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Abstract: We propose a deep-learning algorithm that directly compensates for luminance degradation
because of the deterioration of organic light-emitting diode (OLED) devices to address the burn-in
phenomenon of OLED displays. Conventional compensation circuits are encumbered by high cost of
the development and manufacturing processes because of their complexity. However, given that deep-
learning algorithms are typically mounted onto systems on chip (SoC), the complexity of the circuit
design is reduced, and the circuit can be reused by only relearning the changed characteristics of the
new pixel device. The proposed approach comprises deep-feature generation and multistream self-
attention, which decipher the importance of the variables, and the correlation between burn-in-related
variables. It also utilizes a deep neural network that identifies the nonlinear relationship between
extracted features and luminance degradation. Thereafter, luminance degradation is estimated
from burn-in-related variables, and the burn-in phenomenon can be addressed by compensating for
luminance degradation. Experiment results revealed that compensation was successfully achieved
within an error range of 4.56%, and demonstrated the potential of a new approach that could mitigate
the burn-in phenomenon by directly compensating for pixel-level luminance deviation.

Keywords: thin-film transistor (TFT); organic light-emitting diode (OLED); compensation circuit;
luminance degradation; artificial intelligence; deep neural network; convolutional neural networks

1. Introduction

Currently, two types of displays are widely used. The first is the liquid crystal display
(LCD), which generates images by controlling the amount of light emitted by the backlight
unit (BLU). The second is organic light-emitting diodes (OLEDs), which generate an image
by controlling the amount of current supplied to the OLED device. OLED displays have
significant advantages, such as high color-reproduction ranges, low power consumption,
high brightness, high contrast ratio, and a wide viewing angle [1–3]. However, despite their
excellent performance, they are hindered by the burn-in phenomenon that is caused by the
operating mechanism of OLED displays. Its panels are composed of thin-film transistor
(TFT)-OLED devices mounted on each pixel, and they function as follows. First, voltage
is applied to the TFT device. Second, the TFT device controls the amount of current
supplied to the OLED element according to the applied voltage. Lastly, the OLED device
controls the brightness of the display by adjusting luminance according to the supplied
current. In this operation, the OLED device is exposed to high temperature levels owing
to its luminescence characteristics. If this situation persists, it leads to problems with the
driving voltage deviation of the TFT device and luminance deviation of the OLED device.
Eventually, as usage time increases, the deterioration of the OLED device accelerates,
and luminance degradation occurs [4,5]. Xia et al. [6] reportedd that OLED luminance
degradation is caused by intrinsic and/or extrinsic factors. Intrinsic factors are generally
related to moisture or oxygen that can be the cause of electrode delamination or oxidation.
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Extrinsic factors are related to the degradation of supply voltage–current and the change
of ambient temperature during the whole lifetime of OLED displays [7,8]. In addition,
Kim et al. [9] reported the characteristics of color and luminance degradation. They used
an electroluminescence (EL) degradation model of R, G, and B pixels over stress time,
and the blue pixel degraded faster than other pixels do. They also found that luminance
degradation tends to rapidly decrease at the beginning of use, and then become more
gradual. Several studies showed power consumption for the R, G, and B components of an
OLED pixel by power models. Blue consumes more power than red and green components
do [10–12]. Ultimately, the burn-in phenomenon is a major cause of image and video-quality
deterioration over time [13–16]. Therefore, research on pixel compensation technology
that effectively addresses the burn-in phenomenon of OLED displays is important to
continuously provide high-quality images and videos to users.

Traditionally, the compensation technology of OLED displays is typically based on
two types of compensation circuits. First, the internal compensation circuit controls the
driving voltage of the TFT device with pixel circuits such as 5T1C or 4T0.5C to compensate
for luminance degradation. The internal circuit can compensate for deviation in the
driving voltage of the TFT device. However, when an internal compensation circuit is
added, the structural design requirements of the TFT-OLED device become complex, and a
highly sophisticated process is required [17]. Moreover, when this internal compensation
circuit is utilized, it is difficult to miniaturize the pixels. Therefore, alternative circuit-
compensation methods are needed for the ultraminimization of pixels that is necessary
to develop high-resolution OLED displays. Second, the external compensation circuit
is a mechanism that senses the characteristics of TFT elements inside the panel using
sensing circuits from the outside. It then performs a compensation operation in the data
voltage application section [18,19]. That is, this circuit is composed of various types of
sensing devices. However, the compensation circuit requires additional external sensing
circuits, logic circuits, and external memory with a simple pixel structure. In particular,
an analog-to-digital converter (ADC) is required for sensing, in addition to memory for
storing the sensing data. Thus, the cost of development is higher than that of the internal
compensation circuit. Therefore, more effective technology is required to design and build
a low-cost and high-performance compensation circuit.

We propose a deep-learning algorithm that directly compensates for luminance degra-
dation in real time by using a data-driven approach to address the disadvantages of internal
and external compensation circuits. Deep learning is a machine-learning paradigm that
infers information and extracts features from the given data using multiple processing
layers. Results of several studies showed that deep learning facilitates improved perfor-
mance compared to traditional approaches in a variety of applications that use sensor
data [3,20–23]. In this study, usage time, temperature, average brightness, data voltage
deviation of the TFT device, and current supplied from TFT to OLED were used as input
data for training the proposed deep-learning algorithm. In addition, deviation between
the initial luminance of the OLED device and luminance degradation due to deterioration
was used as the target data. As such, target data were the luminance that was compen-
sated, and this value was obtained by subtracting the degraded luminance value from
the initial luminance. When a deep-learning algorithm is trained using input and target
data composed of these variables, it performs as a novel circuit that directly estimates
the luminance that requires compensation. Ultimately, limitations of the existing internal
and external compensation circuits can be addressed, such as the complexity of circuit
design, high cost, and the difficulty of miniaturization. In addition, when TFT-OLED
devices were changed, the compensation circuit had to be redesigned according to the
new characteristics. However, the proposed deep-learning algorithm can relearn and reuse
the characteristics of the new TFT-OLED device. We evaluated the performance of the
model by calculating the deviation between the compensated luminance and the initial
luminance in frames to evaluate the performance of the proposed method, and to address
the phenomenon problem, which is spread within an error range of 4.56%.
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2. Data Simulator

A data simulator is proposed to obtain the burn-in-related variables of TFT-OLED
devices, similar to a typical environment. First, the proposed data simulator used the
specifications of LD420EUN-UHA1 as a Si:H transistor, which is a TFT model. Using the
data simulator, pixel-by-pixel data can be generated from 0 to 10,000 h in 100 h increments
from the input video. In addition, pixel data can be generated from OLED displays for
low temperatures, room temperature, and high temperatures from 0 to 60 ◦C. The data
simulator was developed to create data similar to a typical environment by mixing white
noise with the generated pixel data. The data generated in this study were used to train the
deep-learning model as shown in Section 4; the deep-learning model was used to examine
the correlation between the variables related to the TFT-OLED device that fluctuated in
real time and the luminance of the deteriorated OLED device.

Figure 1 shows a block diagram of the data simulator. The input video comprised
various content-specific videos with a total length of 120 min, 30 fps, and a pixel size of
400 × 300 pixels. The detailed configuration of the input videos of the data simulator is
presented in Table 1. Table 2 lists the parameters used in this section.

OLED device's
deterioration model

Data Simulator

i) Average brightness

iii) Temperature

120 min, 30 fps,
400×300

ii) Operation time
iv) Operation time with weights white noise

vi) Current applied from
TFT to OLED vii) ⑦ Degraded OLED luminance

white noise

TFT device's
deterioration model

viii) Initial OLED luminance

v) Degraded TFT data voltage

Figure 1. Proposed data simulator.

Table 1. Specifications of input videos.

Contents Specifications

Content 1 (40 min) Documentary, action, news, sports

Content 2 (40 min) Entertainment, beauty, animation, car review

Content 3 (40 min) Game, cooking, job introduction, romance

The order of operation of the data simulator is as follows:

1. First, the data simulator outputs (i) the average brightness per pixel (B̄p) and (ii)
operation time (tp) from the input video. It also adds (iii) a temperature condition (T)
between 0 and 60 ◦C, which affects the deterioration of the TFT and OLED devices.

2. The previously obtained B̄p, tp, T variables are used to output (iv) the operation time
with weights per pixel (t′p) and (v) the degraded TFT data voltage (Vd,t′p=γ) with the
change in time and temperature. White noise is also mixed to create conditions similar
to real-world environments.

3. Vd,t′p=γ is used for each time and temperature to output (vi) the degraded OLED
current (Id,t′p=γ) of the TFT and to mix the white noise.

4. (vii) Degraded OLED luminance (Lt′p=γ) is observed using Id,t′p=γ for each time and
temperature. (viii) The initial OLED luminance (Ltp=0) is obtained directly from the
input video.
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Table 2. Paper nomenclature.

Symbol Parameter Symbol Parameter

FN Data of input video N Total frame of input video
f Frame P Total pixel
p Pixel t Time
tp Operating time per pixel t′p Weighted operating time
Bp Brightness of per pixel B̄p Average brightness per pixel
ε1 Noise of threshold voltage ε2 Noise of mobility
α1 Reduction factor of shifting value of threshold voltage α2 Reduction factor of threshold voltage
α3 Reduction factor of mobility Imax Maximum input current of TFT
L Length of TFT channel W Width of TFT channel
V′d Data voltage of TFT that consider noise Vd,tp=0 Initial data voltage of TFT
Cox Capacitor of TFT unit area µ Initial mobility of TFT
V′th Threshold voltage of TFT that consider noise VDD Drain voltage of TFT
Tlimit Maximal temperature of TFT performance guarantee 4Vshi f t Shifting value of threshold voltage
Vth,tp=0 Initial threshold voltage of TFT w Weight factor
n Gray level of TFT l Total gray level range
α Reduction rate of OLED voltage T Temperature
β Transistor parameter Ci Gate capacitor
W Channel width

Algorithm 1 shows the calculation process for the operation time and average bright-
ness of the pixels for each frame from the video data input to the data simulator.

Algorithm 1: Calculation of operating time per pixel.

Input
N : total number of frames

FN : frame number
h : height of pixels for frames (300 pixels)

w : width of pixels for frames (400 pixels)
Bp : brightness of p-th pixel

Output
tp : operating time of p-th pixel

B̄p : average brightness of p-th pixel

initialization
p = 0; tp = 0; B̄p = 0;
while FN < N do

for p < (h× w) do
B̄p+ = Bp;
if Bp = 0 then

tp = tp; //time is not counted when the pixel does not operate
else

tp+ = 1; //time is counted when the pixel operates
end

end
end
B̄p = B̄p / N;

In particular, the average brightness and operation time of the input video obtained
using this algorithm were used in Equation (1) to obtain the weighted operation time
(t′p) required for the pixel to emit a specific brightness. Here, ω had a constant value
of 0.8 and adjusted the weight to represent the average pixel brightness (B̄p) during the
operating time.

t′p , tp (1 + wB̄p) (1)
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We also generated white noise to represent the environmental noise that could occur
in the OLED display using electronic circuits.

ε1 ∼ N(0,
(max(Vth) + min(Vth))/2

100
) (2)

ε2 ∼ N(0,
(max(µ) + min(µ))/2

100
) (3)

Next, the threshold voltage shift value (∆Vshi f t), threshold voltage (Vth), and electron
mobility (µ) were calculated using the previously determined t′p and T value as follows.

4Vshi f t , t′ α1
p (4)

Vth , eα2(T−Tlimit) + |4Vshi f t|+ ε1 (5)

µ , e−α3T + ε2 (6)

The data voltage (Vd,t′p=γ) of the TFT was then obtained using Vth and µ [4]. Here,
VDD was the drain voltage of 4.9V and additive noise ε.

Vd,t′p=γ , VDD −

√(
100

100− α

)(n
l

)2Imax

µ

′
Cox

(
W
L

)
− |Vth,t′p=γ|+ ε (7)

We used Vth and Vd,t′p=γ to determine the current applied from the TFT to the OLED
(It′p=γ), such that

It′p=γ ,
β

2
(VDD −Vd,t′p=γ − |Vth|), β = µCi

W
L

(8)

where It′p=γ is used to obtain the luminance value (Lt′p=γ) at a specific time. The following
is a mathematical model of the deterioration characteristics of the OLED device, where mI
and ηI have constant values [24].

Lt′p=γ , L0exp{−(
t′p

ηI(
I0

It′p=γ
)β

)mI} (9)

When a video was served as input to the data simulator, eight variables associated with
the deterioration of the TFT-OLED device were created. Four of the eight variables were
used as input data for the deep-learning algorithm, and the luminance deviation obtained
by subtracting the degraded OLED luminance value from the initial OLED luminance value
was used as the target data. In addition, all pixels of the OLED were independently driven;
therefore, the correlation between each pixel datum generated by the data simulator was
not considered. As such, 6000 independent OLED burn-in data points were generated for
each pixel between 0 to 10,000 h in units of 100 h and temperatures between 0 and 60 ◦C in
units of 1 ◦C. The total burn-in datasets that were generated were 0.12 million (400 × 300)
according to the number of pixels, and 720 million datasets (100 × 60 × 400 × 300) were
generated according to time and temperatures for each color: R, G, and B.

3. Data Augmentation

In general, increasing the amount of data improves the performance of deep-learning
models [25]. We also generated additional data via data augmentation; subsequently, we
conducted training using these data with existing data. Furthermore, natural data in the
real world have noise due to various conditions such as temperature, humidity, and initial
tolerance. This means that it is necessary to reflect this noise and generate data similar to
natural data as much as possible. The bootstrap method is an approach for increasing the
training data using random sampling. Figure 2 shows a block diagram of the proposed data-
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augmentation algorithm based on the bootstrap method. First, 60 million samples were
drawn six times using random sampling from 720 million pixel data generated through a
data simulator. The extracted sample in this method is called a bootstrap sample, and the
mean and standard deviation of each bootstrap sample were calculated. Then, 60 million
random-number data were generated on the basis of the calculated mean and standard
deviation in order to obtain noise that followed the Gaussian statistical distribution of the
bootstrap sample data. The generated random-number data were multiplied by a constant
weight of 0.01 to reduce information loss of the original data that may occur when noise is
applied. Lastly, 60 million bootstrap sample data were multiplied by each random-number
datum to generate new data. Since this method generates noise through the distribution of
each bootstrap sample, it can generate noise similar to the distribution of the original image.
Consequently, by applying the 720 million pixel data generated in the data simulator,
360 million training data with independent characteristics were additionally generated for
each R, G, and B color.

720 million pixel data

60 million pixel data

random sampling
(draw six times)

Original Sample

Bootstrap samples
(60 million each)

random number data 1 60 million
new pixel data× 0.01

Generate random number data
(60 million each)

Generate new data
(60 million each)

+

60 million pixel data random number data 2 60 million
new pixel data

+

Sample data 3 random number data 3 60 million
new pixel data

+

Sample data 4 random number data 4 60 million
new pixel data

+

Sample data 5 random number data 5 new pixel data 5
+

Sample data 6 random number data 6 new pixel data 6
+

Sample data 1

Sample data 2

new pixel data 1

new pixel data 2

new pixel data 3

new pixel data 4

Figure 2. Bootstrap method.

4. Deep-Learning Model
4.1. Data Configuration

The data used in the deep-learning model consisted of four features (t′p, T, Vd,t′p=γ,
Id,t′p=γ), consisting of vector forms with (1, 4) dimensions. The target data were one of the
features, that is, deviation luminance (Ltp=0 - Lt′p=γ) that requires compensation. The total
training data consisted of 1.08 billion input data and target data pairs for each R, G, and B
color. Figure 3 shows the structure of the entire proposed deep-learning model, which was
trained to estimate deviation luminance (L̂t′p=γ), which requires compensation.
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burn-in Phenomenon
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1D Conv. 1
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ReLU 3
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Output
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K

Q

V
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Matmul

K

Q

V

Matmul Softmax

Matmul

+

white
noise
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(1, 88)+

+

1 stream consisting of 4 heads

2 stream consisting of 4 heads

(1, 44)

(1, 44)

Estimation of
Degraded Luminance

(1, 1)

Fully Connected

Leaky ReLU

Batch Norm.

Dense 6

Dense Block 5

Dense Block 4

Dense Block 2

Dense Block 3

Dense Block 11

1

2

2

2

Dense 1

Batch Norm.

ReLU

Drop-out

Dense Block 11

Dense 3

Batch Norm.

Leaky ReLU

Drop-out

Dense Block 32

Input

Final OutputInitial Iutput

(a) (b) (c)

Input

Figure 3. Overview of entire model: (a) deep feature generation; (b) multistream self-attention; (c) deep neural network.

4.2. Deep-Feature Generation

Feature generation is also known as feature construction, feature extraction, or feature
engineering. It is used to create new features from one or several features [26]. The imple-
mentation of this approach as a deep-learning technique is called deep-feature generation.
Thus, in addition to features generated using the data simulator, features associated with
OLED deterioration were also generated during the training process of the deep-learning
model to make them similar to the OLED burn-in data. In this study, we propose a deep-
feature generation algorithm composed of a 1D convolutional neural network (1D CNN),
deep neural network (DNN), and rectified linear units (ReLUs) [27], which are nonlinear
functions, as shown in Figure 4. Using this algorithm, new features (embedding vectors)
were also extracted using existing input data with dimensions of (1, 4). First, 1D CNNs
were available for 1D signal variables that could not use 2D CNNs; the computational
burden is lower than that of 2D CNNs, making them suitable for real-time processing and
low-cost hardware implementations [28]. In addition, a DNN extracts information on the
correlation between features by completely connecting the outputs of the 1D CNN. This
DNN facilitated a nonlinear combination of input features, and feature extraction was auto-
matically performed. In the final output of this deep-feature generation algorithm, 10 new
features were generated with dimensions (1, 10). White noise was mixed to represent the
noise in the OLED display circuit environment. Subsequently, one of the four original
features was selected and concatenated to the new features, resulting in a new form of data
with a higher dimension (1, 11) than the original dimension (1, 4).
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1D Conv. 1

Embedding Vector +
white
noise

ReLU 1

1D Conv. 2

ReLU 2

Dense 1

1D Conv. 3

ReLU 3

Embedding
Layer

Input
(1, 4)

Output
4×(1, 11)

(1, 10)

Figure 4. Overview of proposed deep-feature generation model.

4.3. Multistream Self-Attention

Multistream self-attention [29] has already been applied to the field of speech recog-
nition. On the basis of the idea of this algorithm, we propose modified multistream self-
attention that was optimized for learning the outputs of deep-feature generation. The pro-
posed multistream self-attention consisted of two multihead self-attention layers [30], each
of which consisting of four self-attention layers, as shown in Figure 5. The operation process
of this algorithm proceeds in the following order. First, multistream self-attention improves
the performance of deep-learning algorithms with ensemble-like effects. Second, multihead
self-attention corresponding to each stream is trained by increasing the weight of the most
important feature to effectively compensate for the degraded luminance among input
features. Similarly, less important features are trained, such that the weight is reduced;
that is, when four input data with dimensions (1, 11) are input to each head, an extraction
process is performed that represents the importance of each feature by adjusting the weight
value to focus on the most important of the 11 features. Third, given that the output of
multihead self-attention maintains the dimension of the input data, data with the (1, 44)
dimension are output by concatenating four outputs of each head. Lastly, multistream
self-attention outputs data with dimensions (1, 88) as two outputs.
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Input
4×(1, 11)

K

Q

V

Matmul Softmax

Matmul

K

Q

V

Matmul Softmax

Matmul

+

white
noise

Output
(1, 88)+

+

1 stream consisting of 4 heads

2 stream consisting of 4 heads

(1, 44)

(1, 44)

Figure 5. Overview of multihead self-attention model.

4.4. DNN

The DNN [31] was successfully utilized in applications such as image processing,
automatic speech recording, and natural-language processing. As shown in Figure 6,
the proposed algorithm consisted of DenseBlock1, DenseBlock2, a single dense layer, and a
fully connected layer. DenseBlock1 comprised a single dense layer, batch normalization
layer, ReLU, and dropout. DenseBlock2 was a nonlinear function of DenseBlock1, ReLU
replaced by Leaky-ReLU, which is proposed to solve the dying ReLU phenomenon. This
DNN algorithm was trained to identify nonlinear relationships between input data and
target data by recognizing specific patterns when data with dimensions (1, 88) are input.
For the final output, we obtain the value of dimension (1, 1) of luminance (L̂t′p=γ) that
requires compensation.

Estimation of
Degraded

Luminance
(1, 1)

Dense Block 1

Dense Block 2

Dense Block 3

Dense Block 4

Dense Block 5

Dense 6

Leaky ReLU

Batch Norm.

Fully Connected

1

1

2

2

2

Dense 1

Batch Norm.

ReLU

Drop-out

Dense Block 11

Dense 3

Batch Norm.

Leaky ReLU

Drop-out

Dense Block 32

Input

Output

Multi-stream
Self-attention

(1, 88)

Figure 6. Overview of proposed deep-neural-network model.
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5. Experimental Environment and Result
5.1. Datasets

In our experiments, we used blue pixel data, which have larger power consumption and
much faster degradation rate than those of red and green pixel data [32]. Therefore, a deep-
learning-based compensation algorithm was trained and evaluated using 1.08 billion datasets
of blue pixel data generated using data simulators and data augmentation. The compositions
of the datasets, divided into training data and test data, are shown in Table 3. Figure 7 shows
the power consumption and luminance-degradation rate for the blue, red, and green pixels.

Table 3. Dataset composition.

Datasets Train/Test Total

OLED pixel (Blue) 9.72/1.08 billion 10.8 billion

Figure 7. Luminance-degradation rate for normalized blue, red, and green pixel data.

5.2. Experiment Setup

All experiments in this study were conducted using TensorFlow in the Python library.
Batch normalization [33] was applied to the DNN, and the Adam optimizer [34] with
a learning rate of 0.001 was used for training the deep-learning algorithm. In addition,
the batch size used in the training process was 6000, and all parts of the algorithm were
jointly optimized with the mean absolute percentage error (MAPE) used as a loss function
in the following. The algorithm was trained for 50 epochs; if the validation loss did not
improve within three epochs, an early pause was applied. In addition, the accuracy of the
algorithm was calculated using MAPE, as shown below.

MAPE =
1

NP

N

∑
f=1

P

∑
p=1
|
Ltp=0 − L̂t′p=γ

Ltp=0
| (10)

Accuracy = 100(1− 1
NP

N

∑
f=1

P

∑
p=1
|
Ltp=0 − L̂t′p=γ

Ltp=0
|)(%) (11)
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5.3. Result Analysis

As shown in Table 4, in the case of deep-feature generation, experiments were con-
ducted with three models; Experiment 2 demonstrated the best accuracy at 91.62%.

Table 4. Accuracy (in %) comparison of proposed models composed of different hyperparameters with deep-feature
generation (layers, kernel, filter size, and units).

Experimental
Details

Experiment 1 Experiment 2 Experiment 3

Layers
Kernel

Filter Size
Units

Layers
Kernel

Filter Size
Units

Layers
Kernel,

Filter Size
Units

1D Conv 1 1 × 4 @32 1D Conv 1 1 × 4 @32 1D Conv 1 1 × 4 @32
1D Conv 2 1 × 32 @16 1D Conv 2 1 × 32 @16 Dense 1 32

Dense 1 16 Dense 1 16 1D Conv 2 1 × 32 @16
1D Conv 3 1 × 16 @10 Dense 2 16

1D Conv 3 1 × 16 @10

Accuracy 90.28% 91.62% 91.45%

As depicted in Table 5, based on the testing of the 1- and 2-stream self-attention
algorithms, Experiment 2 showed accuracy of 92.19%. When using three or more streams,
there was a tendency to overfit as the number of streams increased.

Table 5. Accuracy (in %) comparison of the proposed models with multistream self-attention [29].

Experimental Details Experiment 1 Experiment 2

1-Stream Self-Attention 2-Stream Self-Attention

Accuracy 90.75% 92.19%

In Table 6, experiments were conducted by changing the number of DNN layers in
deep neural networks; experiment 3 demonstrated an accuracy of 93.31%, which indicates
that six layers are suitable.

Table 6. Accuracy (in %) comparison of proposed models with different numbers of deep-neural-
network layers.

Experimental
Details

Experiment 1 Experiment 2 Experiment 3

Layer Number Units Layer Number Units Layer Number Units

Dense layer 1 64 Dense layer 1 64 Dense layer 1 64
Dense layer 2 64 Dense layer 2 64 Dense layer 2 64
Dense layer 3 64 Dense layer 3 64 Dense layer 3 64
Dense layer 4 64 Dense layer 4 64 Dense layer 4 64

Dense layer 5 64 Dense layer 5 64
Dense layer 6 64

Accuracy 89.94% 91.22% 93.31%

Table 7 shows the experiment results obtained by adjusting the number of units in
each layer of the DNN algorithm. The DNN algorithm used six layers, as obtained from
the experiment results in Table 6. As a result, Experiment 4 with a bottleneck structure
demonstrated accuracy of 95.44%.
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Table 7. Accuracy (in %) comparison of proposed models with different numbers of units of deep-neural-network layers.

Experiment
Details

Layer Number
Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

Units

Dense layer 1 64 128 256 256 256
Dense layer 2 64 128 256 128 128
Dense layer 3 64 128 256 128 128
Dense layer 4 64 128 256 256 256
Dense layer 5 64 128 256 128 128
Dense layer 6 64 128 256 64 128

Accuracy 92.58% 93.35% 93.76% 95.44% 95.10%

Therefore, as shown in Tables 4–7, the final performance of the deep-learning-based
compensation algorithm had the best accuracy of 95.44%. Figure 8 compares the initial
display image, the image in which luminance degradation occurred, and the image in
which the degraded luminance was compensated.

(a) (b) (c)

Figure 8. Image of OLED display (400 × 300) according to number of pixels. (a) Initial display image; (b) image in which
luminance degradation occurred; (c) image when degraded luminance was compensated.

6. Conclusions

In this study, we proposed a deep-learning algorithm to address the burn-in phe-
nomenon of OLED displays by using deep-learning technology. This algorithm can replace
physical-circuit-based internal and external compensation circuits that compensate after
sensing degraded TFT data voltage or TFT-OLED current and calculating the luminance-
degradation value of OLED display due to the deterioration of OLED devices. This means
that the proposed compensation method based on the deep-learning algorithm does not
need to add internal and external compensation circuits for calculating luminance degrada-
tion. In particular, even if a new TFT-OLED device is developed, the significant advantage
is that only the deep-learning algorithm can be relearned according to the parameters
of the device and reused without the need to change the physical circuit. Furthermore,
if the OLED display is combined with cloud service, the deep-learning algorithm can
be easily remotely improved. In the future, we will supplement the data simulator on
the basis of real data, and augment burn-in data to strengthen the deep-learning-based
compensation algorithm.
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