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Abstract: In this work, we apply Convolutional Neural Networks (CNNs) to detect gravitational
wave (GW) signals of compact binary coalescences, using single-interferometer data from real LIGO
detectors. Here, we adopted a resampling white-box approach to advance towards a statistical
understanding of uncertainties intrinsic to CNNs in GW data analysis. We used Morlet wavelets
to convert strain time series to time-frequency images. Moreover, we only worked with data of
non-Gaussian noise and hardware injections, removing freedom to set signal-to-noise ratio (SNR)
values in GW templates by hand, in order to reproduce more realistic experimental conditions. After
hyperparameter adjustments, we found that resampling through repeated k-fold cross-validation
smooths the stochasticity of mini-batch stochastic gradient descent present in accuracy perturbations
by a factor of 3.6. CNNs are quite precise to detect noise, 0.952 for H1 data and 0.932 for L1 data; but,
not sensitive enough to recall GW signals, 0.858 for H1 data and 0.768 for L1 data—although recall
values are dependent on expected SNR. Our predictions are transparently understood by exploring
tthe distribution of probabilistic scores outputted by the softmax layer, and they are strengthened by
a receiving operating characteristic analysis and a paired-sample t-test to compare with a random
classifier.

Keywords: gravitational waves; Deep Learning; convolutional neural networks; binary black holes;
LIGO detectors; probabilistic binary classification; resampling regime; white-box testings; uncertainty
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1. Introduction

Beginning with the first direct detection of a gravitational wave (GW) by LIGO and
Virgo collaborations [1], the observation of GW events that are emitted by compact binary
coalescences (CBCs) have made GW astronomy, to some extent, a routine practice. 11 of
these GW events were observed during O1 and O2 scientific runs, which are collected
in the catalogue GWTC-1 [2] of CBCs and, more recently, 39 events have been reported in
the new catalogue GWTC-2 [3] of CBCs, which are detections during the first half of the
third scientific run, namely O3a. This last run have been recorded with the network of
LIGO Livingston (L1) and Hanford (H1) twin observatories and Virgo (V1) observatory;
an, recently, KAGRA observatory joined the network of GW detectors [4].

The sensitivity of GW detectors has been remarkably increased these last years and, in
this improvement process, GW data analysis had a crucial role quantifying and minimizing,
as much as possible, the effects of non-Gaussian noise—mainly short-time transients,
called “glitches” [5], for which, in several cases, such as those involving blip transients [6],
there is still no full explanations about their physical causes. Monitoring signal-to-noise
ratio (SNR) of all detections is an essential procedure here, indeed being the heart of the
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standard algorithm that is used for the detection and characterization of GWs in LIGO
and Virgo, namely Matched Filter (MF) [7–9]. This technique, which is the GW detection
stage of current CBC search pipelines of LIGO, is based on the assumption that signals
to be detect are embedded in additive Gaussian noise and it consists in a one-by-one
correlation between data from detectors (after a whitening process) with each one GW
template of a bank of GW templates. Subsequently, those matchs that minimize SNR [10]
are selected. Standard pipelines that include MF and are used in LIGO and Virgo analyses
are PyCBC [11,12], GstLAL [13], and MBTA [14].

MF has shown be a powerful tool having a crucial role in all confirmed detections
of GWs that are emitted by CBCs. However, there are significant reasons for exploring
alternative detection strategies. To begin, noise outputted by interferometric detectors is
non-Gaussian, conflicting with assumption of Gaussian noise in MF. Generally, and also
included in LIGO search pipelines, supplementary tools are used for facing this issue as
whitening techniques [15]. However, as glitches remain, consistence statistical tests [16] and
coincidence procedures as cross-correlation [17,18] are applied for a network of detectors,
raising the still open problem of how to systematically deal with single-interferometer data.
In sum, the assumption about Gaussian noise of MF raises the issue about how to detect
glitches in single-interferometer data.

Elsewhere, one would want to perform more general GW searchings. The natural
next step is to include precessing spins [19], orbital eccentricity [20], and neutron star tidal
deformability [21], among other aspects. The more general a GW searching the much wider
the parameter space and MF becomes computationally prohibitive.

Actually, if we are not interested in replacing MF, still it is pertinent to have alternative
algorithms just for independent verifications and/or increasing the confidence level of
GW detections.

In this context, Machine Learning (ML) [22] and its successor, Deep Learning (DL) [23],
emerge as promising alternatives or, at least, complementary tools to MF. These techniques
assume nothing regarding background noise, which is clearly advantageous if we want to
work with single-interferometer data; we can identify non-Gaussian noise without needing
a network of detectors. In addition, they have shown be remarkably useful in analyzing
enormous mounts of data through sequential or online learning processes, which could
be a significant improvement for more general GW searchings in real time. Additionally,
if we do not have deterministic templates to predict GW signals as those emmited by
Core-collapse supernovae (CCSNe) or anticipate noise artifacts as non-Gaussian glitches,
unsupervised ML and DL algorithms (which do not need prior labeled training samples)
could be interesting for future explorations.

The implementation of ML algorithms in GW data analysis has no more than a few
years. Biswas et al. [24] contributed with a pioneering work, where Artificial Neural Net-
works (ANNs), Support Vector Machines, and Random Forest algorithms were used to
detect glitches in data from H1 and L1 detectors, recorded during S4 and S6 runs. Com-
petitive performance results, back then, were obtained. Later, works focused on several
problems were published, with better results. For instance: ANN for the detection of
GWs that are associated with short gamma-ray bursts [25], Dictionary Learning for denois-
ing [26], Difference Boosting Neural Network and Hierarchical Clustering for detection
of glitches [27], ML and citizen science for glitches classification [28], and background
reduction for CCSNe searching with single-interferometer data [29], among others.

Applications of DL, in particular Convolutional Neural Network (CNN) algorithms,
are even more recent in GW data analysis. Gabbard et al. [30], George and Huerta [31],
provided first works, in which CNNs were implemented to detect simulated GW signals
from Binary black holes (BBHs) that were embedded in Gaussian noise. They claimed that
performance of CNNs was similar and much better than MF, respectively. Later, George
and Huerta extended their work by embedding simulated GWs and analytical glitches in
real non-Gaussian noise data of LIGO detectors, with similar results [32]. Thereafter, CNN
algorithms has been applied for several instrumental and physical problems, showing
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more improvements. For instance, the detection of glitches [33], trigger generation for
locating coalescente time of GWs emitted by BBHs [34], detection of GWs from BBHs [35]
and Binary neutron star (BNS) systems [36], detection of GWs emitted by CCSNe and
using both phenomenological [37] and numerical [38] waveforms, and the detection of
continuous GWs from isolated neutron stars [39], among others.

From a practical point of view, previous works of CNN algorithms that were applied
to GW detection and characterization reach competitive performance results according to
standard metrics, such as accuracy, loss functions, false alarm rates, etc., showing feasibility
of DL in GW data analysis in the first place. However, from a formal statistical point of
view, we warn that, beyond just applications, we are in need of deeper explorations that
seriously take the inevitable uncertainty that is involved in DL algorithms into account
before putting them as real alternatives to standard pipelines in LIGO and Virgo.

For this research, our general goal is to draw on CNN architectures to make a standard
GW detection. In particular, beginning from a training set containing single-interferometer
strain data, and then transforming it into time-frequency images with a Morlet wavelet
transform, the aim is distinguish those samples that are only non-Gaussian noise from those
samples that contain a GW embedded in non-Gaussian noise—in ML language, this is just
a binary classification. Moreover, as a novel contribution, here we will take two ingredients
into consideration to advance towards a statistically informed understanding of involved
uncertainties, namely: resampling, and a white-box approach. Resampling consists of
repeated experiments for training and testing CNNs, and the white-box approach involves
a clear mathematical understanding of how these CNNs internally work. See Section 2.4
for more details.

Our choice of Morlet as a mother wavelet is because we want to capture all time-
frequency information of each sample at once rather performing multiresolution analyses
for detecting closely space features, given that our CNN algorithms, precisely, will be
in charge of performing feature extraction for our image classification. Subsequently,
this setup removes, beforehand, the need of working with compact support wavelets for
multiresolution analyses such as Haar, Symlet, and Daubechies, among others [40]. Our
Morlet wavelet is also normalized to conserve energy and become symmetric.

In this work, we are not interested in reaching higher performance metric values than
those reported in previous works, neither testing new CNN architectures, nor using latest
real LIGO data and/or latest simulated templates, but rather facing the question about how
to clever deal with uncertainties of CNNs, which is an unescapable requesite if we claim
that DL techniques are real alternatives to current pipelines. Moreover, as a secondary goal,
we want to show that CNN algorithms for GW detection, even when considering repeated
experiments, can be easily run in a single local CPU and reach good performance results.
The key motivation for this is to make reproducibility easier for the scientific community.
We also released all of the code used in this work [41].

With regard to data, we decided to use recordings from S6 LIGO run, separately
from H1 and L1 detectors, considering GW signals of CBCs that were only generated
by hardware injections. This choice is ultimately motivated by the fact that for reaching
stronger conclusions, CNN algorithms should be tested in conditions as adverse as possible.
To work solely with hardware injections means to eliminate freedom to set SNR values by
hand and, therefore, to remove a choice that can influence performance of CNN algorithms.
Subsequently, we draw on S6 data because they have a greater amount of hardware
injections than more recent data. See Section 2.2 for more details.
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2. Methods and Materials
2.1. Problem Statement

As starting point of our problem, we have a i−th slice of raw strain data recorded at
one of the LIGO detectors. In mathematical notation, this slice of data is expressed by a
column vector of times series in N dimensions,

sraw
i(t) =

[
s(t0

i), s(t1
i), ..., s(tN−1

i)
]T

, (1)

where the sampling time is ts = tj
i− tj−1

i with j = 1, 2, ..., Nslice− 1, the sampling frequency
is fs = 1/ts, and, of course, the time length of the slice is Tslice = Nslice/ fs (in seconds)
with Nslice points of data. The next step is to theoretically model the above slice of data;
therefore, we introduce the following expression:

sraw
i(t) =

{
ni(t) if there is not a GW ,
ni(t) + hi(t) if there is a GW ,

(2)

where ni(t) is the non-Gaussian noise from the detector and hi(t) is the observed strain,
which is a function of the antenna response of the interferometer when a GW, with unknown
duration, arrival time, and waveform, is detected. For this research, the problem that we
address is to decide whether a segment of strain data contains only noise, or it contains
noise plus a unknown GW signal. Then, in practice, we will implement CNN algorithms
that performs a binary classification, inputting strain samples of time lengh Twin < Tslice
and deciding, for each sample, if it does not contain a GW signal (i.e., the sample ∈ class 1),
or it contains a GW signal (i.e., the sample ∈ class 2).

2.2. Dataset Description

For this study, we use real data that were provided by LIGO detectors, which are
freely available on the LIGO-Virgo Gravitational Wave Open Science Center (GWOSC),
https://www.gw-openscience.org (accessed on 1 April 2019) [42]. Because of reasons that
are presented at the end of Section 1, we decided to use data of sixth science run (S6),
recorded from 7 July 2009 to 20 October 2010. During this run, the detectors achieved a
sensitivity given by a power spectral denstity around 10−22, with uncertainties up to ±15%
in amplitude [43]. Each downloaded strain data slice has a time length of Tslice = 4096 s
and a sampling frequency of fs = 4096 Hz.

S6 contains hardware injections that were already added to the noise strain data. These
injections are generated by actuating the test masses (mirrors) and, therefore, changing
the physical length of the arms of the detectors. This procedure simulates the effects of
GWs, and is used for experimental tests and calibration of the detectors [44]. For this
research, we solely work with hardware injections of GWs emitted by CBCs: 724 injections
in data from H1 detector and 656 injections in data from L1 detector. For each injection,
we know the coalescence (or merger) time tc in Global Positioning System (GPS), masses
m1 and m2 in solar mass units M�, the distance D to the source in Mpc, and the expected
and the recovered signal-to-noise ratio, namely SNRexp, SNRrec, respectively. All of this
information is provided by LIGO on the aforementioned website.

Because S6 has a much greater mount of hardware injections of CBC GW signals than
in later public data, this is the best option for our study. Besides, if we reach good results
with S6 data, we are providing highly convincing evidence for GW detection by using
CNNs because the sensitivity of S6 is less than in later public data and, even, we could
expect that working with later public data our algorithms will work much better.

Take in mind that our approach allows for advancing towards more realistic exper-
imental conditions regarding the evaluation of the CNNs. We are showing, beyond any
doubt, that we do not have control on distribution of recorded real signals and, therefore,
we do not have any ability to influence the performance results. It is known that the SNR
values of recorded GW events and their frequency of occurrence are given as (not han-

https://www.gw-openscience.org
https://www.gw-openscience.org
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dleable) facts. Along a LIGO run data, both in hardware injections set and real observing
signals set, each event consecutively occurred in real time once and never again. Therefore,
if our CNN algorithms are able to deal with this starting adverse evaluation constraint,
then we are advancing towards the more general purpose of analyzing arbitrarily dis-
tributed data without drawing on ad hoc choices that could generate excessively optimistic
performance results.

The above advantage does not lie on the set of parameters that characterize hardware
injections, which is to say, data populations. In general, hardware injections has been used
to perform end-to-end validation checks [45], and they are experimentally expensive to
perform as repeatedly as software injections to generate diverse distributions of GW events.
The point rather is that our approach lies on the fact that we cannot vary these populations
by hand, that is to say, on the constraint to generate this population, not in the population
itself. This advantage cannot achieved with software injections, which still are handleable
and, therefore, the evaluation results can be influenced. For instance, in random software
injections, we could vary injection ratio to influence the trade-off between variance vs.
bias of stochastic predictions and, therefore, to improve performance of a CNN algorithm
either by artificially balancing dataset regarding target values and/or costs of different
classification errors.

It should be stressed that problem of bias and fairness (with regards to ad hoc choices
in datasets and algorithms) is an open and highly debate issue in the ML community [46],
even with deep ethical implications if we apply ML/DL to social ambits. Of course, in GW
data analysis, we do not have this kind of implications, but this does not remove the fact
that, at a pure statistical level, bias and fairness are still present. If we are committed to a
deep multidisciplinary understanding of ML, it is needed to face this challenge by drawing
on evaluations as transparent as possible.

In any case, even if the above advantage is not considered, our approach still is
scientifically relevant, because it lays the groundwork for future calibration procedures
with CNN detection algorithms inputting hardware injections.

Figure 1 shows the distributions of injections present in S6 data from H1 and L1
detectors, detaling information about total mass M = m1 + m2 of each source and distance
D to it. These injections simulate stellar BBHs that are located at the scale of our galaxy
supercluster, covering distances from 1 Mpc to 100 Mpc and masses from 2.8M� to 35M�.
In both panels, we have a high occurrency of events of masses from 1M� to 12M� at
distances from 1 Mpc to 50 Mpc aprox. Even, in each of these regions there is a subregion
where the highest concentration of events appears, namely for masses from 1M� to 7M�
and distances from 1 Mpc to 26 Mpc aprox., corresponding to the scale of nearby galaxy
clusters. Subsequently, in the region M > 12M� and D < 50 Mpc, we observe a clear
decrease in the frequency of occurence of BBHs, which is even more pronounced for the
farest events at distances D > 50 Mpc for all masses. In any case, by solely exploring
marginal histograms for distances, the clearest trend that we notice in data is that, as D
increases from 4 Mpc, GW events are less frequent.

We downloaded 722 slices of strain data from the H1 detector and 652 slices of
strain data from L1 detector, to be pre-process as explained in Section 2.3. Besides, we
only consider hardware injection for which we know their parameters, because we will
characterize detected GW events depending on their given expected SNR values, as will
shown in results of Section 3.3.
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Figure 1. Distributions of hardware injections simulating GW emitted by CBCs that are present in S6 data from H1 (a) and
L1 (b) LIGO detectors. The total masses M = m1 + m2 in solar mass units and distances D from the sources in megaparsecs
are shown. Depending on M and D, we found are several regions in which GW events are more or less frequenct. In any
case, the clearest trend in data is that, as distance D increase from 4 Mpc, GW events are less frequent. Data dowloaded
from the LIGO-Virgo GWOSC: https://www.gw-openscience.org (accessed on 1 April 2019).

2.3. Data Pre-Processing

With LIGO raw strain data segments at hand, the next methodological step is data
pre-processing. This has three stages, namely data cleaning, the construction of strain
samples, and application of wavelet transform.

2.3.1. Data Cleaning

Data cleaning or data conditioning is a standard stage for reducing the noise and
flattening the power spectral density (PSD). It consists in three steps. Firstly, for each i−th
slice of raw strain data that we introduced in Equation (1), segments around coalescence
times tc are extracted via blackman window of time length 128 s. If a slice does not have an
injection, then it is not possible to extract a segment of 128 s and, therefore, this slice does
not go beyond this step. Moreover, of all segments containing injections, we discard those
with NaN (not a number) entries. This rejection is valid, because NaN entries span time
ranges from 2 s to 50 s, being greater than time resolutions Twin that we use for building
samples to be inputted by the CNNs (see Section 2.3.2), namely from 0.25 s to 2.00 s (see
Section 3.2). Here, feature engineering techniques as imputation or interpolation are not
suitable. At this point, we decrease the mount of our data segments from 722 to 501 for H1
detector, and from 652 to 402 for L1 detector.

Secondly, a whitening is applied to each l−th of these segments as:

swhite
l(t) =

N

∑
k=1

s̃raw
l( fk)√

Srawl( fk)
ei2πtk/N , (3)

where s̃l
raw( fk) is the N−point Discrete Fourier Transform (DFT) of the 128 s segment of

raw strain data sraw
l(t), Sraw

l( fk) the N− point two-sided PSD of the raw data, N is the
number of points of data in the 128 s raw strain segment, and i the imaginary unit. In theory,
PSD is defined as the Fourier transform of the raw data autocorrelation. Subsequently, we
implemented the Welch’s estimate [47], where we compute the PSD between 0 Hz and
2048 Hz at a resolution of 1/128 Hz applying Hanning-windowed epochs of time length
128 s with an overlap of 64 s. At the end, the goal of whitening procedure is to approximate
strain data to a Gaussian stochastic process that is defined by the following autocorrelation:

https://www.gw-openscience.org
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R(τ) = 〈swhite(t + τ)swhite(τ)〉 = σ2δ[τ] , (4)

with σ denoting the variance and δ[τ] the discrete time unit impulse function. (Explicitly:
the discrete time unit impulse function is defined by δ[τ] = 1 for τ = 0, and δ[τ] = 0 for
τ 6= 0). Finally, a Butterworth band-pass filter from 20 Haz to 1000 Hz is applied to the
already whitened segment. This filtering removes extreme frequencies that are out of our
region of interest and discards 16 s on the borders of the segment to avoid spurious effects
produced by the whitening, which results in a new segment swhite + sbp f = sclean of time
length Tclean = 96 s. Edge effects appear because, in the whitening, DFT assumes that each
finite slice sraw

i(t) is repeated in the form of consecutive bins, to have a fully periodic and
time infinite data. This inescapable assumption leads to a spectral leakage by generating
new artificial frequencies due to the inter-bin discontinuities.

Figure 2 shows how our strain data segments look after applying the whitening and
the band-pass filtering, both in the time domain and amplitude spectral density (ASD),
which is computed as

√
PSD. From the time domain plots, it can be seen that after the

cleaning, amplitude of the strain data is reduced 5 orders of magnitude, from 10−16 to
10−21, and edge effects after whitening are clearly shown in the middle plot. Before
applying cleaning, ASD shows the known noise profile that describes the sensitivity of
LIGO detectors, which is the sum of contributions of all noise sources [48].
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Figure 2. Illustration of the raw strain data cleaning. The left panel shows three plots as time series segments. First, a
segment of raw strain data of 128 s after we applied the blackman window. Second, the resulting strain data after the
whitening, in which it is noticeable the spurious effects at the edges. Finally, the cleaned segment of data after applied the
band-pass filtering and edges removal to the previous whitened segment of data. In the right panel, we plot the same data,
but now in the amplitude spectral density (ASD) vs. frequency space.

2.3.2. Strain Samples

The building of strain samples that will be inputted by our CNNs is the next stage of
the pre-processing. This is schematically depicted in Figure 3. This procedure has two steps.
First, a l−th cleaned strain data segment, denoted as sclean

l(t), is splited in overlapped
windows of duration Twin, identifying if it has or does not have an injection—time length
Twin is of the order of the injected waveform duration, leastwise. Here classes are assigned:
if a window of data contains an injection, then class 2 (C2) is assigned; on the other hand, if
that window does not contain an injection, class 1 (C1) is assigned. This class assignment is
applied to all windows of data. Next, from the set of all tagged windows, and discarding
beforehand those C1 windows with SNR < 10, we select four consecutive ones of C1
and four consecutive ones of C2. This procedure is applied to each segment of clean
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data sclean
l(t) and, for avoid confusion with notation, we depict a k−th windowed strain

sample as:

swin
k(t) =

[
s(t0

k), s(t1
k), ..., s(tNwin−1

k)
]T

, (5)

where Nwin = fs Twin according to the time length of the samples, with fs the sampling
frequency. In practice, as we initially have 501 segments from H1 and 402 segments from
L1, then 501× 8 = 4008 and 402× 8 = 3360 strain samples, respectively, are generated.
Consequently, index k appearing in Equation (5) takes values from 0 to 4007 for H1 detector
data, and values from 0 to 3359 for L1 detector data. Besides, Twin is a resolution measure
and, as it will seen later, we run our code with several values of Twin in order to identify
which of them are optimal with respect to the performances of CNNs.

l-th raw data  segment, length 128s

S   raw(t)

(t)Sclean
l

l

16s

Twin

16s

. . . . . .

t c

l-th cleaned data segment, length 96s

C1

C2

. . .

. . .

3Twin /4

C1

C1

C2

Figure 3. Strain samples generation by slidding windows. A CBC GW injection is located at
coalescence time tc in l−th raw strain data segment of 128 s. After a cleaning, the segment is splitted
in overlapped windows, individually identifying whether a window has or does not have the GW
injection. Finally, among all these windows, , and discarding C1 windows with SNR < 10, a set of
eight strain samples is selected, four with noise alone (C1) and four with noise plus the mentioned
CBC GW injection (C2). This set of eight samples will be part of the input dataset of our CNNs. This
procedure is applied to all raw strain data segments.

2.3.3. Wavelet Transform

Some works in GW data analysis have used raw strain time series directly as input to
deep convolutional neural networks (e.g., Refs. [31,34]); however, we will not follow this
approach. We rather decided to apply CNNs for what was designed in its origins [49], and
for what have dramatically improved last decades [50], namely image recognition. Then,
we need a method to transform our strain vectors to image matrices, i.e., grid of pixels. For
this research, we decided to use the wavelet transform (WT), which, in signal processing, is
a known approach for working in the time-frequency representation [51]. One of the great
advantages of the WT is that, by using a localized wavelet as kernel (also called "mother
wavelet”), it allows for visualizing tiny changes of the frequency structure in time and,
therefore, improve the search of GW candidates that arise as non-stationary short-duration
transients in addition to the detector noise.

In general, there are several wavelets that can be used as kernel. Here, we decide
to work with the complex Morlet wavelet [52], which, in its discrete version, has the
following form:

ψ(tn, f j) =
1√

σt
j
√

π
exp

[
−tn

2

2
(
σt

j
)

2

]
exp

(
2iπ f jtn

)
, (6)
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having a Gaussian form along time and along frequency, with standard deviations σt and
σ f , respectively. Moreover, these standard deviations are not independent of each other,
because they are related by σt

j = 1/
(

2πσ f
j

)
and σ f

j = f j/δw, where δw is the width of
the wavelet and f j its center in the frequency domain.

It is important to clarify that Morlet wavelet has a Gaussian shape, then it does not
have a compact support. For this reason, the mesh in which we defined Equation (6), i.e.,
the set of discrete values for time tn and frequency f j, is infinite by definition. Further,
resolutions ∆t = tn − tn−1 and ∆ f = f j − f j−1 are solely constrained by our system
resources and/or to what extent we want to economize these resources.

Subsequently, to perform the WT of the strain sample swin
k(t) (defined by Equation (5))

with respect the kernel wavelet ψ(tn, f j) (defined by Equation (6)), we just need to compute
the following convolution operation:

Wsk[tn, f j
]

=
Nwin−1

∑
m=0

sk(tm)ψ
∗(tm−n, f j) , (7)

where sk(tm) is the m−th element of the column vector swin
k(t). Besides, n = 0, 1, ..., Ntime

and j = 0, 1, ..., N f req, where Ntime and N f req define the size of each k−th image generated
by the WT transform, being Wsk[tn, f j

]
just the (n, j) element or pixel of the each gen-

erated image. In practice, we set our WT, such that it outputs images with dimensions
Ntime = 4096 and N f req = 47 pixels.

In general, the grid of pixels that are defined by all values tn and f j depends on the
formulation of the problem. Here, we chose frequencies varying from f0 = 40 Hz to
fN f req = 500 Hz, with a resolution of ∆ f = 10 Hz, given that is consistent with the GW
signals that we want to detect. In addition, as we apply the WT to each cleaned strain data
sample, we have discrete time values varying from t0 = 0 s to tNtime = Twin − 1/ fs, with a
resolution of ∆t = ts = 1/ fs, where fs = 4096 Hz is the sampling frequency of the initial
segments of strain data.

Although the size of output images is not too large, we decided to apply a resizing
to reduce them from 4096× 47 pixels to 32× 16 pixels. Keep in mind that, as we need
to analyze several thousand images, using their original size would be unnecessarily
expensive for system resources. The resizing was performed by a bicubic interpolation,
in which each pixel of a reduced image is a weighted average of pixels in the nearest
four-by-four neighborhood.

In summary, after applying the WT and the resizing to each strain data sample, we
generated an image dataset {Xi, yi}N

i=1, where Xi ∈ RNtime=32×N f req=16 depicts each image
as a matrix of pixels (notice that we are inverting the standard notation used in image
processing of height×width, because we defined our images by a 2D discrete plot of x axis
vs. y axis), yi ∈ {1, 2} the classes that we are working with, and Nset ∈ {4008, 3360},
depending on whether we are using data from H1 or L1, respectively.

Figure 4 shows two representative strain date samples (one belonging to C1 and
other to C2) as a time domain signal, their time-frequency representation according to
the WT with a Morlet wavelet as kernel, and its resized form. Both of the samples were
generated from a strain data segment recorded by the L1 detector of 4094 s at GPS time
932335616. The image sample at the right shows a GW transcient that has a variable
frequency approximately between 100 Hz and 400 Hz. It is important to clarify that, before
entering to CNNs, image samples are rearranged, such that they the whole dataset has
a size Nset × 32× 16× 1, denoting Nset images of size 32× 16 pixels using 1 channel for
grayscale—sample input images that are shown in Figure 4 are in color just for illustrative
purposes.
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Figure 4. Visualization of two image samples of Twin = 1.0 s, generated from a strain data segment of length 4096 s and
GPS initial time 932335616, recorded at the L1 detector. In the left panel, a sample of noise alone (class 1) is shown, and in the
right panel a sample of noise plus GW (class 2). In the class 2 sample, masses M1 and M2 are in solar masses units, distance
D in Mpc, and SNR is the expected signal-to-noise ratio. Upper panel show strain data in the time domain, middle panels
show time-frequency representations after apply a WT, and bottom panels show resized images by a bicubic interpolation.

2.4. Resampling and White-Box Approach

In Section 1, we briefly mentioned our resampling white-box approach for dealing
with intrinsic uncertainties to CNN algorithms. Subsequently, it is important to clarify
subtleties and advantages of this approach.

A CNN algorithm does not input waveform templates as isolated samples, but also
the distribution of these templates considering the whole training and testing datasets, as
Gebhard et al. [34] critically pointed out. Indeed, in all previous works of DL applied to GW
data analysis, distributions of training samples were set up as class-balanced artificially
by hand, which is to say, with equal or similar number of samples for each class, despite
that real occurrences of classes in recorded observational data of LIGO are very different
from each other—works, such as [53,54], have reported information about BBH population
from O1 and O2 runs. It is a common practice in ML and DL to draw on artificial balanced
datasets to made CNN algorithms easily tractable with respect to hyperparameter tuning,
choice of performance metrics, and cost missclasification. Nonetheless, when uncertainty
is taken into account, the real frequency of occurrence of samples cannot be ignored,
because they define how reliable is our decision criteria for classifying when an algorithm
outputs a score for a single input sample. These kinds of details are very known in the ML
community [55], and they need to be seriously explored in GW data analysis beyond just
hands-on approaches. Deeper multidisciplinary researches are necessary for advancing in
this field.

The full problem of dealing with arbitrarily imbalanced datasets, for now, is beyond
of our research. Nonetheless, even though working with balanced datasets, a good starting
point is to include stochasticity by resampling, which in turn we define as repeated experi-
ments of a global k-fold cross-validation (CV) routine. This stochasticity is different to that
usually introduced in each learning epoch by taking a mini-batch of the whole training set
for updating the model parameters (e.g., by a stochastic gradient descent algorithm) and,
therefore, minimizing the cross-entropy. For this research, we will consider the above two
sources of stochasticity.

Stochastic resampling helps to aliviate artificiality that is introduced by a balanced
dataset, because the initial splitting into k folds is totally random and each whole k-fold
CV experiment is not reproducible in a deterministic fashion. Besides, this approach
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implemented an experimental setup in which uncertainties are even more evident and
need to be seriously treated beyond of just reporting metrics of single values. Indeed, in
most common situations with really big datasets (i.e., millions, billions, or more samples),
stastistical tools for decreasing system resources, and data changing over time, among
others; CNN algorithms are generally set such that their predictions are not deterministic,
leading to distributions of performance metrics instead of single value metrics—and
demanding formal probabilistic analyses. Given these distributions, with their inherent
uncertainties, a statistical paired-sample test is necessary for formally concluding how close
or far our CNNs are to a totally random classifier, and that we performed in this work.

On the other hand, our white-box approach works as a complementary tool to under-
stand how uncertainties influence performance of CNN algorithms. In principle, white-
box testings depend on the complex and still open problem of explainability in ML/DL.
Nonetheless, for our purposes it is enough to define “white-box” as a methodology that
appeals to the information regarding how the CNN algorithms internally behave. A crucial
aspect here is to explicitly (mathematically) describe how each layer of a CNN works
and why to choose them. This is actually the most basic explanatory procedure when
considering that, from a fundamental point of view, we still do not have analytical the-
ories to explain low generalization errors in DL or even, to establish analytical criteria
to unequivocally choose a specific architecture for performing a particular task [56]—in
practice, we only have a lot of previously implemented CNN architectures for other prob-
lems, which need to be test as a just essay-error process for a new problem, actually. This
white-box approach allowed us to smartly choose a reduced set of hyperparameters to be
adjust, which was very useful for avoiding unnecessary intensive explorations given our
limited system resources. Moreover, this approach assisted us in understanding why the
resulting performances of our classifications are class- and threshold-dependent based on
the distribution of output probabilistic scores.

2.5. CNN Architectures

Our CNN algorithms consist of two main stages in terms of functionality: feature
extraction and classification. First stage begins inputting images from a training dataset
and the second stage ends ouputing predicted classes for each image sample. Classification
is our ultimate goal, consisting in a perceptron stage plus an activation function as usual
in ANNs. Feature extraction, on the other and, is the core of CNNs, because it provides
the ability of image recognition, consisting in three substages: convolution, detection, and
pooling. These substages are implemented through layers that, as a whole, define a stack.
Subsequetly, this stack can be connected to a second stack, and so on, until last stack is
connected to the classifier. For this work, we tested CNNs with 1, 2, and 3 stacks.

Knowing that general functionality of our CNNs is a must, but, for contributing with
a white-box approach, we need to understand what each layer does. For this reason, we
proceed to mathematically describe each kind of layer that were used—not only those that
are involved in the already mentioned (sub)stages of the CNN, but also those that were
required in our hands-on implementation with the MATLAB Deep Learning Toolbox [57].
Take in mind that the output of a layer is the input of the next layer, as detailed in Figure 5
for a single-stack CNN.

• Image Input Layer. Inputs images and applies a zero-center normalization. Denoting
an i−th input sample as the matrix of pixels X i ∈ RNtime×N f req belonging to a dataset
of Ntrain same size training images, this layer outputs the normalized image:

Xnorm
i(j, k) = X i(j, k)− 1

Ntrain

Ntrain

∑
i=1

X i(j, k) , (8)

where the second term is the average image of the whole dataset. Normalization is
useful for dimension scaling, making changes in each attribute, i.e., each pixel (j, k)
along all images, of a common scale. Because normalization does not distort relative
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intensities too seriously and helps to enhance contrast of images, we can apply it to
the entire training dataset, independently what class each image belong for.

• Convolution Layer. Convolves each image Xnorm
i with CK sliding kernels of dimen-

sion Ktime ×K f req. Denoting each l−th kernel by Kl with l ∈ {1, 2, ..., CK}, this layer
outputs CK feature maps, and each of them is an image that is composed by the
elements or pixels:

M l
i(p, q) = ∑

m
∑
n

Xnorm(m, n)Kl(p−m + 1, q− n + 1) + b , (9)

where b is a bias term, and indices p and q run over all values that lead to legal sub-
scripts of Xnorm(m, n) and Kl(p−m + 1, q− n + 1). Depending on the parametriza-
tion of subscripts m and n, dimension of images M l

i can vary. If we include the width
Mtime and height M f req of output maps (in pixels) in of a two-dimensional vector just
for notation, these spatial sizes are computed by:

(Mtime, M f req) =
1(

strtime, str f req

)[(Ntime, N f req)− (Ktime,K f req)

+ 2(padtime, pad f req)
]
(1, 1) , (10)

where str (i.e., stride) is the step size in pixels with which a kernel moves above Xnorm
i,

and padd (i.e., padding) denotes time rows and/or frequency columns of pixels that
are added to Xnorm

i for moving the kernel beyond the borders of the former. During
the training, components of kernel and bias terms are iteratively learned from certain
initial values appropriately chosen (see Section 2.6); then, once the CNN has captured
and fixed optimal values for these parameters, convolution is applied to all testing
images.

• ReLU Layer. Applies the Rectified Linear Unit (ReLU) activation function to each
neuron (pixel) of each feature map M l

i obtained from the previous convolutional
layer, outputting the following:

Rl
i(p, q) = max

{
0, M l

i(p, q)
}

. (11)

In practice, this layer detects nonlinearities in input sample images; and, its neurons
can output true zero values, generating sparse interactions that are useful for reducing
system requirements. Besides, this layer does not lead to saturation in hidden units
during the learning, because its form, as given by Equation (11), does not converge to
finite asymptotic values. (Saturation is the effect when an activation function located
in a hidden layer of a CNN converge rapidly to its finite extreme values, becoming
the CNN insensitive to small variations of input data in most of its domain. In
feedforward networks, activation functions as sigmoid or tanh are prone to saturation,
hence they use are discouraged except when the output layer has a cost function able
to compensate their saturation [23] as, for example, the cross-entropy function).

• Max Pooling Layer. Downsamples each feature map Rl
i with the maximum on local

sliding regions LR of dimension Ptime × P f req. Each pixel of a resulting reduced
featured map m`

i is given by the following:

ml
i(r, s) = max

r,s

{
Rl

i(p, q)
}

, ∀(p, q) ∈ LR , (12)

where ranges for indices r and s depend on the spatial sizes of outputs maps; and
these sizes, i.e., width mtime and height m f req, being included in a two-dimensional
vector just for notation, are computed by:
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(mtime, m f req) =
1

(strtime, str f req)

[
(Mtime, M f req)− (Ptime,P f req)

+2(padtime, pad f req)
]
+ (1, 1) , (13)

where the padding and stride values have the same meanings as in the convolutional
layer. Interestly and apart of reducing system requeriments, max pooling layer leaves
invariant output values under small translations in the input images, which could
be useful for working with a network of detectors—the case in which a detected GW
signal appears with a time lag between two detectors.

• Fully Connected Layer. This is the classic perceptron layer used in ANNs and it
performs the binary classification. It maps all images m`

i to the two-dimensional
vector hi by the affine transformation:

hi = W Tm f lat
i + b , (14)

where m f lat
i is a vector of N f c dimensions, with N f c the total number of neurons

considering all input feature maps, b a two-dimensional bias vector, and W a weight
matrix of dimension 2× N f c. Similarly to the convolutional layer, elements of W and
b are model parameters to be learn in the training. Matrix m f lat

i includes pixels of all
feature maps ml

i (with l = 1, 2, ..., CK) as a single "flattened” column vector of pixels;
then, information about topology or edges of sample images is lost.

• Softmax Layer. Applies the softmax activation function to each component j of
vector hi:

yj
i = so f tmax(hj

i) = ehj
i / ∑

j
ehj

i , (15)

where j = 1, 2, depending on the class. Softmax layer is the multiclass generalization of
sigmoid function, and we include it in the CNN, because, by definition, transform real
output values of fully connected layer in probabilities. In fact, according to [58], output
values yj

i ∈ [0, 1] are interpreted as posterior distributions of class cj conditioned by
model parameters. That is to say yj

i(θ) = Pi(cj|θ), where θ is a multidimensional
vector containing all model parameters. It is common to refer to yj

i(θ) values as the
output scores of the CNN.

• Classification Layer. Stochastically takes Ñ < Ntrain samples and computes the
cross-entropy function:

E(θ) = − lnL
(

θ|y1
i, y2

i

)
= − ln

Ñ

∏
i=1

Pi

(
c1|θ

)
︸ ︷︷ ︸

y1
i

Pi

(
c2|θ

)
︸ ︷︷ ︸

y2
i

= −
Ñ

∑
i=1

(
ln y1

i + ln y2
i

)
, (16)

where y1
i and y2

i are the two posterior probabilites that are outputted by softmax
layer and L a likelihood function. Cross-entropy is a measure of the risk of our
classifier and, following a discriminative approach [22], Equation (16) defines the
maximum likelihood estimation for parameters included in θ. Now, we need now
a learning algorithm for maximizing the likelihood L

(
θ|y1

i, y2
i
)

or, equivalently,
minimizing E(θ), with respect to model parameters. Section 2.6 introduces this
algorithm. (Take in mind that our approach estimates the model parameters through a
feedforward learning algorithm from classification layer to previous layers of the CNN.
Alternatively, when considering that posterior probability outputted by softmax layer
is Pi(cj|θ) = Pi(θ|cj)P(cj)/P(θ) because of the Bayes theorem, the other approach
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could be maximize likelihood funcion Pi(θ|cj) with respect to model parameters. This
alternative approach is called generative and will be not considered in our CNN
model. In short, in Section 3.4 we will present the simplest generative models to
compare with our CNN algorithms, namely Naive Bayes classifiers).

Table 1 shows the three architectures that we implemented for this study. A standard
choice for convolutional kernel size is 5× 5, but, as we need to recognize images of width
greater than height, we set a first kernel with size 5× 4. Besides, we chose a size 2× 2 for a
first max pooling region, which is also an standard downsampling option. Subsequently,
with these dimensions, we have that our CNN algorithms can increase the number of
stacks only to 3, where the minimum output layer size is reached—provided that the size
of kernel and max pooling regions becomes smaller if they are located in subsequent stacks.
This scenario is very convenient, because it allowed us to importantly decrease system
resources in our hyperparameter adjustments, as will seen in Section 3.2. For choosing
the number of kernels Ck, there is not a beforehand criteria, then we leave it as a matter of
experiments.

y2i = Pi (C
2|θ)

y1i = Pi (C
1|θ)

...

Convolution

Max Pooling

Fully Connected

.....

.....

ReLU

Softmax

...

Normalization

(i-th image sample)

Noise

Noise + GW

Cross-Entropy

CK feature maps

Feature extraction

Classification

1 stack

Ntrain input images

Figure 5. Single stack CNN architecture used as basis for this research. Ntrain same size image samples are simultaneously
inputted, but, for simplicity, we detail the procedure for a single image—besides, although this image is shown colorized,
training images dataset occupies just one channel. A X i image feed the CNN, and a two-dimensional vector is outputted,
giving us posterior probabilities of class 1 (noise alone) and class 2 (noise + GW), both being conditioned by model
parameters included in vector θ. After that, cross-entropy E(θ) is computed. The notation for input(output) matrices and
vectors is the same as that introduced in Section 2.5 to mathematically describe the several kinds of layers that are used in
the CNNs.
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Table 1. The CNN architecture of 3 stacks used for this research. The number of kernels in convolutional layers is variable,
and it took values CK ∈ {8, 12, 16, 20, 24, 28, 32}. Part of this illustration is also valid for CNN architectures of 1 or 2 stacks
(also implemented in this research), in which the image input layer is followed by the next three or six layers as feature
extractor, respectively, and then by the fully connected layer until the output cros-entropy layer in the classification stage.
All of these CNNs were implemented with the MATLAB Deep Learning Toolbox.

Layer Activations per Image Sample Learnables per Image Sample

Image Input 32× 16× 1 –

Convolution of size 5× 4, CK kernels
Strides: 1, Paddings: 0

28× 13× CK

Weights: 5× 4× 1× CK

Biases: 1× 1× CK

ReLU 28× 13× CK
–

Max Pooling of size 2× 2
Strides: 2, Paddings: 0

14× 6× CK
–

Convolution of size 5× 4, CK kernels
Strides: 1, Paddings: 0

10× 3× CK

Weights: 5× 4× CK × CK

Biases: 1× 1× CK

ReLU 10× 2× CK
–

Max Pooling of size 2× 2
Strides: 2, Paddings: 0

5× 1× CK
–

Convolution of size 4× 1×, CK kernels
Strides: 1, Paddings: 0

2× 1× CK

Weights: 4× 1× CK × CK

Biases: 1× 1× CK

ReLU 2× 1× CK
–

Max Pooling of size 2× 1
Strides: 1, Paddings: 0

1× 1× CK
–

Fully Connected 1× 1× 2
Weights: 2× CK

Biases: 2× 1

Softmax 1× 1× 2 –

Ouput Cross-Entropy – –

2.6. Model Training

As detailed, model parameters are included in vector θ, which, in turn, appear in the
cross-entropy function (16). Starting from given initial values, these parameters have to be
learned by an minimization of the cross-entropy, taking Ñ < Ntrain random image samples,
i.e., a mini-batch. For model parameters updating, we draw on the known gradient descent
algorithm, including a momentum term to boost iterations. Denoting model parameters at
the r−th iteration or epoch as θ(r), then its updating at the (r + 1)−th iteration is given by
the following optimization rule:

θ(r+1) = θ(r) − α∇
θ(r)

E
(

θ(r)
)
+ γ

(
θ(r) − θ(r−1)

)
, (17)

where we have that ∇
θ(r)

is the gradient with respect to model parameters and E the cross-
entropy, in addition to two empirical quantities to be set by hand, namely the learning
rate α and momentum γ. Given that we are computing the cross-entropy with Ñ < Ntrain
random samples, the above rule is called the mini-batch stochastic gradient descent (SGD)
algorithm. Besides, for all our experiments, we set a learning rate α = 1.00, a momentum
γ = 0.9, and a mini-batch size of Ñ = 128 image samples.

With regard to the initialization of weights, we draw on Glorot initializer [59]. This
scheme independently samples values from a uniform distribution with a mean equal to zero
and a variance given by 2/(nin + nout), where nin = KtimeK f req and nout = KtimeK f reqCK

for convolutional layers, and nin = CK size(m f lat
i ) and nout = 2CK for the fully connected

layer—remember that CK is the number of kernels of dimension Ktime ×K f req and m f lat
i

the vector that is inputted by the fully connected layer. All biases, on the other hand, are
initialized with zeros.

Finally, whether we work with data from H1 or L1 detector, Ntrain will be significantly
greater than Ñ = 128; nevertheless, its specific value depends on our global validation
technique is explained in Section 2.7.
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2.7. Global and Local Validation

For this research, we only used real LIGO strain data with a given and limited number
of CBC hardware injections, removing beforehand the instrumental freedom to generate
an arbitrarily diverse bank of GW templates based on software injections with numerical
and/or analytical templates. Under this approach, we intentionally adopt a limitation in
which we cannot generate big datasets, and global validation techniques that are based
on resampling are required to reach good statistical confidence and perform fair model
evaluations. Even when using syntetic data from numerical relativity, and because of
current system resources limitations [60], the order of magnitude of generated templates
still is quite small when compared to the big data regime [61] with volumes of petabytes,
exabytes, or even more; the aforementioned techniques are yet to be required. For these
reasons, we implemented the k-fold CV technique [62], that consists in the following recipe:
(i) split the original dataset into k nonoverlapping subsets to perfom k trials, then (ii) for
each i−th trial use the i−th subset for testing, leaving the rest of the data for training, and
finally (iii) compute the average of each performance metric across all trials.

It is known that the value of k in k-fold CV defines a trade-off between bias and
variance. When k = N (i.e., leave-one-out cross-validation), the estimation is unbiased, but
variance can be high and, when k is small, the estimation will have lower variance, but bias
could be a problem [63]. For several classic ML algorithms, previous works have suggested
that k = 10 represents the best trade-off option ([64–66]), then we decided to take this value
as a first approach. Moreover, in the following works [67,68], we decided to perform 10
repetitions of the 10-fold cross-validation process [55], in order to reach a good stability
of our estimates, to present fair values of the cross-entropy function given the stochastic
nature of our resampling approach, and, more important, obtain information regarding the
distribution of accuracy (and other standard metrics) in which there is involved uncertainty.

Moreover, k-fold CV helps to aliviate the artificiality that is introduced by balanced
dataset, because the initial splitting into k folds is totally random. In research [34] authors
warns about the fact that CNNs not only capture GW templates alone, but also transfer
to the test stage the exact same probability distribution given in the training set. This
claim is true but, it is important to take in mind that, working with balanced datasets, as
a first approach, is simply motivated by the fact that many of the standard performance
metrics give excessive optimistic results on classes of higher frequency in imbalanced
dataset, and dealing with arbitrarily unbalanced datasets is not a trivial task. In any case,
including k-fold CV as a random resampling, starting from a balanced dataset, is desirable
for statistical purposes.

With the sizes of our datasets detailed at the end of Section 2.3.3 and the 10-fold CV, we
have a training set of Ntest = f loor[4008/10] = 400 samples obtained from H1 detector, and
of Ntest = f loor[3360/10] = 336 samples from the L1 detector. Consequently, Ntrain = 3607
for H1 data and Ntrain = 3607 for L1 data.

Local validation, which is to say validation performed within a learning epoch, is
also an crucial ingredient of our methodology. In particular, our algorithm splits the
training set of Ntrain data into two subsets, one for the training itself (0.9Ntrain) and the
other for validation (0.1Nvalid). Validation works as a preparatory mini test that is useful
for monitoring learning and generalization during the training process.

With regard to regularization techniques, local validation was performed once per
f loor[Ntrain/Ñ] epochs and cross-entropy was monitored with a validation patience p = 5
(value given by hand), which simply means that, if E(r+1) ≥ E(r) occurs p times during the
validation, then the training process is automatically stopped. Besides, to avoid overfitting,
training samples were randomized before training and before validation, solely in the first
learning epoch. This randomization is performed, such that the link between each training
image X i and its respective class yi is left intact, because we do not want to "mislead” our
CNN when it learns from known data.
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2.8. Performance Metrics

Once our CNN is trained, the goal is predicting classes of unseen data, i.e., data on
which the model was not trained and, of course, achieve a good performance. Hence,
performance metrics in the test are especially crucial. When considering the last layer of
our CNNs, a metric that is natural to monitor during the training and validation process is
the cross-entropy. Other metrics that we use come from counting predictions. As our task
has to do with a binary classification, these metrics can be computed from the elements of
a 2× 2 confusion matrix, namely true positives (TP), false positives (FP) or type I errors,
true negatives (TN), and false negatives (FN) or type II errors, as detailed in Table 2.

Accuracy is the most used standard metric in binary classifications. Besides, all of the
metrics shown in the right panel of Table 2 depend on a choosen threshold as a crucial part
our decision criterion. Depending of this threshold, and the output score for an input image
sample, our CNN algorithms assign class 1 or class 2. Although the threshold is fixed for
all these metrics, one can also vary it for generating the well known Receiving Operating
Characteristic (ROC) [69] and Precision-Recall [70] curves, among others. The first curve
describes the performance of the CNN in the fall-out (or false positive rate) vs. recall (or
true positive rate) space, and the second one in the recall vs. precision space. Given that the
whole curves are generated by varying the threshold, each point of those curves represents
the performance of the CNN given a specific threshold. As we worked with balanced
datasets, ROC curves are the most suitable option. In particular, for a probabilistic binary
classifier, each point of its ROC curve is given by the ordered pair:

ROCthr = (Fall-out, Recall)|thr , (18)

where 0 < thr < 1. Finally, F1 score and G mean1 are metrics that summarize in a
single metric pairs of other metrics and being, in general, useful for imbalanced multiclass
classifications. In short, we decided to compute these two last metrics, because they give
useful moderation features for performance evaluation—more details are presented in
Section 3.3.

Table 2. Confusion matrix for a binary classifier and its consequent standard performance metrics. In general, to have a
complete view of the classifier, it is suitable to draw on, at least, accuracy, precision, recall, and fall-out. The F1 score and G
mean1 are useful metrics for imbalanced multilabel classifications, and they also give important moderation features that
help in model evaluation. Each metric has its probabilistic interpretation.
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Table 2: Confusion matrix for a binary classifier and its consequent standard performance metrics. In general, to have a
complete view of the classifier, it is suitable to draw on, at least, accuracy, precision, recall, and fall-out. F1 score and G
mean1 are useful metrics for imbalanced multilabel classifications, and they also give important moderation features
which help in model evaluation. Each metric has its probabilistic interpretation.
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Accuracy TP+TN
P+N How often a correct classification is made

Precision TP/P′ How many selected examples are truly relevant
Recall TP/P How many truly relevant examples are selected

Fall-out FP/N How many no relevant examples are selected
F1 score 2 Precision×Recall

Precision+Recall Harmonic mean of precision and recall.

G mean1
√

Recall × Fall-out Geometric mean of recall and fall-out.

We also want to perform a shuffling in order to ensure that our results are statistically
significant. Our algorithm already performs a randomization over the training set, before
the training and before the validation in order to prevent overfitting, as mentioned in
Section 2.7. However, the shuffling applied here is more radical, because it broke the
link between training images and their respective classes, and it is made by random
permutation over indices i solely for the matrices X i, belonging to training set {X i, yi}Ntrain

i=1 ,
before each the training. Subsequently, if this shuffling is present and our results are
truly significant, we expect that accuracy in testing be lower than that computed when no
shuffling is present, reaching values around 0.5—as this is the chance level for a binary
classifier. This will be visually explored, looking at the dispersion of mean accuracies in
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boxplots and, more formally, confirmed by a paired-sample t-test of statistical inference. For
each distribution of mean accuracies, with and without shuffling, we can define sets D and
Dshu f f , respectively. Subsequently, with means of each of these sets, namely µ and µshu f f ,
the goal is testing the null hypothesis H0 : µ− µshu f f = 0, and, then, we just would need to
compute the p-value, i.e., the probability of resulting accuracies be possible assuming that
the mentioned null hypothesis is correct, given a level of significance—Section 3.5 presents
more details about shuffling and consequent statistical tests.

3. Results and Discussion
3.1. Learning Monitoring per Fold

While the mini-batch SGD was running, we monitored the cross-entropy and accuracy
evolution along epochs. This is the very first check to ensure our CNNs were properly
learning from data and our local validation criteria stopped the learning algorithm in the
right moment. If our CNNs were correctly implemented, we expected that cross-entropy
be minimized to reach values as close as possible to 0, and the accuracy to reach values
as close as possible to 1. If this check gave wrong results, then there would be no point in
computing subsequent metrics.

Figure 6 shows two representative examples of this check, using data from H1 and
L1 detectors. Both were performed during a single fold of a 10-fold CV experiment, from
the first to the last mini-batch SGD epoch. Besides, here we used a time resolution of
Twin = 0.50 s with 2 stacks, and 20 kernels in convolutional layers. Notice that cross-
entropy shows decreasing trends (Figure 6a,c) and accuracy increasing trends (Figure 6b,d).
The total number of epochs for H1 data was 372, and for L1 data was 513, which means
that the CNN has greater difficulties in learning parameters with L1 than with H1 data.
When the CNN finish its learning process, cross-entropy and accuracy reach values of 0.184
and 0.945, respectively, using H1 data; and 0.357 and 0.805, respectively, using L1 data.

Notice that, from all plots shown in Figure 6, fluctuations appear. This is actually ex-
pected, since, in the mini-batch SGD algorithm, a randomly number of samples Ñ < Ntrain
are taken, then stochastic noise is introduced. Besides, when using data from L1 detector,
some anomalous peaks appear between epoch 350 and 400, but this is not a problem
because CNN normally continues its learning process and trendings in both metrics are
not affected. At the end, we can observe this resilience effect, because of our validation
patience criterion, which is implemented to prevent our CNN algorithm prematurely
stopping and/or to dispense with manually adjust the total number of epochs for each
learning fold.

Still focusing on the SGD fluctuations, zoomed plots in Figure 6 show their order
of magnitude—the highest peak minus the lowest peak. When we work with H1 data,
cross-entropy fluctuations are about 0.130 (Figure 6a) and accuracy fluctuacions are about
0.090 (Figure 6b). On the other hand, when we learn from L1 data, both cross-entropy
and accuracy fluctuations are about 0.080 (Figure 6c,d). Here, it should be stressed that,
although mini-batch SGD perturbations contribute with its own uncertainty, when we
compute mean accuracies among all folds in the next Section 3.2, we will see that the
magnitude of these perturbations do not totally influence the magnitude of data dispersion
present in the distribution of mean accuracies.
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Figure 6. Evolution of cross-entropy (left panels: (a,c)) and accuracy (right panels: (b,d)), in the function of epochs of
learning process, using data from H1 detector (upper panels) and L1 detector (lower panels). On trending, cross-entropy
decreases and accuracy increases, even if there is a clear stochastic component due to the mini-batch SGD learning algorithm.
Here we set length of sliding windows in Twin = 0.50 s, and the CNN architecture with 2 stacks and 20 kernels. Some
anomalous peaks appear when data from L1 detector is used, but this does not affect the general trends of mentioned metrics.

3.2. Hyperparameter Adjustments

Our CNN models introduce several hyperparameters, namely the number of stacks,
size and mount of kernels, size of pooling regions, number of layers for each stack, stride,
and padding, among many others. Presenting a systematic study for all hyperparameters
is beyond the scope of our research. However, given CNN architectures shown in Table 1,
we decided to study and adjust two of them, namely the number of stacks and the number
of kernels in convolutional layers. In addition, although it is not an hyperparameter of
the CNN, the time length Twin of the samples is a resolution that also required being set to
reach an optimal performance, then we included it in the following analyses.

A good or bad choice of hyperparameters will affect the performance, and this choice
introduces uncertainty. Nonetheless, once we found a set of hyperparameters defining an
optimal setting and, regardless of how sophisticated our adjustment method is, the goal is
only using this setting for predictions. That is to say, once we find optimal hyperparameters,
we remove the randomness that would be introduced in predictions if we run our CNN
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algorithms with different hyperparameters. For this reason, we say that uncertainty that
is present in hyperparameter selection defines a prior level to intrinsic uncertainties of a
setting already chosen—according to the Bayesian formalism, this is a prior belief. Last
uncertainties are more risky, because they introduce stochasticity in all predictions of our
models, despite that we are working with a fixed particular hyperparameter setting.

In any case, we emphasize that our methodology for hyperparameter selection is
robust. Thanks to our white-box approach, a clear understanding of the internal behavior
of our CNNs was shown and, based on this understanding, we heuristically proposed a
reduced set of hyperparameters to perform a transparent statistical exploration on possible
meaningful values—obtaining good results, as will be seen. This methodology is smartly
distancing from the blind brute force approach of performing unnecesarily large and
expensive explorations (many hyperparameter settings could be silly to waste time on
them), and even much more far from a naive perspective of trivializing model decision as a
superficial detail and/or something opaquely given without showing a clear exploration.

The first hyperparameter adjustment is shown in Figure 7, and it was implemented to
find optimal number of stacks and time length resolution, according to the resulting mean
accuracies. The left panels (Figure 7a,c) show the distribution of mean accuracy for all 10
repetitions or runs of the entire 10-fold CV experiment, in function of Twin. Each of these
mean accuracies, which we can denote as Acci

CV , is the average among all fold-accuracies
of a i−th run of the 10-fold CV. In addition, the right panels (Figure 7b,d) show the mean
of mean accuracies among all 10 runs, i.e., Acc = (1/10)∑10

i=1 Acci
CV , in function of Twin.

Inside right plots, we have included small boxplots that, as will be seen next, are useful to
study dispersion and skewness of mean accuracy distributions—circles inside boxplots are
distribution mean values. The line plots show contributions of our three CNN architectures,
i.e., with 1, 2, and 3 stacks.

Consider the top panels of Figure 7 for H1 data. Notice, from Figure 7b that, for all
CNN architectures, mean of mean accuracies shows a trend to decrease when 0.75 s ≤
Twin ≤ 2.00 s and this decrease occurs more pronouncedly when we work with less stacks.
Besides, when 0.25 s ≤ Twin ≤ 0.75 s, a slight increase appears, even if local differences
are of the order of SGD fluctuations. In short, given our mean accuracy sample dataset,
the highest mean of mean accuracies, about 0.895, occurs when Twin = 0.75 s with a
CNN of 3 stacks. Subsequently, to decide if this setting is optimal, we need to explore
Figure 7a together with boxplots inside Figure 7b. From Figure 7a, we have that not
only the mentioned setting give high mean accuracy values, but also Twin = 0.25 s and
Twin = 1.00 s, both with 2 stacks, Twin = 0.75 s with 2 and 3 stacks, and even Twin = 1.25 s
with 3 stacks; all these settings reach a mean accuracy that is greater than 0.9. Setting
Twin = 1.25 s with 3 stacks can be discarded because its maximum mean accuracy is clearly
an outlier and, to elucidate what of remaining settings is optimal, we need to explore
boxplots.

Here, it is crucial to assimilate that the optimal setting to choose actually depends on
what specifically we have. Let us focus on Figure 7b. If the dispersion does not worry us
too much and we want to have a high probability of occurence for many high values of
mean accuracy, setting of Twin = 0.25 s with 2 stacks is the best, because its distribution
has a slighly negative skewness concentrating most of mass probability to upper mean
accuracy values. On the other hand, if we prefer to have more stable estimates working
with less dispersion at the expense of having a clear positive skewness (in fact, having a
high mass concentration in a region that does not reach as high mean accuracy values as the
range from median to third quartile in the previous setting), setting of Twin = 0.75 s with
3 stacks is the natural choice. In practice, we would like to work with greater dispersions if
they help to reach the highest mean accuracy values, but, as all our boxplots have similar
maximum values, we decide to maintain our initial choice of Twin = 0.75 s with 3 stacks for
H1 data.
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Figure 7. Hyperparameter adjustment to find best CNN architectures, i.e., number of stacks, and time resolution Twin. Left
panels, (a,c), show all samples of mean accuracies, and right panels, (b,d), the mean of mean accuracies among all runs; all
in function of Twin for 1, 2, and 3 stacks in the CNN. Besides, small boxplots are included inside right plots to have more
clear information about dispersion and skewness of distribution of mean accuracies that are more relevant and from where
we chose our optimal settings. Based on this, we concluded that Twin = 0.75 s, with 3 stacks (H1 data) and with 2 stacks (L1
data), are optimal settings. We used 20 convolutional kernels, repeating a 10-fold CV experiment 10 times.

From Figure 7a, it can be seen that, regardless number of stacks, data dispersion in
1.25 s ≤ Twin ≤ 2.00 s is greater than in 0.25 s ≤ Twin ≤ 1.00 s, even if in the former region
dispersion slightly tends to decrease as we increase the number of stacks. This actually
is a clear visual hint that, together with the evident trend to decrease mean accuracy as
Twin increase, motivate discarding all settings for Twin ≥ 1.25 s. However, this hint is
not present in the bottom panels, in which a trend of decrease and then increase appears
(which is clearer in the right plot), and data dispersion of mean accuracy distributions are
similar almost for all time resolutions. For this reason, and although the procedure for
hyperparameter adjustment is the same as upper panels, one should be cautious, in the
sense that decisions here are more tentative, especially if we have prospect to increase the
mount of data.

In any case, given our current L1 data and based on scatter distribution plot in
Figure 7c and line mean of mean accuracies plot in Figure 7d, we have that the best
performance(s) should be among settings of Twin = 0.5 s with 2 stacks, Twin = 0.75 s with 2
and 3 stacks, and Twin = 1.00 s with 3 stacks. Now, exploring the boxplots in Figure 7d,
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we notice that, even if settings of Twin = 0.75 s, 1.00 s with 3 stacks reach the highest mean
accuracy values, their positive skewness toward lower values of mean accuracies is not
great. SUbsequently, the two remaining settings, which, in fact, have negative skewness
toward higher mean accuracy values, are the optimal options, and again choosing one or
other will depend of what extent we tolerate data dispersion. Unlike upper panels, here a
larger dispersion increase the probality to reach higher mean accuracy values; therefore,
we finally decide to work with the setting of Twin = 0.75 s with 2 stacks for L1 data.

To find the optimal mount of kernels in convolution layers, we perfomed the adjust-
ment that is shown in Figure 8, again separately for data from each LIGO detector. When
considering the information that is provided by previous adjustment, we set Twin = 0.75 s,
and the number of stacks in 3 for H1 data and 2 for L1 data. Subsequently, once the 10-fold
CV was run 10 times as usual, we generated boxplots for CNN configurations with several
mounts of kernels, as was advanced in Table 1, including all mean accuracies for each
run marked (red circles). Besides, the average for each boxplot is included (blue crosses).
Random data horizontal spreading inside each boxplot was made to avoid visual overlap
of markers, and it does not mean that samples were obtained with a number of kernels
different from those already specified in horizontal axis.
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Figure 8. Adjustment to find the optimal number of kernels in CNNs for H1 data (a) and L1 data (b). Both panels show
boxplots for the distributions of mean accuracies in function of the number of kernels, with values of Twin and mount of
stacks found in previous hyperparameter adjustments. Based on location of mean accuracy samples, dispersion, presence of
outliers, and skewness of distributions, CNN architectures with 32 kernels and 16 kernels are the optimal choices to reach
the highest mean accuracy values, when working with data from the H1 and L1 detectors, respectively.

Let us concentrate on kernels adjustment for H1 data in the left panel of Figure 8.
From these results we have that a CNN with 12 kernels give us more stable results by
far, because most of its mean accuracies lie in the smallest dispersion region—discarding
outliers, half of mean accuracies are concentrated in a tiny interquartile region located
near to 0.895. On the other hand, CNN configuration with 24 kernels is the least suitable
setting among all, not because its mean accuracy values are low per se (values from 0.800
to 0.898 are actually good), but rather, because, unlike other cases, the nearly zero skewness
of its distribution is not prone to boost sample values beyond the third quartile as it is
appeared. Configuration with 8 kernels has a distribution mean very close to the setting
with 24 kernels and, even, reaches two mean accuracy values of about 0.905. Nonetheless,
given that settings with 16, 20, 28, and 32 have mean of mean accuracies greater or equal to
0.895 (and, hence, boxplots that are located towards relative higher mean accuracy values),
these last four configurations offer the best options. At the end, we decided to work with
32 kernels, because this setting groups a whole set of desirable features: the highest mean
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of mean accuracies, namely 0.893, a relatively low dispersion, and a positive skewness that
is defined by a pretty small range from the first quartile to the median.

Kernels adjustment for L1 data is shown in right panel of Figure 8. Here, the situation
is easier to analize, because performance differences appears to be visually clearer than
those for data from H1. Settings with 8, 20, and 28 kernels lead to mediocre performances,
specially the first one which has a high dispersion and 70% of its samples are below 0.8
of mean accuracy. Notice that, like adjustment for H1 data, setting with 12 kernels shows
the smallest dispersion (discarding a outlier below 0.77), where we have mean accuracies
from 0.805 to 0.830, and, again, this option will be suitable if we would be very interested
in reaching stable estimates. We decided to pick up setting with 16 kernels, which has the
highest distribution mean, 0.825, 50% of mean accuracy samples above the distribution
mean, an aceptable data dispersion (without counting the clear outlier), and a relatively
small region from the minimum to the median.

In summary, based on all of the above adjustments, the best time resolution is
Twin = 0.75 s, with a CNN architecture of 3 stacks and 32 kernels when working with
data from H1 detector, and 2 stacks and 16 kernels when working with data from the L1
detector. We only use these hyparameter settings hereinafter.

Now, let us finish this subsection reporting an interesting additional result. We can ask
to what extent magnitude of perturbations from the mini-batch SGD algorithm influence
the dispersion of mean accuracy distributions, as was mentioned at the end of Section 3.1.
Here, we can compare the order of magnitude of SGD perturbations and dispersion present
in boxplots. In previous subsection, we had that, when Twin = 0.50 s and we work with a
CNN architecture of 2 stacks and 20 kernels in convolution layers, the order of magnitude
of SGD fluctuations in accuracy is about 0.090. Curiously, this value is much greater than
the dispersion of data distribution shown in the left panel of Figure 7, which, in turn, reach a
value of 0.025, that is to say, 3.6 times smaller. These results are good news, because apart of
showing that stochasticity of mini-batch SGD perturbations do not totally define dispersion
of mean accuracy distributions, it seems that our resampling approach, actually contributes
to smooth stochastic effects of mini-batch SGD perturbations and, hence, to decrease the
uncertainty in the mentioned distributions. This is a very important result that could
serve as motivation and standard guide to future works. Given that very few previous
works of ML/DL applied to GW detection have transparently reported their results under
a resampling regime, i.e., clearly showing distributions of their performance metrics (for
instance, [29,39]), this motivation is highly relevant. Resampling is a fundamental tool in
ML/DL that should be used, even if the involved algorithms are deterministic, because
there will always be uncertainty given that data are always finite. Moreover, under this
regime, it is important to report the distributions of metrics to understand the probabilistic
behavior of our algorithms, beyond mere averages or single values from arbitrarily picked
out runs.

3.3. Confusion Matrices and Standard Metrics

In general, accuracy provides information regarding the probability of a successful
classification, either if we are classifying a noise alone sample (C1) or noise plus GW sample
(C2); that is to say, it is a performance metric with multi-label focus. However, we would
like to elucidate to what extent our CNNs are proficient in separately detecting samples
of each class, then it is useful to introduce peformance metrics with single-label focus. A
standard tool is the confusion matrix, which is shown in Figure 9, depending on data from
each detector. As we are under a resampling regime, each element of confusion matrices is
computed when considering the entire mount of 100 Ntest detections, which, in turn, are
resulting from concatenating all prediction vectors of dimension Ntest that are outputted
by the 10 runs of the 10-k fold CV.
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Figure 9. Confusion matrices computed from the testing. C1 is the label for noise only and C2 the label for noise plus GW
injection. Our CNN has 32 kernels and 3 stacks when is run with H1 data, and 16 kernels and 2 stacks when is run with L1
data. Time resolution is Twin = 0.75s. Working with H1 data, 8533/(8533 + 427) ≈ 0.952 predicitions for C1 are correct and
1413/(8533 + 1413) ≈ 0.142 predictions for C2 are incorrect and, working L1 data, 6075/(6075 + 445) ≈ 0.932 predicitions for C1 are
correct and 1842/(6075 + 1842) ≈ 0.233 predictions for C2 are incorrect. These results show that our CNN classifies very precisely
noise samples at the cost of reaching a not less number of false GW predictions
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Figure 9. Confusion matrices computed from the testing for H1 data (a) and L1 data (b). C1 is the label for noise only and
C2 the label for noise plus GW injection. Our CNN has 32 kernels and 3 stacks with H1 data, and 16 kernels and 2 stacks
with L1 data. Time resolution is Twin = 0.75 s. Working with H1 data, 8533/(8533 + 427) ≈ 0.952 predicitions for C1 are
correct and 1413/(8533 + 1413) ≈ 0.142 predictions for C2 are incorrect and, working L1 data, 6075/(6075 + 445) ≈ 0.932
predicitions for C1 are correct and 1842/(6075 + 1842) ≈ 0.233 predictions for C2 are incorrect. These results show that our
CNN very precisely classifies noise samples at the cost of reaching a not less number of false GW predictions.

A first glance of the confusion matrices shown in Figure 9 reveals that our CNNs
have a better performance in detecting noise alone samples than detecting noise plus
GW samples, because (C1, C1) (we are using the notation (row, column) to represent each
element of a confusion matrix) the element is greater than (C2, C2) for both matrices. Yet,
the amount of successful predictions of noise plus GW are reasonably good because they
considerably surpass a totally random performance—as described by successful detections
or the order of 50% of total negative samples.

Moreover, from Figure 9, we have that, based on wrong predictions, CNNs are more
likely to make a type II error than type I error, because (C2, C1) > (C1, C2) for both
confusion matrices. If we think more carefully, this result leads to an advantage and a
disadvantage. The advantage is that our CNN performs a "conservative” detection of
noise alone samples in the sense that a sample will be not classified as beloging to class
1 unless the CNN is very sure, which is to say the CNN is quite precise to detect noise
samples. Using H1 data, 8533/(8533 + 427) ≈ 0.952 of samples predicted as C1 belong
this class; and, using L1 data, 6075/(6075 + 445) ≈ 0.932 of samples that were predicted
as C1 belong this class. This is an important benefit if, for instance, we wanted to apply
our CNNs to remove noise samples from a segment of data with a narrow marging of
error in addition to other detection algorithms and/or analysis focused on generating
triggers. Nonetheless, the disadvantage is that a not less number of noise samples are lost
by wrongly classifying them as GW event samples. In terms of false negative rates, we
have that 1413/(8533 + 1413) ≈ 0.142 of actual noise samples are misclassified with H1
data, and 1842/(6075 + 1842) ≈ 0.233 of actual noise samples are misclassified with L1
data. This would be a serious problem if our CNNs were implemented to decide whether
an individual trigger is actually a GW signal and not a noise sample—either Gaussian or
non-Gaussian noise.

Taking in mind that, according to statistical decision theory, there will always be a
trade-off between type I and type II errors [71]. Hence, given our CNN architecture and
datasets, it is not possible to reduce value of (C2, C1) element without increasing value
of (C1, C2) element. In principle, keeping the total number of training samples, we could
generalize the CNN architecture for a multi-label classification to further specify the noise
including several kind of glitches as was implemented in works as [33,38]. Indeed, starting
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from our current problem, such multiclass generalization could be motivated to redistribute
the current false negative counts (C2, C1) in new elements of a bigger confusion matrix,
where several false positive predictions will be converted to new sucessful detections
located along a new longer diagonal. Nonetheless, it is not clear how to keep constant
the bottom edge of the diagonal of the original binary confusion matrix when the number
of noise classes is increased; not to mention that this approach can be seen as a totally
different problem instead of a generalization.

With regard to misclassified GW event samples, despite that they are quite less than
misclassified noise samples, we would like to understand more about them. Subsequently,
we decided to study the ability of the CNN to detect GW events depending on the values of
their expected SNR—values that are provided with LIGO hardware injections. The results
are shown in Figure 10; upper panel with data from H1 detector, and lower panel with data
from L1 detector. Both panels include a blue histogram for actual (injected) GW events that
come from the testing set, a gray histogram with GW events detected for the CNN, and the
bin-by-bin discrepancy between both histograms as scatter points. As a first approach, we
defined this bin-by-bin discrepancy as the relative error:

Rel Err(i) = [Ndet(i)− Ntest(i)]/Ndet(i) , (19)

where Ndet and Ntest are the detected GW count and injected GW count, respectively, and
index i represent a bin. Here, we set 29 same-length bins for both histograms, starting from
a lower edge SNR = 9.0 to a upper edge SNR = 101.8 for H1 data, and from SNR = 10.0
to SNR = 91.2 for L1 data, respectively. For testing histograms, the count of events comes
from our 100 Ntest predictions given our resampling regime.

By comparing most bins that appear on both panels of Figure 10, we have detected
that the GW count is greater the more actual injections in the testing set there are. Besides,
most GW events are concentrated in a region of smaller SNR values. For H1 data, most
events are in the first six bins, namely from SNR = 9.0 to SNR = 28.9; with 6520 actual
GW events and 5191 detected GW events, representing aprox. the 72.77% and 68.78% of the
total number of actual GW events and detected GW events, respectively. For L1 data, on the
other hand, most of the events are in the first seven bins, from SNR = 10.0 to SNR = 29.6;
with 5040 actual GW events and 3277 detected GW events, representing aprox. the 77.30%
and 70.05% of the total number of actual GW events and detected GW events, respectively.

The above information regarding counts is relevant, but the most important results
come from relative errors. From these, we have that, in both panels, a clear trend of
detecting a greater percentage of actual GW events as long as those events has greater SNR
values. Besides, if we focus in upper panel of Figure 10, corresponding to H1 data, we have
that, in first four bins, the GW count relative errors are the greatest; beginning with−0.3589
and ending with −0.1016. Subsequently, from the fifth bin at SNR = 21.80, relative errors
stochastically approaches zero—indeed, a relative error exactly equal to zero is reached in
10 of 29 bins. For L1 data, as shown in lower panel, we observe a similar behavior of relative
error. In the first six bins, the greatest relative errors appears; from −0.5083 to −0.0977.
Next, from seventh bin at SNR = 26.80, relative errors stochastically approach zero. Indeed,
here we have that a relative error value exactly equal to zero is reached for the first time at
smaller SNR value than with H1 data, although, once zero values begin to appear, relative
errors that are further away from zero than with H1 data also appear. This last result is
statistically consistent with the fact that, according to Figure 9, a negative predictive value
(NPV = (C2, C2)/[(C2, C1) + (C2, C2)]) is smaller in the confusion matrix for H1 data
than for L1 data, with NPV ≈ 0.842 and NPV ≈ 0.717, respectively.
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Figure 10. Histograms for counting GW samples present in test set and GW samples detected by
the CNN. This count was made from all 100 Ntest predictions because we have 10× 10 = 100 SGD
learning-testing runs. Besides, the relative error between both histograms is shown as scatter points,
with their respective standard deviations being computed from the 10 repetitions of the 10-fold CV
routine. From plots, we have that our CNN detects more CBC GW events insofar as they have a
SNR ≥ 21.80 for H1 data (upper panel) and SNR ≥ 26.80 for L1 data (bottom panel).

It should be stressed that, in the above paragraph, we refer to trends in bin-by-bin
discrepances, which stochastically approach zero as the SNR values increases. Although
the binning choice could influence the fact that the above discrepances are not monothonic,
the main reason behind this behavior is stochasticity of our CNN algorithms. We are
counting the inputted and detected GW events, which come from repeteated 10-fold CV
experiments in which the dataset is stochastically split in each experiment.

For bin-by-bin discrepancies that are shown in Figure 10, we include error bars. These
are standard deviations and each of these was computed from distributions of 10 relative
errors because of the 10-fold CV experiment is repeated 10 times. From the plots, we
observe that standard deviations do not approach to zero as their SNR increase, meaning
that stochasticity introduced in such standard deviations by our resampling cannot seem
to be smoothed by selecting certain SNR values.

It is important to reiterate that, here, we applied the CNN algorithm under a realistic
approach in the sense that GW events are given by the hardware injections provided by
LIGO, and therefore, all SNR values are given in the strain data with no possibility to be
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directly handled in numerical relativity templates before software injections (in addition to
SNR values, frequency of occurrence of GW events also represents an important challenge
to generate a more realistic dataset emulating record of astrophysical data, even though
this leads us to work with highly imbalanced datasets. Even, for a more realistic situation,
we could internally describe each bin of histograms in Figure 10 as a random sampling
in which the counts themselves take random values, following a distribution—indeed,
this hypothesis is usually assumed to perform systematic statistical comparisons between
two histograms). Additionally, this is consistent with real experimental conditions, in
which the SNR values of real recorded GW signals depend solely on the nature of the
astrophysical sources and the noise conditions of the detectors—aspects that obviously are
not handleable during an observation run. If the CNN is able to deal with this limiting
scenario beforehand, then it does not learn more than what is strictly necessary, avoiding
overoptimistic results or, even, underperformance. Indeed, because of this aspect, we can
transparently conclude that our CNN per se is more sensitive to stocastically detectint GW
signals when SNR ≥ 21.8 for H1 data and when SNR ≥ 26.80 for L1 data.

Continuing with our analysis, Table 3 shows a summary of several metrics that we
previously defined in Table 2—again, these metrics were computed by counting the entire
mount of 100 Ntest predictions given that we repeated 10 times a 10-fold CV experiment.
From the table, we have that, working with L1 data, we observe that recall has a mean
value telling us that 76.8% of noise alone samples are retrieved. Given these results, if we
want to have chances of recovering most noise alone samples of a segment of data on our
side in order to, for instance, increase in the short-term our catalogues of glitches or to
fully analyze strain data in real-time observation to filter them, this CNN could be not the
best option because its sensitivity is not great. The mean recall is slightly better with H1
data, 85.8%, but not as great as to considerably improve the sensitivity. Notice, on the other
hand, that mean precision and mean fall-out show that our CNN is quite precise classifying
noise alone samples, because once it labels a set of samples as that, for L1 data we have
that 93.2% of them are actually noise alone, and just 8.69% are GW signals. Even for H1
data the results are better, because mean precision is 95.2% and a mean fall-out is 5.34%. At
the end, this disparity between recall and precision is summarized in the F1 score. For H1
data, the F1 score is 0.903 and, for L1 data, is 0.842. In both cases, the mean F1 score reaches
a moderate performance with numerical values lying between values of mean recall and
mean precision. Besides, although fall-out plus precision is theoretically exactly 1, here
we are considering means among several stochastic realizations of theses metrics; then,
summation slightly differs in 0.0189 for L1 data, and 0.00540 for H1 data.

Because the F1 score has the limitation of leaving out true negatives samples, it is
recomendable to report it together with G mean1. Table 3 also shows the values for the
mean of this metric, namely 0.213 for H1 data and 0.256 for L1 data. These two values are
low, because, by definition, G mean1 is mainly susceptible to the sensitivity of the CNN.
In fact, these results elucidate a useful feature of G mean1, namely that it is works as a
warning for avoiding overoptimistic performance reports based solely on accuracy. Notice
that, on the other hand, that mean of G mean1 shows a slightly better performance for L1
than for H1 data; showing that G mean1 also contributes to avoiding excesive pessimistic
interpretations when accuracy, or other metrics, reach lower relative results (for a N-labels
classification, imbalanced datasets, and N > 2, accuracy has a serious risk to become a
pessimistic metric, and working with single-label focus metrics would be impractical when
N is significantly larger, because we would need N metrics to detail the model performance.
Hence, the need of drawn on metrics as F1 score and G mean1).

Table 3 shows the dispersion of metrics. For data from a given detector (H1 or L1),
we observe that standard deviations of accuracy, precision, recall, and fall-out are of the
same order of magnitude. This is expected because these metrics were computed directly
from the same resampling of data predictions. Besides, for H1 or L1 data, we have that the
standard deviation of the F1 score is also of the same order of magnitude as other metrics.
However, with G mean1, we observe a slightly smaller dispersion with L1 data than with
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H1 data, which is consistent with the minimal improvement reported in the mean of the
G mean1. In any case, this reported improvement is actually marginal, because all other
metrics report a better performance of our CNN working with data from H1 detector. In
the next subsection, we give more reasons to reach this conclusion.

Table 3. Standard metrics computed from values of confusion matrices shown in Figure 9. We set
our CNN with 32 kernels and 3 stacks with H1 data, and with 16 kernels and 2 stacks with L1 data.
The time resolution is Twin = 0.75 s. Except for the G mean1 reaching moderate results that could
help to avoid over pessimistic (or optimistic) results, accuracy, precision, recall, fall-out, and F1 score
showed that the CNN has a better performance working with H1 data.

Standard Metrics with H1 Data

Metric Mean Min Max SD

Accuracy 0.897 0.888 0.907 0.00564
Precision 0.952 0.941 0.968 0.00852

Recall 0.858 0.844 0.873 0.00894
Fall-out 0.0534 0.0374 0.0647 0.00880
F1 score 0.903 0.894 0.912 0.00509
G mean1 0.213 0.179 0.237 0.0185

Standard Metrics with L1 Data

Metric Mean Min Max SD

Accuracy 0.825 0.780 0.853 0.0198
Precision 0.932 0.905 0.956 0.0161

Recall 0.768 0.724 0.793 0.0197
Fall-out 0.0869 0.0560 0.127 0.0208
F1 score 0.842 0.804 0.866 0.0168
G mean1 0.256 0.211 0.303 0.0282

3.4. ROC Comparative Analyses

As it was mentioned in Section 2.6, all of the performance metrics that are shown in
Table 2 depend on a choosen fixed threshold for assigning a class per image sample. Until
now, previous analyses used a threshold of 0.5 by default; but, for generating ROC curves,
it is necessary to vary this thereshold from 0 to 1 as it was pointed in Equation (18). In
general, ROC curves visually show to what extent our binary CNN classifier, depending
on thresholds, defines the trade-off between recovered noise alone samples and GW events
samples that were wrongly classified as noise alone samples. Moreover, in the context of
ML/DL techniques, ROC curves are used to contrast performances of a model learning
from different datasets, or more widely, to compare performances of different models. As a
case of study, and for going beyond only evaluate our CNN probabilistic classifier, here we
present two ROC comparative analyses: one using H1 data and other using L1 data, where
each one will contrast performances of our CNN with other two classic ML models, namely
Naive Bayes (NB) and Support Vector Machines (SVM). We implemented the NB and
SVM classifiers with the MATLAB Statistics and Machine Learning Toolbox [72]—for
theoretical details, see [63] and/or [22].

The NB and SVM models need vectors as input, then we apply a reshaping operation:
each image sample X i ∈ RNtime×N f req is flattened in a vector xi ∈ RNtime N f req×1 such that all
columns of X i, from the first to the last, are concatenated as a one big single column. For
NB model, we assume that our train set follows a Gaussian distribution, with mean and
variance obtained from to the maximum likelihood estimation (MLE). For the SVM model,
on the other hand, we applied a normalization for each component of xi along all of the
training samples, and we used a linear kernel.

Take in mind that there is not definitive criteria to generate ROC curves under the re-
sampling regime. Subsequently, following the same approach that was taken in Section 3.3
for computing confusion matrices, we considered the whole set of 100 Ntest predictions
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that were made by our 10× 10 = 100 learning-testing process. In practice, this approach
avoids averaging point-by-point and helps to smooth ROC curves through increasing its
number of discrete generative steps. For all ROC curves, we set Twin = 0.75 s for the
strain samples, and for ROC curves describing the performance of our CNN, we used the
same hyperparameter adjustments for stacks and kernels that, in Section 3.2, we found are
the best.

Figure 11 shows the results of our comparative analyses. Notice that, in both panels,
we have that all ROC curves, in general, are quite distant from the 45-degree diagonal
of totally random performance, which is fairly good. Even so, depending on the used
dataset, their have different performances. When the models learn (and test with) H1 data,
their performance are better than with L1 data. Now, if we focus separately on each panel,
we have that, for almost all thresholds, the CNN model has the best performance, NB
model the worst performance, and SVM model is in the middle. However, as it is shown in
zoomed plots, we have that ROC curves in both panels have some peculiarities. In the left
zoomed plot, we observe that our CNN has the best performance only until its ROC curve
reaches ( f all − out, recall) = (0.979, 0.998), because the NB classifier becomes the best and
it remains that way until the end—in fact, the performance of the SVM model had already
been surpassed by the performance of the NB model from the point (0.960, 0.994). From
what happens next, very close to the north-east edge (1, 1), we should not make any strong
conclusion, because we are very close to the totally random performance and, therefore,
the results are mainly perturbations. In the right zoomed plot, we observe that only after
the point (0.923, 0.957) in the ROC space, NB model becomes better that SVM model, and
the CNN classifier always has the best performance.
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Figure 11. ROC curves for the CNNs, a SVM classifier with a linear kernel, and a Gaussian NB classifier. Data from H1
detector (a) and L1 detector (b) were used. For each ROC curve, its optimal operating point (OOP) is also shown. We
set Twin = 0.75 s and same CNN hyperparameter adjustments used in previous studies. The general trend, for almost
all thresholds, is that our CNN has the best performance, followed by the SVM classifier, and finally by the NB classifier.
Zoomed plots show small changes in performances near point (1, 1), even though these do not affect the general trend.

Notice that, on all ROC curves, a specific point have been highlighted. This is called
an "optimal operating point” (OOP) and it corresponds to the particular optimal threshold
(OT) in which a classifier has the best trade-off between the costs of missing noise aline
samples, cost(FN), against the costs of raising false noise aline detections, cost(FP). In the
ROC space, this trade-off is defined by isocost lines of constant expected cost:

costexp = P[1− Recall]cost(FN) + N[Fall-out]cost(FP) , (20)
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where P = TP + FN and N = FP + TN. Assuming, as a first approach, that cost(FN) =
cost(FP) = 0.5, then OOP is just the point lying on the ROC curve that intersects the
45 degree isocost line that is closest to the north-west corner (0, 1) of the ROC plot (If
cost(FN) and cost((FP) were different and/or the dataset were imbalanced with respect
classes C1 and C2, OOP and OT would be near one of its extremes. Subsequently, in that
situation, ROC analysis would be more sensitive to statistical fluctuations, making difficult
to take statisfically significant decisions with respect to the class with much less detections
and/or samples. This situation would require more data for dealing with the imbalance or
alternative analysis as precision-recall curves or cost curves). For each ROC curve, their
OOP, OT, and expected costs, are included in Table 4. Notice from this table that, for the
CNN classifier, OT with H1 data are not closer to the exact fifty-fifty chance value of 0.5
than OT with L1 data, which shows that the default threshold of 0.5 is actually chosen by
convention, and not because it is a limit as the performance of our classifier improves. The
relative difference between OT and 0.5 has nothing to do with performance, but rather
with the skewness of classes and/or cost of misclassifications. We also include the optimal
expected cost that is computed with Equation (20) and define the isocost curve in which
the OOP lies. Notice that smaller values of costcost define isocost curves that are closer to
(0, 1) in the ROC space.

Table 4. Additional metrics that were computed from ROC curves in Figure 11. From the area
under the ROC curve (AUC), we have that, for both datasets, the CNN has the best performance
(the highest AUC value), followed by the SVM with a middle performance, and finally by the NB
classifier with the worst performance. Notice that, for the CNN, better performance does not mean
an optimal threshold that is closer to the default 0.5 value.

Data Model Optimal
Operating Point

Optimal
Threshold

Optimal
costexp

AUC

H1
CNN (0.0654, 0.863) 0.430 0.0505 0.946
SVM (0.108, 0.719) 0.228 0.0972 0.872
NB (0.229, 0.659) 0.379 0.143 0.768

L1
CNN (0.0860, 0.744) 0.472 0.0854 0.897
SVM (0.182, 0.555) 0.418 0.157 0.736
NB (0.153, 0.451) 0.920 0.175 0.681

In general, the relative performance between models can change depending on
whether their ROC curves intersect. Because of this, we would like to have a metric
for summarizing, regardless of thresholds, the performance of a model in a single scalar.
Here, we used the total area under the ROC curve (AUC) [73]; this is a standard metric
that gives the performance of the CNN averaged over all possible trade-offs between TP
predictions and FP predictions. Moreover, we can use this metric to made a final choice
among all models; the best model corrresponds to the highest AUC value. In practice, we
computed this metric by a trapezoidal approximation, and its results are also included
in the Table 4. We have that, for both datasets, AUCNB < AUCSVM < AUCCNN , which
allows us to conclude that, among the three models, the CNN definitely has the best
performance, followed by the SVM classifier, and finally by the NB classifier.

3.5. Shuffling and Output Scoring

Two related analyses were conducted to ensure that the results are statistically sig-
nificant were performed, as mentioned in Section 2.8. The first one was run our CNN
algorithm, including a shuffling of training samples before each training, with the pe-
culiarity of removing links between each sample and its known label. A comparison of
distribution of the mean accuracies along all runs of the 10-fold CV experiment, with and
without shuffling, is shown in Figure 12—remember that each point of the boxplots, i.e., a
i−th mean accuracy or Acci

CV , as was defined Section 3.2, coming from the i−th run of
the whole 10-fold CV. From this plot, we have that shuffling radically affects the results.
Whether we work with data from H1 detector or L1 detector, and if shuffling is present, the
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distribution of mean accuracy moves towards lower values and increases its dispersion.
With H1 data, the mean of mean accuracies decreases from 0.897 to 0.494 and standard
deviation increases from 0.564 o 1.34; and, with L1 data, mean of mean accuracies falls
from 0.825 to 0.489 and standard deviation grows from 1.98 to 2.73.
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Figure 12. Shuffling and paired-sample t-test for elucidating if predictions of our CNN are statistically
significant. Boxplots for the mean accuracies resulting of each experiment of the 10-fold CV, are
shown. By shuffling, we mean that our training set is shuffled before each training, such that links
between each sample and its known class is broken. Besides, the p-values of the mentioned paired-
sample t-test are included, showing that predictions of the CNN are significantly different from a
totally random process—with a significance level of 5%.

Moreover, whether shuffling is present or not, the boxplot of mean accuracies has
positive or negative skewness, respectively. This makes sense, because, without shuffling,
the higher mean accuracies, the greater the effort of the CNN for reaching performances
with those accuracies; there is not free lunch and we expect to have a higher concentration
of samples below the median than above the median and, therefore, a positive skewness.
On the other hand, if we have shuffling, we know from the basics of probability that adding
new points, one-by-one, to the mean accuracy distribution, is actually a stochastically
symmetric process around 0.5—the theoretical limit if we have an infinite number of
points in the distribution, i.e., an infinite number of runs of the k-fold CV experiment.
Subsequently, given that, here, we obtained medians that were slightly below of 0.5 (0.499
with H1 data and 0.492 with L1 data), it is expected that there is a higher concentration of
points above medians and, then, boxplots with negative skewness; because this works as a
balance to maintain the symmetry of stochastic occurrences (i.e., boxplot points) around
the 0.5 mean accuracy value.

Descriptive statistics is a reasonable analysis, but, to make a formal conclusion regard-
ing the significance of our results, we performed a sample-paired t-test. Therefore, we first
define the mean accuracy datasets

D =
{

Acci
CV
}10

i=1
, Dshu f f =

{
Acci

CV,shu f f
i

}10

i=1
, (21)

without and with shuffling, respectively. Subsequently, with the means of each dataset at
hand, µ and µshu f f , the task is test the null hypothesis H0 : µ− µshu f f = 0 by computing
the p−value, which is defined as:

p =
µ− µshu f f

σ/
√

ND
. (22)

Subsequently, assuming a significance level α = 0.05 (a standard similarity threshold
between D and Dshu f f ), we have that: i) if p > α = 0.05, then we accept H0, or ii) if
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p < α = 0.05, then we reject H0. The results for p−values are shown in Figure 12, namely
2.7482× 10−14 with H1 data and 5.6119× 10−10 with L1 data. These values are much less
than α = 0.05; hence, we reject null hypothesis and conclude that, for a significance level of
5% (or confidence level of 95%), distribution D is significantly different from Dshu f f . This
is actually a quite good result.

As final analysis, we focus on output scoring of the CNNs. Our CNNs output scores
that are probabilities generated by the softmax layer, as explained in Section 2.5. After
the training, these probabilities are defined by our classes, c1 (noise alone) and c2 (noise
plus GW), conditioned by model parameters within vector θ once they have already be
learned; namely, yj(θ) = P(cj|θ) (with j = 1, 2) for each input image sample. Histograms
describing the distribution of these probabilities, considering all our 100 Ntest predictions,
are included in Figure 13—all of the histograms were made using 28 same-length bins.
Here, we have important results.

Firstly, in both panels of Figure 13, we have that the distribution for y1 and distribution
for y2 are multimodal, and each one has three different modes or maximums. In addition,
we observe that both of the distributions are asymmetric. Given a multimodal distribution,
there are not a univocal definition of its center; it can be its mean, its median, its center of
probability mass, among others. Here, we decided to define the center of distribution for
as the optimal threshold (OT), because this metric is directly related to our decision criteria
for assigning a class to the output score. The closer to the OT a probabilistic occurence is
located, the greater uncertainty for taking a decision about what class a CNN actually is
predicting with that probability. The OT values were already computed and presented in
Table 4, and we included them in panels of Figure 13 as dashed lines.
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Figure 13. Histogram of CNN output probabilistic scores, y1 and y2, working with data from H1 detector (a) and from L1
detector (b). As it can be observed from the skewness towards edge bins, the CNNs are more optimistic predicting GW
samples than predicting noise alone samples. Besides, with H1 data, there is less uncertainty than with L1 data, because,
with L1 data, there is more population of occurrences in middle bins. Here, we counted all 100 Ntest predictions.

For y1 probability, we have that, in the left-hand side of OT, there is a low concentration
of occurrences until before left edge bin, [0, 0.0360], having the greatest mode of the whole
distribution; this edge bin has 0.31 of all occurrences counted along all bins if we work with
H1 data, and 0.21 of all occurrences with L1 data. In contrast, in the right-hand side of OT,
we have more dispersed occurrences around the two remaining modes—with H1 data, one
of these reimaining modes is located at edge right bin ]0.9720, 1.0080], and with L1 data,
no mode is located at edge right bin. The distribution of y2 is similar to that of y1, except
now it is inverted along horizontal axis, then the highest mode is at the right edge bin, two
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remaining modes at the left-hand side of OT, among others. For y2, the fraction of counted
occurrences in right edge bin is also the same, 0.31 with H1 data and 0.21 with L1 data.

The above results actually mean that, given our datasets, our CNNs are more opti-
mistic predicting GW samples than predicting noise alone samples or, equivantly, more
pessimistic predicting noise alone samples than predicting GW events. Hence, even though
our input datasets are exactly class-balanced, predictive behavior of our CNNs is highly
class dependent. Under a frequentist approach, the asymmetric shape of distributions for
y1 and y2 is the statistical reason why the CNNs have a high precision and a not negligible
false negative rate or, said more simply, why the CNNs are more "conservative” classifying
samples as noise alone, than classifying as GW events—and this is coherent with that we
interpreted from confusion matrices shown in Figure 9.

It is also important to notice how, depending on data, the distribution of occurrences,
either for y1 or y2, change. Remember that, from previous ROC comparative analyses, we
found that working with H1 data reaches a better performance than working with L1 data
and, here, we also observed this improvement from another point of view. Because of the
more uncertainty that our CNNs have for predicting a specific class, occurrences are more
concentrated (i.e., skewed) towards OT. Even if our network was not learn anything, e.g.,
because of a shuffling, as we previously applied, then we would have that all probabilities
are distributed as a Gaussian centered at the default threshold, 0.5, i.e., a totally random
performance—although it is not explicitly included here, we checked this random values
with our code and visualizations.

4. Conclusions

In this work, we applied CNN algorithms for the detection of GW signals from CBCs,
through a binary classication with samples of non-Gaussian noise only and samples of
non-Gaussian noise plus GW injections. Being a crucial part of the data pre-processing,
we applied a Morlet wavelet transform, to convert our time series vectors (i.e., strain
data) in time-frequency matrices (i.e., image data). Additionally, the resulting images
were automatically decoded in the convolutional stacks of our CNNs. Besides, images
in time-frequency representation were reduced in such a way that all of our CNNs were
easily run in a single local CPU, reaching good performance results.

The significant novel contribution of our work is adopting a resampling white-box
approach, being motivated by the need to advance towards a statistically informed under-
standing of uncertainties that are involved in CNNs. Moreover, as a manner to reproduce
a more realistic experimental setting for testing our CNN algorithms, we draw on single-
interferometer data from LIGO S6 run, considering raw strain data with noise and hardware
injections of GW signals solely; that is to say, we removed the instrumental freedom of
generating distributions of simulated GW signals as intensely and/or frequently as one
would want.

Because of introducing stochasticity by repeated 10-fold CV experiments, almost all of
the tasks were more complex than in a simple deterministic fashion, but it also forced us to
acquire useful tools to overcome too much optimistic or too much pessimistic evaluations
of CNN algorithms. Hyperparameter adjustments required careful interpretations of mean
accuracy distributions. We tested several CNN architectures and found two that achieve
optimal peformances, one with 3 stacks and 32 kernels for data from H1 detector, and other
with 2 stacks and 16 kernels for data from L1 detector, and in both cases with a resolution
Twin = 0.75 s. Besides, we found that stochasticity introduction by mini-batch SGD in
accuracies is smoothed by the resampling, which is achieved by reducing the perturbations
in a factor of 3.6. This result serves as recommendation for future works to run CNNs in
the resampling regime.

From analyses of confusion matrices and standard metrics, we found that whether
working with H1 data or L1 data, CNN algorithms are quite precise to detect noise samples,
but are not sensitive enough to recover GW signals. These results mean that, in the context
of their two-label predictions, CNN algorithms are better suitable for noise sample detection
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than the generation of GW triggers—the results that can serve as motivation to explore
alternative strategies in which CNNs cab be used as complementary pipelines for noise
detection and be systematically compared with current noise reduction techniques used
in LIGO pipelines. However, these conclusions regarding noise detection are not totally
definitive, because if we considering only GW events of SNR ≥ 21.8 working with H1 data,
and SNR ≥ 26.8 working with L1 data, our CNN algorithms actually could be considered
as a tentative algorithm for GW detection. Here, we stress the label tentative, because the
mentioned conditions for SNR values actually depend on the nature of initial datasets
that are inputted by the CNNs that, in our case, are still class-balanced. At this point, it is
evident that more research is necessary to begin dealing with arbitrarily class-imbalanced
data.

With ROC curves, we also compared the CNNs with other two classic ML models, NB
and SVM, reaching that CNNs have much better performances than the mentioned classic
ML models—a result that is consistent with what has been reported in recent years in most
of the works of DL applied to GW detection. From ROC analyses, we also found optimal
thresholds, which are very useful parameters in establishing a statistical decision criterion
for the classification, namely 0.430 for H1 data and 0.472 for L1 data.

In order to elucidate whether our predictions are statistically significant, we performed
a paired-sample t-test, obtaining that the performace of CNN algorithms is significantly
different to that of a totally random classifier, with a confidence level of 95%. Finally,
thank to our white-box approach, we found that probabilistic scores are asymmetrically
distributed, implying that the predictive behavior of the CNNs is highly class dependent.
Here, we concluded that the discrepancy between precision and sensitiviy of the CNNs
can be statistically explained by the nature of the score distributions, which, in turn, come
from mathematical formulation of the softmax activation function that we included as
penultimate layer in the classification stage of the CNNs. This conclusion implies that
softmax layer works not only as tool to generate probabilistic scores useful for the binary
classification, but also to measure the uncertainties of the CNNs given the datasets.

We presented a detailed cross-disciplinary exploration to seriously deal with the un-
certainties of CNN algorithms. In particular, we show that, for achieving this goal, it is
fundamental to have clear statistical information regarding the advantages and disadvan-
tages of CNN algorithms. In general, we highly recommend that future works focused
on testing DL algorithms in GW analysis should focus on the problem of how to establish
more realistic experimental settings in their metodologies, and how to deal with difficulties
that arise from these settings, paying greater attention to uncertainties. At the end, this is
one of the main pathways to claim that DL techniques are real alternatives to standard GW
detection algorithms.
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Abbreviations
In this paper, we use the following abbreviations:

ANN Artificial neural network
ASD Amplitude spectral density
AUC Area under the ROC curve
BBH Binary black hole
BNS Binary neutron star
CBC Compact binary coalescence
CCSNe Core-collapse supernovae
CNN Convolutional neural network
CV Cross-validation
DFT Discrete Fourier transform
DL Deep learning
FN False negative (s)
FP False positive (s)
GPS Global Positioning System
GW Gravitational wave
GWOSC Gravitational Wave Open Science Center
LIGO Laser Interferometer Gravitational-Wave Observatory
MF Matched filter
ML Machine learning
NB Naive Bayes
NPV Negative predictive value
OOP Optimal operating point
OT Optimal threshold
PSD Power spectral density
ReLU Rectified linear unit
ROC Receiving Operating Characteristic
SGD Stochastic gradient descent
SNR Signal-to-noise ratio
SVM Support vector machines
TN True negative (s)
TP True positive (s)
WT Wavelet transform
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