544
micro_960×544_augmentation_static_50 static 960 544
micro_960×544_augmentation_static_20 static 960 544

micro_960×544_augmentation_motion_5 motion 960 544
micro_960×544_augmentation_motion_10 motion 960 544
micro_960×544_augmentation_motion_20 motion 960 544

micro_960×544 960 544
micro_960×544_no_motion 960 544
micro_960×544_no_motion_augmentation_50 static 960 544

micro_960×544_augmentation_motion_10_rt motion 960 544
micro_960×544_augmentation_motion_3_rt motion 960 544
micro_960×544_rt 960 544

regular_960×544_augmentation_motion_10_rt motion 960 544
regular_960×544_augmentation_motion_3_rt motion 960 544
regular_960×544_rt 960 544

Baseline models: The baseline for our development is a re-implementation of the
standard YOLOv3 network using TensorFlow 2 in Python, which we refer to as regular
YOLOv3. We evaluate the regular YOLOv3 architecture using four different input sizes.
For each regular model, we re-train the network on the custom dataset in order to adapt
the detection to the different input resolutions. In first instance, we evaluate the baseline
model using the standard input resolution of 416× 416 pixels. We refer to this model as
regular_416 × 416. For evaluation, we analyze two different versions of regular_416×416
YOLOv3: First, we import the weights of the original version of YOLOv3 with 416× 416
pixels input resolution, pre-trained on the COCO dataset, which includes a class for sports
balls already. Secondly, we re-train this network implementation on the custom dataset for
beach volleyball.

For the considered beach volleyball dataset, we prefer an input image width of 960
pixels in order to capture all essential image information in sufficient resolution. The
standard YOLOv3 is designed to process quadratic input image resolutions. Therefore, we
evaluate a second network with an input resolution of 960× 960 pixels that we refer to



Sensors 2021, 21, 3214 16 of 28

regular_960×960. Since the original YOLOv3 paper [21] presents a 608× 608 pixels input
resolution version in addition to the standard 416× 416 pixels resolution, we have further
trained a corresponding regular_608 × 608 model to increase the comparability to existing
literature and between the different model architectures. To ensure the best possible
comparability with the model versions specifically adapted to ball detection, we trained
a regular_960 × 544 network accepting a rectangular input resolution of 960× 544 pixels
which is supposed to be more comparable to our adapted micro YOLOv3 implementation
in terms of complexity and the respective input resolution.

Adapted models: All networks on which we have implemented the described
architectural adaptations to a single scaling level for small objects we refer to as YOLOv3
micro. All micro variants accept rectangular images with an input resolution of 960× 544
pixels. The micro_960 × 544_no_motion model does not consider motion information
and only processes RGB input images, comparable to the regular implementations.
Model micro_960 × 544 adds a motion channel to account for fast ball motion. The
micro_960 × 544_augmentation models use data augmentation for beach volleyball balls
during training. We evaluate both augmentation approaches: static augmentation and
motion augmentation using different numbers of augmented balls per image. For the
micro_960 × 544_augmentation_static_50, 50 artificial balls are inserted for each sample
in the training dataset. For micro_960 × 544_augmentation_static_20, 20 copies of the
current ball are inserted, respectively. For micro_960 × 544_augmentation_motion_20,
micro_960 × 544_augmentation_motion_10, and micro_960 × 544_augmentation_motion_5,
we insert 20, 10, and 5 artificial balls into each training sample respectively, following
the presented motion augmentation approach.

The model micro_960 × 544_no_motion_augmentation_static_50 does not consider
motion information and is trained using static motion augmentation with 50 balls.

4.3. Training

We train all model variants using six NVIDIA GTX 1080 Ti GPUs. For training, we
use the Adam optimizer with an initial learning rate α = 0.001, β1 = 0.9, β2 = 0.999 and
ε = 1× 10−7 [47]. All networks are trained on the loss functions introduced in the original
YOLO paper [6]. For models with an input width smaller than 960, we use a batch size of
16, otherwise a batch size of 12. In the considered dataset for beach volleyball, the captured
balls usually move fast enough between two consecutive images to create characteristic
structures in the respective difference image. Therefore, we use a motion fade ratio of 0.0.
For both augmentation approaches, static augmentation and motion augmentation, we
vary the diameter of the augmented balls between 10 pixels and 52 pixels, representing
the dimensions of the samples in the training dataset. For training, we use a threshold
score of 0.5 for the objectiveness and a minimum IoU threshold of 0.5 for non-maximum
suppression [21].

For the evaluation of the presented model variants, we apply two different types of
training strategies:

Initial training: We initialize all model variants using the weights of Darknet-53
pre-trained on the MS COCO dataset. For training, we use the aforementioned hyperpa-
rameters. In order achieve the best possible training duration, for each model individually,
we apply EarlyStopping. We stop the training process after seven epochs without improve-
ment on the validation dataset.

Refinement training: For the regular_960× 544 and micro_960× 544 implementations,
we furthermore apply a multi-stage refinement training, in an identical way, for the two
network types. In a first step, we train both models using static augmentation with 20
copies of the original ball per frame, following the same strategy as during initial training.
Afterwards, we go into a step-by-step refinement phase. In a first refinement run, we
augment the training data by inserting 10 additional augmented balls, following the
motion augmentation approach. Subsequently, we apply another refinement run using
the same approach but decreasing the number of augmented balls per training image
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to 3 and lower the initial learning rate to 0.0001. Finally, we apply a third refinement
training step without any data augmentation at all, still using a learning rate of 0.0001. Our
investigations have shown that there is usually no further improvement after the third
epoch within a refinement step. Therefore, we stop training after three epochs within a
refinement training step, if there is no further improvement of the validation loss, and
select the models showing the highest validation accuracy for further refinement training.

We denote all (intermediate) model variants which were trained following the refine-
ment training approach with the suffix _rt indicating “refinement training”, followed by
the respective number of augmented balls in this phase.

4.4. Evaluation Metrics

We evaluate all models according to the respective training methods based on different
metrics: (1) number of true positive detections (TP), false positive detections (FP), and false
negatives (FN), (2) precision, (3) recall, (4) F1 score, (5) average precision of class “ball”
(AP), (6) averaged intersection over union (IoU) over all true positive detections in the test
data set, (7) number of network parameters, (8) inference time in frames per second (FPS),
and (9) training time per epoch and sample.

For the calculation of the AP, we use the mean average precision (mAP) criterion
defined in the PASCAL VOC 2012 competition [48]. All detection results are sorted by
decreasing confidence scores and assigned to ground truth objects. We assign a detection
to a ground truth object if the respective IoU ≥ 0.5. Using these assignments, we calculate
the precision-recall curve with monotonically decreasing precision. For a specific recall
r, we set the corresponding precision to the maximum precision achieved for any recall
r′ > r. We calculate the AP for the single class ball as the area under the precision-recall
curve. The mAP is calculated as the mean of the AP scores over all object classes present in
the ground truth data. Since there is only one class in our dataset, AP and mAP provide
the same metric. Therefore, we limit our evaluation to the presentation of the AP for the
class ball. We separately indicate the IoU in order to better specify the spatial accuracy of
detection for a specific model variant.

Following the same approach as for training, we use a threshold score of 0.5 for the
objectiveness for inference, in order to define if an object is detected as such or not. The
minimum IoU threshold for non-maximum suppression is also set to 0.5.

We run the evaluation without batch processing on a NVIDIA RTX 2080 Ti GPU. All
models are evaluated using Python 3.6 and Tensorflow 2.

Tables 2 and 3 show the results of the different network architectures trained on the
custom training dataset for beach volleyball (except for regular_416×416_COCO which
was not re-trained). The performance is evaluated on data captured at a third, independent
venue. No data from this venue is present in the dataset used for training.
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Table 2. Comparison of training and inference speed, in relation to the network input size and the number of network parameters, of the different model variants adapted on the custom
dataset for beach volleyball balls.

Model Input Width Input Height Input Pixel Trainable
Parameters

Non-Trainable
Parameters

Parameters FPS Training Time
(Epoch)

Training Time
(Sample)

regular_416×416_COCO 416 416 173,056 61,523,734 52,608 61,576,342 16.2
regular_416×416 416 416 173,056 61,523,734 52,608 61,576,342 16.2 3:12 5.267
regular_608×608 608 608 369,664 61,523,734 52,608 61,576,342 12.9 3:14 5.325
regular_960×960 960 960 921,600 61,523,734 52,608 61,576,342 8.1 3:21 5.525
regular_960×544 960 544 522,240 61,523,734 52,608 61,576,342 11.7 3:23 5.584

micro_960×544_augmentation_static_75 960 544 522,240 55,595,026 49,536 55,644,562 12.9 2:59 4.926
micro_960×544_augmentation_static_50 960 544 522,240 55,595,026 49,536 55,644,562 12.9 2:22 3.92
micro_960×544_augmentation_static_20 960 544 522,240 55,595,026 49,536 55,644,562 12.9 1:37 2.672

micro_960×544_augmentation_motion_5 960 544 522,240 55,595,026 49,536 55,644,562 12.9 1:18 2.145
micro_960×544_augmentation_motion_10 960 544 522,240 55,595,026 49,536 55,644,562 12.9 1:29 2.457
micro_960×544_augmentation_motion_20 960 544 522,240 55,595,026 49,536 55,644,562 12.9 1:36 2.631

micro_960×544 960 544 522,240 55,595,026 49,536 55,644,562 12.9 1:10 1.937
micro_960×544_no_motion 960 544 522,240 55,594,738 49,536 55,644,274 13.4 1:11 1.946
micro_960×544_no_motion_augmentation_50 960 544 522,240 55,594,738 49,536 55,644,274 13.4 1:29 2.459

micro_960×544_augmentation_motion_10_rt 960 544 522,240 55,595,026 49,536 55,644,562 12.9 1:29 2.460
micro_960×544_augmentation_motion_3_rt 960 544 522,240 55,595,026 49,536 55,644,562 12.9 1:15 2.059
micro_960×544_rt 960 544 522,240 55,595,026 49,536 55,644,562 12.9 1:12 1.974

regular_960×544_augmentation_motion_10_rt 960 544 522,240 61,523,734 52,608 61,576,342 11.7 3:32 5.830
regular_960×544_augmentation_motion_3_rt 960 544 522,240 61,523,734 52,608 61,576,342 11.7 3:26 5.666
regular_960×544_rt 960 544 522,240 61,523,734 52,608 61,576,342 11.7 3:29 5.747
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Table 3. Performance comparison of the different model variants adapted on the custom dataset for beach volleyballs. Underlined values indicate the best results for the respective evaluation metric.

Model GT TP FP FN Precision Recall F1 AP IoU
regular_416×416_COCO 2189 11 2 2178 84.6 0.5 1.0 0.5 63.6
regular_416×416 2189 1774 1679 415 51.4 81.0 62.9 73.9 71.4
regular_608×608 2189 2085 3555 104 37.0 95.2 53.3 82.7 76.6
regular_960×960 2189 2157 5752 32 27.3 98.5 42.7 90.2 79.2
regular_960×544 2189 2044 1748 145 53.9 93.4 68.3 84.3 77.9

micro_960×544_augmentation_static_75 2189 1774 458 415 79.5 81.0 80.3 76.0 80.0
micro_960×544_augmentation_static_50 2189 1789 1488 400 54.6 81.7 65.5 69.5 76.9
micro_960×544_augmentation_static_20 2189 1803 370 386 83.0 82.4 82.7 78.1 79.5

micro_960×544_augmentation_motion_5 2189 1734 364 455 82.7 79.2 80.9 74.5 79.6
micro_960×544_augmentation_motion_10 2189 1451 158 738 90.2 66.3 76.4 63.7 79.1
micro_960×544_augmentation_motion_20 2189 1452 241 737 85.8 66.3 74.8 62.7 77.6

micro_960×544 2189 1704 343 485 83.2 77.8 80.5 72.9 78.9
micro_960×544_no_motion 2189 2001 1319 188 60.3 91.4 72.6 84.1 79.3
micro_960×544_no_motion_augmentation_50 2189 2111 2528 78 45.5 96.4 61.8 89.7 83.0

micro_960×544_augmentation_motion_10_rt 2189 1966 270 223 87.9 89.8 88.9 86.2 83.8
micro_960×544_augmentation_motion_3_rt 2189 2029 485 160 80.7 92.7 86.3 89.0 84.5
micro_960×544_rt 2189 2021 482 168 80.7 92.3 86.1 88.3 83.9

regular_960×544_augmentation_motion_10_rt 2189 2062 1706 127 54.7 94.2 69.2 87.0 83.3
regular_960×544_augmentation_motion_3_rt 2189 1926 507 263 79.2 88.0 83.3 82.7 84.1
regular_960×544_rt 2189 1978 725 211 73.2 90.4 80.9 84.4 83.8
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5. Results
5.1. Performance

The regular_416 × 416_COCO model that was merely pre-trained on the COCO
dataset does not ensure any reliable detection at all on the given data set. Only in a very
few isolated cases the ball is detected and classified correctly as a sports ball. Re-training
on the specific footage increases the detection performance significantly. The regular_416
× 416 shows a comparatively high recall (81.0%). In contrast, precision is low due to a
high number of false positive detections. With increasing input resolution for the regular
implementations, the average precision (AP) increases up to a maximum value of 90.2% for
the regular_960 × 960 model. However, as the square input size increases for the regular
models, the precision decreases significantly, down to a value of 27.3% for the regular_960
× 960 model. The regular_960 × 960 model has the highest recall of all models but, at the
same time, the lowest overall precision. An exception is regular_960 × 544 that shows
precision results comparable to the lower resolution regular_416 × 416 model while recall
and AP are higher. In general, with increasing input resolution, an improvement of the IoU
can be observed within the re-trained regular models.

All micro implementations are evaluated for an input image resolution of 960 × 544
pixels. The model micro_960 × 544_no_motion has an almost identical AP compared to
the reference model regular_960 × 544. However, the F1 score of 72.6% is slightly higher
than for the regular version, mainly due to increased precision, but with slightly lower
recall. In comparison to micro_960 × 544_no_motion with an AP of 84.1%, we added static
augmentation with 50 additional balls during training process for model micro_960 ×
544_no_motion _augmentation_static_50, which results in an increased AP of 89.7%. Even
though AP increased, precision and accordingly F1 score are comparatively low. Compared
to the regular models, an increase in IoU to 83.0% can be observed.

The training of a micro model that considers motion information without augmenta-
tion during the training process results in a noticeably decreased average precision during
test time. The model micro_960 × 544 shows a very low AP of 72.9%. It is conspicuous,
however, that F1 score (80.5%) and precision (83.2%) for micro_960 × 544 are significantly
higher than for all presented regular implementations.

We applied both presented types of augmentation during initial training.
The model variant micro_960 × 544_augmentation_static_20 reaches an AP of 78.1%. An
increasing number of inserted balls for static augmentation does not improve the AP
significantly. All other evaluated metrics decrease for micro_960 × 544_augmentation
_static_50 and micro_960 × 544_augmentation_static_75 compared to micro_960 × 544
_augmentation_static_20. For the micro models trained using motion augmentation,
the AP decreases while the number of inserted artificial balls increases, reaching from
74.5% AP for micro_960 × 544_augmentation_motion_5 to 62.7% for micro_960 × 544
_augmentation_motion_20. Generally, the precision for micro models trained using
motion augmentation is high, reaching a maximum of 90.2% for micro_960 × 544_aug-
mentation_motion_10.

We observe a significant increase in recall and accordingly F1 score and AP for mi-
cro models with motion channel when refinement training is applied. micro_960 × 544
_augmentation_motion_3_rt achieves an AP of 89.0%, almost reaching the maximum AP of
90.2% of the higher-resolution regular_960 × 960. Furthermore, this model achieves the
highest IoU of 84.5% across all evaluated models. The highest F1 score (88.9%) can be ob-
served after the first refinement run for model micro_960 × 544_augmentation_motion_10_rt.
During the last refinement run without additional augmentation, no further improvement
in performance can be measured. To better evaluate the effect of refinement training, we
applied the same approach to the regular_960× 544. Especially after the second refinement
run, the precision increases to 79.2% for regular_960 × 544_augmentation_motion_3_rt
compared to the same model trained without augmentation. Furthermore, an average
IoU of 84.1% is noticeably higher than compared to standard training. Even though
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regular_960×544_rt reaches comparable AP as the baseline model, precision (73.2%) and
recall (90.4%) are more balanced and the resulting F1 score (80.9%) is higher.

5.2. Speed

With regard to an objective comparison of different detection models, we initially
evaluate the inference speed of all model variants using our re-implementation of the
standard YOLOv3 network using TensorFlow 2 in Python. Our regular_416 × 416 model
achieves around 16 FPS on a RTX 2080 Ti using the standard input resolution of 416× 416
pixels. For an input resolution of 960 × 960 pixels, the inference speed is on average
8.1 FPS. For the regular_960 × 544, we achieve an average frame rate of 11.7 FPS. Our
custom implementation micro_960 × 544_motion that processes motion information by
the additional motion channel achieves an average inference speed of 12.9 FPS. Without
motion channel, the average processing speed even increases to 13.4 FPS.

Even though a frequency of 10 FPS is sufficient to describe the movement of the ball
in most cases, game determining situations with high ball speeds cannot be captured and
analyzed adequately. With an optimized version of the YOLOv3 micro model with motion
channel, we are able to perform the inference with up to 40 FPS. The inference time for the
results of the first subnetwork using TensorRT on a NVIDIA RTX 2080 Ti is 0.011 seconds on
average. The inference of the post-processing steps using TensorFlow Lite takes about 0.003
seconds on average and, therefore, has little influence on the overall prediction speed. Since
the motion information is required as a network input, the difference image calculation
must be considered in the overall inference time. With an average time of about 0.011
seconds for the difference image calculation, the overall processing time is 0.025 seconds
per frame and thus enables processing in real time.

In addition to the speed increase during inference for the micro models, the time
required for model training is decreased. The time required per epoch during training is
reduced from 3:23 hours on average for the regular_960×544 to an average of 1:10 hours
for the micro_960×544. The time required for training increases with the number of balls
inserted during augmentation.

6. Discussion
6.1. Effect of Input Resolution

The evaluation of the regular models trained on different image input sizes allows
for a good analysis of the correlation between input resolution and detection performance.
Generally, YOLOv3 allows for an easy trade-off between speed and accuracy, just by chang-
ing the input size, without more complex adaptations of the network architecture. For the
purpose of ball detection, the limitations of this easy trade-off are clearly visible: While
the processing speed decreases, AP, recall, and IoU increase with increasing input resolu-
tions. In contrast, precision decreases with increasing square-shaped input resolutions as
the number of false positive detections increases significantly. The better ratio between
precision and recall and accordingly the higher F1 score for the regular_960 × 544 model is
a clear indication that nearly preserving the original image aspect ratio for training and
inference instead of downscaling to a square-shaped input size preserves fine-grained
visual information that is required to distinguish balls from other objects and structures
in the input image. The slightly increased IoU for larger input sizes indicates that the
predicted bounding boxes better estimate the actual position of the ball in the image when
the input resolution is increased.

6.2. Effect of Motion Channel

Networks without motion channel perform stably, especially for balls on homogeneous
backgrounds. In front of relatively complex backgrounds, which show similar structures to
the ball, for example spectator areas or animated perimeter advertising, we identified a
high number of false positive detections in the background areas of the scene (Figure 7).
Often, these false positive detections are persistent within consecutive frames of a video.
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In contrast to micro_960 × 544_no_motion, micro_960 × 544 adds the motion channel
to the micro network. The micro_960 × 544 model exhibits significantly reduced AP
compared to its non-motion counterpart. The precision is apparently higher due to a
significantly lower number of FP. However, the improvements in precision are at the
expense of a lowered recall. Accordingly, recall and precision are balanced for models
with motion channel: without adaption, these models detect fewer balls but produce
significantly fewer false positive detections. The increased precision for models with motion
channel shows that the motion information helps the model to better detect relevant objects
and to suppress error detections. Consistent false positive detection of static structures
in the background, for example heads in the spectators area or circular objects on the
perimeter advertising, are minimized. However, the motion information is not yet used
to continuously detect balls in consecutive frames without interruptions. We assume that,
without augmentation, ball samples including valuable corresponding motion information
are underrepresented during training.

6.3. Effect of Data Augmentation

The significant improvement in AP between micro_960 × 544_no_motion and
micro_960 × 544_no_motion_augmentation_static_50 indicates the positive influence of
static augmentation to models that do not consider motion information. Static augmen-
tation seems to improve the feature extraction and detection process on the original RGB
input image, leading to better performance during inference. We hypothesize that espe-
cially the feature extraction in the Darknet-53 part of the micro models benefits from the
increase in training targets per image. The comparison between the models micro_960 ×
544, without augmentation, and micro_960 × 544_augmentation_static_20 further shows
that the positive effect of static augmentation is also present for models with motion chan-
nel. In turn, different analyses showed that an intensive increase of augmented balls for
static augmentation can not improve the detection further.

Besides static augmentation, we further evaluated the effect of motion augmentation
on the network performance. Comparable to static augmentation, the performance of
models trained with an increased number of inserted balls using motion augmentation
decreases. For regular models and micro models without motion channel, the recall is
consistently high while precision is relatively low. For micro models that are trained
without augmentation or trained using static augmentation (micro_960 × 544_augmen-
tation_static_20 and micro_960 × 544_augmentation_static_75), precision and recall are
balanced. However, micro models trained using motion augmentation tend to show higher
precision while recall decreases. As motion augmentation further increases precision, this
augmentation approach seems to additionally intensify the influence of motion information
to the detection process. However, this is done at the expense of significantly decreased
recall. Models using a motion channel tend to be highly sensitive to an exclusive applica-
tion of motion augmentation. We assume that the inserted artificial balls do not sufficiently
simulate the visual features of the original balls in the image data. Accordingly, the feature
extraction process is overadapted to the artificially created balls. To achieve the necessary
balance between the two types of data augmentation, we apply refinement training.

Compared to the static augmentation approach, where the modified balls are distributed
randomly in each image, we were able to significantly improve the detection quality especially
at the reversal points of the ball parabolas, as both fast and slow ball movements are included
in the augmented training data when applying motion augmentation.

6.4. Effect of Refinement Training

Refinement training significantly improves performance on micro models using mo-
tion information. The first training phase, using static augmentation, enhances the feature
extraction based on visual features in the original RGB images. The following refinement
steps increase the influence of valuable motion information while maintaining the balance
between static features in the image and motion information. Using refinement training,
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the performance of micro models including motion can be significantly increased compared
to the regular_960 × 544 baseline model.

6.5. Effect of Architectural Changes

The preservation of the original Darknet-53 architecture offers two major advantages:
First, we are able to use the weights and respectively, the learned feature maps from pre-
trained versions of Darknet-53 for transfer learning. This significantly reduces the duration
of the training process compared to training the models from scratch. Furthermore, we
observed that training a fully customized YOLOv3-based network for ball detection from
scratch is a fairly complex task that requires to deal with significant model instability
during training. The training stability gets significantly improved by loading the pre-
trained Darknet-53 weights before training. A possible increase in speed by modifying the
original Darknet backend architecture does not outweigh the resulting improvements in
training stability and speed.

We analyzed the detection accuracy of the standard YOLOv3 model trained on the MS
COCO dataset on our training dataset. We observed that a correct detection was limited
to rare individual cases. If a ball was detected correctly as a sports ball, the respective
bounding box was predicted at the 52× 52 feature map in the branch that is responsible
for the detection of small objects. In a first attempt, we fully removed the branches for
large and medium sized objects and downsized the feature extractor network by disabling
all layers after the third Darknet Block that do not directly contribute to the detection in
the small objects branch. After training on our internal dataset, we observed a significant
increase in false positives’ detections. We assume that this behavior was caused by the loss
of additional context information generated in the removed branches for big and mid-size
objects. The detection network is able to use the fine-grained features from earlier layers
in Darknet in order to detect the ball correctly. However, there is missing information on
high scale features and semantic information that can be used to suppress error detections.
In order to preserve context information from higher scales, we keep the branches for all
three scales but trim the branches for big and mid-size objects and thus exclude them from
the calculation of the detection results.

During inference, the adjustments in the architecture to limit the detection calculation
to the small object scale only have primarily influenced the detection speed of the network.
Comparing regular_960 × 544 and micro_960 × 544_no_motion, AP and IoU do not show
any major deviations. Precision and F1 are slightly increased for the micro model, which is
most likely due to the adjustments of the anchor box sizes. On the other hand, micro_960
× 544 with a total of 61,576,342 network parameters has about 5,931,780 parameters fewer
than the corresponding regular implementation. This results in the increase of inference
speed without a loss in performance. In addition, the time required per epoch during
training is reduced for the micro model versions. This acceleration is mainly achieved by the
elimination of the predicted boxes in the mid-size and large object scale branches compared
to the original regular implementations. Accordingly, only the remaining predicted boxes
in the small object branch are considered during training, for example for loss calculation
and parameter update.

Figure 7. Examples for false positive detections by the reference model regular_960 × 544 that are
suppressed by the micro_960 × 544_augmentation_motion_3_rt model using motion information.
The examples show similar structures to the ball in the RGB image. However, they do not produce
characteristic patterns in the motion channel and are consequently not recognized as balls.
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6.6. Final Model Selection

Models show different characteristics at different stages of the refinement training
process. The model micro_960 × 544_augmentation_motion_3_rt shows the highest IoU
over all evaluated models and the highest AP within the refinement training process of the
micro model. In turn, micro_960 × 544_augmentation_motion_10_rt exhibits the highest
F1 score over all evaluated models. The selection of the final model primarily depends
on the intended purpose of the detection model and the requirements of the specific use
case. We select micro_960 × 544_augmentation_motion_3_rt as the final detection model
as it offers the highest number of TP detections within the refinement training process and
has the highest IoU. Figure 8 shows the comparison of the selected final model with the
baseline model regular_960 × 544.

Figure 8. Comparison between the reference model regular_960 × 544 and the finally selected micro
model micro_960 × 544_augmentation_motion_3_rt with motion channel. Due to the suppression of
false positive detections, a significantly higher recall and consequently a higher F1-score is achieved.
At the same time, the processing speed is increased by more than 10%.

7. Summary and Conclusions

In this paper, we propose specific adjustments to the original YOLOv3 network
architecture and training process with the goal to improve both the detection accuracy
and speed, for the specific task of sports ball detection in sports video footage. We apply
architectural changes to the original YOLOv3 network that lead to an enhanced detector
for small objects which we refer to as micro YOLOv3. To account for fast movements of
the detection targets, we incorporate motion information into the detection process by
inserting an additional motion channel to the detection network. Furthermore, we present
a multi-stage refinement training approach, based on multimodal data augmentation, in
order to adapt the training process to the architectural changes. We provide an extensive
analysis of the effect of the proposed changes regarding various performance metrics.

Our final model outperforms the re-trained YOLOv3 baseline architecture, both in
terms of detection accuracy and speed on a custom dataset for beach volleyball ball detec-
tion. Therefore, the presented approach provides an enhancement of the classical trade-off
between speed and accuracy for YOLOv3 models. Both detection speed and accuracy are
increased simultaneously using prior knowledge about the specific detection task. We
demonstrate that our final model architecture can be used for real-time applications with
up to 40 FPS using hardware-based optimization.
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We focused the development and evaluation of the introduced detection approach on
the specific task of ball detection in beach volleyball for the custom dataset available to us.
In order to transfer the detection approach to other sports, the proposed enhancements
need to be tuned to the characteristics of the intended use cases. This concerns especially
the adaption of the data augmentation procedure to account for different ball designs and
different characteristic motions of balls and accordingly the adjustment of the influence
of the motion channel. Furthermore, we limited our evaluation to video data captured by
static cameras. The influence of camera motion has to be evaluated on a case-by-case basis.

Even though the presented approach was designed for the detection of sports balls in
particular, the introduced adaptations can be transferred to other use cases where small,
fast moving objects need to be detected in video footage.

8. Future Work

We demonstrate that the application of refinement training that incorporates both
static augmentation and motion augmentation supports the integration of motion infor-
mation into the detection process without decreasing the influence of static image content.
However, a multi-stage training process is difficult to handle. Therefore, we will further in-
vestigate the possibilities to integrate both augmentation methods into a single end-to-end
training process.

We used YOLOv3 as the basis for the presented adaptions. To date, YOLOv3 is
one of the state-of-the-art models for real-time object detection. However, in 2020, three
major versions of YOLO, YOLOv4 [49], YOLOv5, and PP-YOLO [50], with improved
performance compared to YOLOv3, have been released. YOLOv4 is still based on Darknet-
53 but introduces two sets of improvements: BoF (bag of freebies) that enhances detection
accuracy without increasing the inference time (yet at the expense of increased training
time) and BoS (bag of specials) that slightly increases the inference costs but significantly
improves the detection accuracy. AP is increased by 10% and FPS increased by 12%
compared to YOLOv3. We will take these improvements into consideration as we continue
to work on our presented detection approaches.

Even though the use of traditional image processing techniques to compute the motion
information as additional network input has several advantages, we will investigate the
use of optical flow methods in the future. Provided these models can be incorporated into
an end-to-end training pipeline without significantly increasing the amount of training
data required, they can be a source for improved detection performance.

Due to the limitations of the available dataset, the transferability to other sports could
only be considered to a limited extent so far. Accordingly, we will evaluate the suitability of
the presented detection approach for other sports such as volleyball or handball in the next
steps. Our goal is to develop a universal ball detection model that can be applied across
different sports and for different image acquisition conditions without further adaption.

An important factor in the detection process involving motion information is the
movement of the camera during recording. We will further investigate the influence of cam-
era motion on the detection process. We plan to establish a camera motion compensation
that recognizes the movement of the camera and excludes the resulting motion information
from the ball detection.
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Abbreviations
The following abbreviations are used in this manuscript:

AP Average Precision
BoF Bag of Freebies
BoS Bag of Specials
FCN Fully Convolutional Network
CNN Convolutional Neural Networks
FN False Negatives
FP False Positives
FPS Frames per Second
GT Ground Truth
HSV Hue, Saturation, Value
IoU Intersection over Union
mAP Mean Average Precision
NMS Non-Maximum Suppression
RGB Red, Green, Blue
TP True Positives
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24. Burić, M.; Pobar, M.; Ivašić-Kos, M. Adapting YOLO Network for Ball and Player Detection. In Proceedings of the 8th
International Conference on Pattern Recognition Applications and Methods (ICPRAM 2019), Prague, Czech Republic, 19–21
February 2019; pp. 845–851.

25. Kisantal, M.; Wojna, Z.; Murawski, J.; Naruniec, J.; Cho, K. Augmentation for Small Object Detection. arXiv 2019, arXiv:1902.07296.
26. Montserrat, D.M.; Lin, Q.; Allebach, J.; Delp, E.J. Training Object Detection And Recognition CNN Models Using Data

Augmentation. Electron. Imaging 2017, 2017, 27–36. [CrossRef]
27. Weng, L. Object Detection Part 4: Fast Detection Models. 2018. Available online: lilianweng.github.io/lil-log (accessed on 14

January 2021).
28. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.
29. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.
30. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.

ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. IJCV 2015, 115, 211–252. [CrossRef]
31. Han, W.; Khorrami, P.; Paine, T.L.; Ramachandran, P.; Babaeizadeh, M.; Shi, H.; Li, J.; Yan, S.; Huang, T.S. Seq-NMS for Video

Object Detection. arXiv 2016, arXiv:1602.08465.
32. Hou, R.; Chen, C.; Shah, M. An End-to-end 3D Convolutional Neural Network for Action Detection and Segmentation in Videos.

arXiv 2017, arXiv:1712.01111.
33. Hara, K.; Kataoka, H.; Satoh, Y. Learning Spatio-Temporal Features with 3D Residual Networks for Action Recognition. In

Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 3154–3160.
34. Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D Convolutional Neural Networks for Human Action Recognition. IEEE Trans. Pattern Anal.

Mach. Intell. 2012, 35, 221–231. [CrossRef] [PubMed]
35. Xiao, F.; Jae Lee, Y. Video Object Detection with an Aligned Spatial-Temporal Memory. In Proceedings of the European Conference

on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 485–501.
36. Liu, M.; Zhu, M. Mobile Video Object Detection with Temporally-Aware Feature Maps. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 5686–5695.
37. Baker, S.; Matthews, I. Lucas-Kanade 20 Years On: A Unifying Framework. Int. J. Comput. Vis. 2004, 56, 221–255. [CrossRef]
38. Dosovitskiy, A.; Fischer, P.; Ilg, E.; Hausser, P.; Hazirbas, C.; Golkov, V.; Van Der Smagt, P.; Cremers, D.; Brox, T. FlowNet:

Learning Optical Flow with Convolutional Networks. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), Santiago, Chile, 13–16 December 2015; pp. 2758–2766.

39. Ilg, E.; Mayer, N.; Saikia, T.; Keuper, M.; Dosovitskiy, A.; Brox, T. FlowNet 2.0: Evolution of Optical Flow Estimation with Deep
Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA,
21–26 July 2017; pp. 2462–2470.

40. Ranjan, A.; Black, M.J. Optical Flow Estimation Using a Spatial Pyramid Network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4161–4170.

41. Sun, D.; Yang, X.; Liu, M.Y.; Kautz, J. Models Matter, So Does Training: An Empirical Study of CNNs for Optical Flow Estimation.
IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42, 1408–1423. [CrossRef]

42. Zhu, X.; Xiong, Y.; Dai, J.; Yuan, L.; Wei, Y. Deep Feature Flow for Video Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2349–2358.

43. Zhu, X.; Wang, Y.; Dai, J.; Yuan, L.; Wei, Y. Flow-Guided Feature Aggregation for Video Object Detection. In Proceedings of the
IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 408–417.

http://dx.doi.org/10.2352/ISSN.2470-1173.2017.10.IMAWM-163
lilianweng.github.io/lil-log
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/TPAMI.2012.59
http://www.ncbi.nlm.nih.gov/pubmed/22392705
http://dx.doi.org/10.1023/B:VISI.0000011205.11775.fd
http://dx.doi.org/10.1109/TPAMI.2019.2894353


Sensors 2021, 21, 3214 28 of 28

44. Zhu, X.; Dai, J.; Yuan, L.; Wei, Y. Towards High Performance Video Object Detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 7210–7218.

45. NVIDIA TensorRT Developer Guide. Available online: https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.
html (accessed on 23 January 2021).

46. TensorFlow Lite Guide. Available online: https://www.tensorflow.org/lite/guide (accessed on 23 January 2021).
47. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
48. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes Challenge 2012

(VOC2012) Results. Available online: http://host.robots.ox.ac.uk/pascal/VOC/voc2012/ (accessed on 23 January 2021).
49. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,

arXiv:2004.10934.
50. Long, X.; Deng, K.; Wang, G.; Zhang, Y.; Dang, Q.; Gao, Y.; Shen, H.; Ren, J.; Han, S.; Ding, E.; et al. PP-YOLO: An Effective and

Efficient Implementation of Object Detector. arXiv 2020, arXiv:2007.12099.

https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html
https://www.tensorflow.org/lite/guide
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

	Introduction
	Related Work
	Object Detection in Images
	YOLOv3
	Object Detection in Videos

	Methods
	Adaptions of YOLOv3
	Input Size
	Anchor Boxes
	Architecture Changes
	Motion Channel
	Data Augmentation
	Speed Optimization

	Experiments
	Datasets
	Models
	Training
	Evaluation Metrics

	Results
	Performance
	Speed

	Discussion
	Effect of Input Resolution
	Effect of Motion Channel
	Effect of Data Augmentation
	Effect of Refinement Training
	Effect of Architectural Changes
	Final Model Selection

	Summary and Conclusions
	Future Work
	References

