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Abstract: Video scene graph generation (ViDSGG), the creation of video scene graphs that helps in
deeper and better visual scene understanding, is a challenging task. Segment-based and sliding-
window based methods have been proposed to perform this task. However, they all have certain
limitations. This study proposes a novel deep neural network model called VSGG-Net for video
scene graph generation. The model uses a sliding window scheme to detect object tracklets of various
lengths throughout the entire video. In particular, the proposed model presents a new tracklet pair
proposal method that evaluates the relatedness of object tracklet pairs using a pretrained neural
network and statistical information. To effectively utilize the spatio-temporal context, low-level
visual context reasoning is performed using a spatio-temporal context graph and a graph neural
network as well as high-level semantic context reasoning. To improve the detection performance
for sparse relationships, the proposed model applies a class weighting technique that adjusts the
weight of sparse relationships to a higher level. This study demonstrates the positive effect and
high performance of the proposed model through experiments using the benchmark dataset VidOR
and VidVRD.

Keywords: video scene graph; visual relationship detection; tracklet pair proposal; spatio-temporal
context reasoning; graph neural network

1. Introduction

Scene graphs are a graphical data structure in which objects appearing in a scene are
represented by nodes and relationships between objects are represented by edges. These
graphs are suitable representations for describing the scenes of an image or video. In
various fields, such as visual question answering, semantic image retrieval, and image
generation, scene graphs have proved to be a useful tool for deeper and better visual scene
understanding [1]. Video scene graph generation (VidSGG) is the creation of multiple
scene graphs that represent all objects in a video and the relationships between them. This
task requires video relation detection (VidVRD) to find all the object tracklets in the video
and the relationships between them, as shown in Figure 1. VidSGG is technically more
challenging than generating a scene graph from a static image (ImgSGG) for two reasons [2].
The first reason is that spatio-temporal localization is needed instead of simple spatial
localization for objects in VidSGG. In other words, it is necessary to find three-dimensional
bounding boxes of various objects included in the video, while following the temporal axis.
The second reason is that the relationships vary within the video. Unlike a single image,
relationships of the same object pair may change over time and new relationships may also
appear, making it difficult to predict relationships.

The design of a VidSGG model includes resolving a number of difficult issues. The
first issue is how to detect object tracklets, which are three-dimensional bounding boxes of
each object whose position and size change over time in a video. Previous studies [3–7]
attempted a segment-based approach as shown in Figure 1. To avoid the complexity of
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finding object tracklets of different sizes and lengths in a long video and the relationship
between them at once, the segment-based approach first divides the video into segments
of constant length. The object tracklets and relationships between them in each segment
were first searched, and then the same relationships detected in neighboring segments
were connected to each other to integrate all of them into one relationship. For example, by
integrating <adult-hold-child>, which is the same relationship independently detected in
segments (c) and (d) in Figure 1, the relationship <adult-hold-child> is extended over the
range of segments (c) to (d).
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However, this segment-based approach has several limitations. Long-term relation-
ships spanning multiple segments are repeatedly detected across such segments. For
example, as shown in the upper part of Figure 1, relationships, such as <adult-hold-child>
and <child-in_front_of-adult> must be duplicated in segments (c) and (d), requiring ex-
cessive computational cost. Moreover, if a relationship detection error or a relationship
association error occurs in any of the intermediate segments in the relationship association
process, when the relationships detected by dividing each segment are recombined, it is
difficult to determine long-term relationships. For example, as shown in the upper part of
Figure 1, failure to detect the relationship <adult-in_front_of-adult> in segment (b) prevents
a long-lasting <adult-in_front_of-adult> from segments (a) to (b) from being discovered.
Meanwhile, [8,9] presented a sliding window-based approach to solve the problems of
the segment-based approach. This method detects object tracklets of different lengths and
relationships between them by moving windows of various lengths on the video. Such
a sliding window method is highly effective in detecting relatively long relationships, as
shown in the lower part of Figure 1.

The second design issue of the VidSGG model is determining a tracklet pair proposal
method that can effectively screen only those pairs that will actually have at least one
relationship among the large number of object tracklet pairs detected in the video. Com-
pared to the number of object pairs created in one image, the number of object tracklet
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pairs that can be created in a video consisting of a sequence of about 50 to 100 frames is
much larger. Therefore, an effective tracklet pair proposal method is essential for efficient
VidSGG. Such a method can have a greater impact on the efficiency of VidSGG for a sliding
window-based model that generates multiple object tracklet pairs over the entire video
range compared to segment-based models that generate a small number of object tracklet
pairs within each segment. The object tracklets connected by dotted lines at the bottom
of Figure 1 represent the number of object tracklet pairs that can be created by a sliding
window-based model. [9] proposed a tracklet pair proposal method that evaluated tracklet
pairs using spatial context and temporal context graphs. However, this method has a
weakness in determining the relatedness of a corresponding tracklet pair only based on
the temporal intersection over union (tIoU) and the spatial intersection over union (sIoU)
between two object tracklets. For example, at the location of segment (d) in Figure 1, the
relationship <adult-towards-adult> should be detected. However, as the distance between
the two detected object tracklets is relatively long and do not spatially overlap each other,
the model proposed by [9] assumes that the object tracklet pair has no relationship.

Meanwhile, the third design issue of the VidSGG model is the need to refine the
features of the object and relationship nodes constituting the scene graph. In order to
generate accurate video scene graphs, it is very important to extract and utilize various
contexts about object tracklet pairs from a video. Therefore, it is necessary to determine
which context is to be extracted and reflected in the object and relationship nodes. Owing
to the nature of videos, it is important to utilize temporal as well as spatial context between
object tracklets in order to create a video scene graph. In Figure 1 for example, the
two relationships can be determined more accurately if the temporal context that the
<adult-hold-child> relationship always appears in the video before the <adult-lift-child>
relationship can be used. In previous studies, a fully-connected spatio-temporal graph
was used to extract the spatio-temporal context between object tracklets; subsequently, the
features of the object node of the graph were refined using this information [5,6]. This
method helped refine the characteristic information of each node in the graph. However,
these studies relied only on low-level visual context reasoning using only visual features of
object tracklet pairs to extract and utilize contexts.

The final design issue of the VidSGG model is the limited classification accuracy of
relationships that appear less frequently in the video. When classifying relationships using
a machine learning model, such as a neural network, the classification accuracy tends to
degrade for relationships that appear less often compared to relationships that appear often.
This problem is called the long-tailed relationship distribution problem or relationship
class imbalance problem. It is commonly encountered in VidSGG as well as other machine
learning applications; solutions include over and under sampling, data augmentation, and
class weighting.

To effectively cope with these various design issues, this study proposes a novel deep
neural network model VSGG-Net for VidSGG. In order to overcome the limitations of
the segment-based object tracklet detection method described earlier, the proposed model
applies a sliding window scheme to detect object tracklets of various lengths. In particular,
the proposed model uses a new tracklet pair proposal method that evaluates the relatedness
of object tracklet pairs using a pretrained neural network and statistical information. Low-
level visual context reasoning is performed using a spatio-temporal context graph and a
graph neural network; high-level semantic context reasoning is also performed to effectively
utilize the spatio-temporal context. To overcome the relationship class imbalance problem
and improve the detection performance of sparse relationships, the proposed model applies
a class weighting technique that raises the weight of sparse relationship in the classification
loss function. This paper performs comparative experiments using two benchmark datasets,
VidOR [10] and VidVRD [3], to analyze the effectiveness and performance of the proposed
model, VSGG-Net, and presents the results.

The contributions of this study can be summarized as follows.
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- Important design issues for the VidSGG model are presented, and a novel deep neural
network model, VSGG-Net, is proposed to effectively cope with these issues.

- A new tracklet pair proposal method that evaluates the relatedness of object tracklet
pairs using the pretrained neural network and statistical information is presented.

- The proposed model performs low-level visual context reasoning and high-level
semantic context reasoning using a spatio-temporal context graph and a graph neural
network to obtain rich spatio-temporal context.

- The proposed model applies a class weighting technique that increases the weight
of sparse relationships in the classification loss function to improve the detection
performance for sparse relationships.

- The positive effect and high performance of the proposed model are proven through
the experiments using the benchmark datasets, VidOR and VidVRD.

This study is organized as follows. Following the introduction in Section 1, Section 2
examines related studies, and Section 3 describes the design of the proposed VSGG-Net for
video scene graph generation in detail. Section 4 introduces the model implementation
and the experiments. Finally, Section 5 summarizes the conclusions.

2. Related Work
2.1. Visual Scene Graph Generation

Visual scene graph generation is a concept that has been studied for a long time to
try to understand scenes by analyzing the objects contained in a single image and the
relationships between them. Earlier computer vision tasks, such as object recognition,
segmentation, and captioning have focused on coarser image understanding. Recently
however, new tasks dealing with a finer level of image understanding have been actively
introduced. Visual scene graph generation (SGG) is one such task; it expresses a single
visual scene in a graphical structure [1]. A scene graph can convey detailed semantics of a
video scene by explicitly modeling objects, their attributes, and relationships between them.
In general, one of the most important parts in the SGG process is to refine the features of
the graph using various contexts of objects.

The deep relational network proposed in [11] analyzed the spatial and statistical
dependencies between two objects to determine their relationship. The spatial dependency
between two objects was estimated by their proximity and relative spatial arrangement.
Conversely, statistical dependency refers to the possibility of a specific relationship between
two objects that can be statistically estimated. A bipartite graph with node GRU (Gated
Recurrent Unit) and edge GRUs was constructed in [12] to obtain context between objects;
an iterative message-passing scheme that transmitted messages between these GRU units
was then presented.

In [13], a multi-level scene description network (MSDN) to refine features at different
semantic levels, all while performing three tasks at the same time, was proposed consid-
ering the strong association between the three tasks: SGG, region captioning, and object
detection. MSDN linked the object feature to the phrase feature, and the phrase feature to
the caption feature, respectively, by exchanging information between these three semantic
levels to update the features of each level at the same time. In [14], an attentional graph
convolutional network (GCN) that allowed context to propagate across the graph along
the edges of the graph was proposed. Using the attention of each edge, propagation
was controlled to prevent information with little correlation between the two nodes from
flowing to the edges. Conversely, MotifNet [15] broke away from the traditional paradigm
of propagating information in both directions between objects and relationships. The
model, instead, enabled the global contexts of all previous stages to facilitate prediction of
subsequent stages by sequentially staging the bounding box prediction, object classification,
and relationship classification.
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2.2. Video Visual Relation Detection

Video scene graphs can be easily created using <subject, relationship, object> triplets,
which are the results of video relationship detection. Hence, most of the existing studies
have focused on video relation detection (VidVRD) rather than video scene graph gener-
ation (VidSGG). VidVRD is a task that detects object tracklets and relationships between
them in a video composed of a sequence of multiple frames, not a single image. In [3], a
new VidVRD task and a benchmark dataset, ImageNet-VidVRD v1.0, were introduced for
the first time. [3] also divided the video into fixed-length segments, detected relationships
between object tracklets in each segment, and presented a baseline model combining the
same relationships detected in each segment together.

In VidVRD and VidSGG, it is important to find object tracklets having various temporal
and spatial sizes in the video. Existing models in [4–7] divided the video into fixed-
length segments and detected the object tracklets and relationships between them, like
the baseline model in [3]. However, as described earlier, this segment-based approach has
problems such as redundant detection of the same relationship in multiple segments and
difficulty in finding long-term relationships when an error occurs in relationship detection
or relationship association for each segment. In [5,7], additional improved relationship
association methods were proposed to complement the limitations of this segment-based
approach. In the model of [7], the relationship association method using the Siamese neural
network was presented. In the model of [7], the multiple hypothesis association (MHA)
method was presented. Meanwhile, in [8,9], unlike a segment-based approach that divides
video into segments, a sliding window scheme was attempted. The model of [8] detects
object tracklets over the entire video range through object detection and object tracking.
It then determines the relationships between these pairs. In addition, a sliding window
was used in the post-processing process to accurately readjust the length of the detected
relationships. By contrast, the model in [9] applied a sliding window technique to the
process of detecting object tracklets in video before determining relationships. In order
to suppress redundant detection of the same object tracklets, track-level non-maximum
suppression (NMS) was applied in the model of [8], and object-level NMS was used in the
model of [9]. This sliding window technique resolves the limitation of the segment-based
approach, but causes another problem by increasing the number of object tracklet pairs
to determine a relationship due to the large number of object tracklets found in the entire
video range. Therefore, a tracklet pair proposal for sliding window-based models was
required, which only selects tracklet pairs that actually have a relationship. In [9], a tracklet
pair proposal method, which extracts spatio-temporal context between object tracklets
using spatial GCN and temporal GCN and evaluates each object tracklet pair using this
information, was presented. Different from [9], our proposed model uses a novel tracklet
pair proposal method where the relatedness of a tracklet pair is measured based upon both
the pretrained neural network and the statistical information.

To accurately determine the relationship type between two object tracklets in a video,
it is important to utilize various features and contexts about the two object tracklets. In the
model of [4], the spatial–temporal and language context features of the object tracklets were
used in addition to the visual features mainly used in previous studies. The spatio-temporal
feature was composed of the relative location of two object tracklets and the motion of
each object tracklet. The language context feature was created as the concatenation of
subject and object category embedding vectors. Meanwhile, in the models of [5,6], a fully-
connected spatio-temporal graph was used to extract the spatio-temporal contexts between
object tracklets. The features of the object node of the graph were refined based on the
context. Whereas the model of [6] built a spatio-temporal graph only with object tracklets
within the same segment, the model of [5] constructed a spatio-temporal graph including
object tracklets within the same segment as well as in adjacent segments. In addition, the
model in [6] used the conditional random field (CRF), a probabilistic graphical model, and
the model in [6] used the GCN, a neural network for context reasoning. However, both
models only performed low-level visual context reasoning using the visual features of
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object tracklets. They did not perform the high-level semantic reasoning proposed in this
study. Different from models [5,6], the proposed model VSGG-Net performs both low-level
visual context reasoning and high-level semantic context reasoning based on two-level
spatio-temporal context graphs to obtain rich spatio-temporal context features.

Like in ImgSGG, long-tailed class distribution or class imbalance problems occur
in VidVRD and VidSGG. In other words, classification accuracy is low for the objects or
relationships of a class that appear less frequently in video, compared to the objects or
relationships of classes that appear frequently. In [8], extra training data for sparse object
classes were obtained from the Microsoft COCO dataset [16] to overcome the object class
imbalance problem, and the conventional softmax loss was replaced with the focal loss.
Unlike [8], our proposed model uses a class weighting method to solve the relationship
class imbalance problem.

3. VSGG-Net: The Video Scene Graph Generation Model
3.1. Model Overview

This paper proposes a new deep neural network model, VSGG-Net, for video scene
graph generation (VidSGG). VSGG-Net includes: object tracklet detection to find spatio-
temporal regions of objects of various sizes over the entire video range using a sliding
window scheme; a tracklet pair proposal to select only those with high relatedness among
object tracklet pairs appearing in the video; hierarchical context reasoning based on spatio-
temporal graph neural network to extract rich context between two objects; and object
and relationship classifications applying class weighting technique to solve the long-tailed
relationship distribution problem. The structure of the proposed model is shown in Figure 2.
The proposed model can be viewed as a single pipeline consisting of four stages including
object tracklet detection (OTD), tracklet pair proposal (TPP), context reasoning (CR), and
object and relation classification (ORC).
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In the OTD stage of the proposed model, the video is not divided into segments
of a fixed length. Instead, windows of different sizes are moved on the video using a
sliding-window technique; object tracklets of different duration are detected over the entire
video range. A complete graph, Gc, was created by connecting the nodes representing these
object tracklets. Gc is a graph created by assuming that at least one binary relationship
exists between all pairs of objects in a video. However, as the number of objects appearing
in the video, n, increases, nC2 = n(n − 1)/2, which is the number of all possible object
pairs that can be related, increases exponentially. Therefore, a tracklet proposal that selects
only tracklet pairs of objects most likely to have a relationship is important for an efficient
VidSGG. In the TPP stage of the proposed model, the relatedness of each object tracklet
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pair is evaluated by combining the pretrained neural net scoring and statistical scoring
based on the data set. Then, only pairs of object tracklets whose relatedness is higher than a
certain level are selected to generate a sparse graph Gs. In general, it is important to utilize
various spatial and temporal contexts to determine a specific relationship between two
objects appearing in a video. In the CR stage of the proposed model, a spatio-temporal
contextualized graph, G∗ST , containing abundant spatial and temporal contexts between
object tracklets is derived through a hierarchical reasoning process using a spatio-temporal
graph neural network. Finally, the feature representations of each object node and each
relationship node of the spatio-temporal contextualized graph are used in the ORC stage
of the proposed model. The final video scene graph GSG is generated by determining the
object class and relationship type corresponding to the node. The notations used in this
paper are summarized in Table 1.

Table 1. Notation summary.

Notation Description

Gc Complete graph
Gs Sparse graph

GSG Context graph
tIoU Temporal intersection over union

o Object
p Object class distribution
M Co-occurrence matrix
αij Attention on the edge connecting two object nodes oi and oj
Ci Center coordinate of the bounding box of an object oi
Si Size of the bounding box of an object oi
Z Information received from neighboring nodes

3.2. Object Tracklet Detection and Pair Proposal

In the OTD stage of the proposed model, VSGG-Net, an object detector, is used to
find two-dimensional (2D) spatial regions of objects in each video frame. Object tracklets,
which are the spatio-temporal regions, in which each object appears in the video, must be
detected based on these. A sliding window scheme [9] that moves multiple windows of
different sizes across the entire video range is used to effectively detect object tracklets of
various lengths instead of dividing the video into segments of a fixed size. In the proposed
model, a Faster-RCNN [17] with ResNet101 [18] backbone is used as an object detector for
object detection frame by frame. This object detector is used after training with datasets of
MS-COCO [16] and ILSVRC2016 [19]. After object detection is performed for each frame,
the same object is connected between neighboring frames over the entire range of the video
to find object tracklets. The proposed model uses the Deep Sort [20] algorithm for such
object tracking. After the basic object tracklets are detected over the entire range of the
video, a sliding window technique is applied to find object tracklets of various lengths
based on these basic object tracklets. In order to find object tracklets of various lengths,
windows of various sizes are set and used starting with a minimum size of 30 frames. After
detecting object tracklets of various lengths over the entire range of the video using the
sliding window technique, a complete graph, Gc, is generated, assuming that at least one
relationship exists between all pairs of detected object tracklets. Each node of this graph
Gc represents one object tracklet and each edge represents the relationship between the
two objects.

As the number n of object tracklets detected in the entire video range, not in each
segment range, is very large, nC2 = n(n − 1)/2, which is the number of all possible object
tracklet pairs, places a heavy burden on the overall VidSGG task. Therefore, a task is
performed in the object tracklet pair proposal (TPP) stage of the proposed model to select
only pairs of object tracks having a high relationship after evaluating the relatedness of each
pair of object tracklets. The relatedness scoring for each pair of object tracklets is performed
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by combining the trained neural network-based evaluation and the dataset-based statistical
scoring. Through this process, edges with low relatedness are excluded in the TPP stage
from the complete graph Gc obtained in the OTD stage, and a sparse graph Gs that is more
compact is generated. The mechanism of object tracklet pair proposal of the proposed
model, VSGG-Net, is schematically shown in Figure 3.
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Prior to evaluating the relationship between each object pair, temporal filtering (TF)
is performed using tIoU, which represents the temporal overlapping between two ob-
ject tracklets. In the video, object tracklet pairs that do not overlap at all in time, such
as tIoU

(
oi, oj

)
= 0, are excluded from the set of candidate object tracklet pairs on the

assumption that they cannot have any relationship. For object tracklet pairs that have
passed temporal filtering, the relatedness between the two object tracklet pairs is evaluated.
To evaluate the relatedness between object tracks, neural net scoring and statistical scoring
are used together, as shown in Figure 3. Neural net scoring uses a neural network that
determines the suitability of the object tracklet pair based on the class distribution of each
of the two object tracklets. For example, when there are three classes of objects: “cat”,
“plate”, and “vegetable”, the suitability of the pair (“vegetable”, “plate”) is determined to
be higher than that of (“cat”, “plate”) by the pretrained neural network. The neural network
used for relatedness scoring is composed of two fully-connected layers, and is used after
pretraining with the VidOR training dataset. If at least one relationship exists between two
object tracklets on the scene graph of the VidOR training dataset, the corresponding object
tracklet pair is regarded as a positive example for neural network training. Otherwise, it is
regarded as a negative example. Therefore, the relatedness score for the object tracklet pair(
oi, oj

)
using a neural network is calculated as Equation (1).

scoreNN
(
oi, oj

)
=

[
FC1(pi) · FC2

(
pj
)]

, i 6= j (1)

In Equation (1), pk represents a class distribution map of each object forming an object
tracklet pair and FCm(pk) describes a fully connected layer.

Another method of evaluating the relatedness between two object tracklets is statistical
scoring. Each scene graph included in the VidOR training dataset can be viewed as a set
of facts in the form of a triplet, such as <subject, relationship, object>. Statistical scoring
evaluates the relationship between two objects according to the frequency indicating how
often two objects co-occur as a subject and an object in this set of facts. For statistical scoring,
each fact is divided into (subject, relation_predicate), and (relation_predicate, object) to
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create two co-occurrence matrices, Msp and Mpo, as shown in Figure 3. The matrix Mso,
containing the relational scores for all possible (subject, object) pairs, is calculated by
multiplying these two matrices. By normalizing the scores in Mso for each object tracklet
pair

(
oi, oj

)
, the statistical relatedness score, scoreST

(
oi, oj

)
is obtained.

For each object tracklet pair,
(
oi, oj

)
, the final relatedness score, scoreMIX

(
oi, oj

)
,

is calculated by combining the neural net score scoreNN
(
oi, oj

)
and the statistical score

scoreST
(
oi, oj

)
, as shown in Equation (2).

scoreMIX
(
oi, oj

)
= (1− λ)·scoreNN

(
oi, oj

)
+ λ·scoreST

(
oi, oj

)
(2)

λ in Equation (2) means the weight can adjust the relative reflection ratio of neural
net score scoreNN

(
oi, oj

)
and the statistical score scoreST

(
oi, oj

)
according to the reliability

of the two scoring methods. For the VidOR dataset, λ is set to 0.7 in the proposed model.
Only object tracklet pairs with a total relatedness score scoreMIX

(
oi, oj

)
higher than the

threshold value (threshold) of 0.7 or higher than score
(
oj, oj

)
(≥ 0.7) are proposed in this

stage. In the TPP stage, all edges connecting two object tracklet nodes with no relationship
or very low relationship are excluded from the complete graph Gc to generate the sparse
graph Gs.

3.3. Context Reasoning and Classification

In order to effectively discriminate between various objects appearing in the video
and their relationship, temporal contexts are needed in addition to various spatial contexts.
In the CR stage of VSGG-Net, a CR based on a spatio-temporal graph neural network is
applied to the sparse graph Gs generated by TPP to generate a context graph G∗ST containing
rich spatio-temporal contexts. Figure 4 shows the CR process of the proposed model.
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As shown in Figure 4, the context reasoning process of VSGG-Net is largely composed
of the following stages: spatio-temporal attention, visual context reasoning, and semantic
context reasoning. Visual context reasoning uses the visual information of each object
tracklet, whereas semantic context reasoning uses the class distribution value of each object
tracklet, which is the result of visual context reasoning. Therefore, the CR process of the
proposed model is a hierarchical reasoning process consisting of lower-level visual context
reasoning and higher-level semantic context reasoning. In addition, the CR of each level
is performed iteratively using pre-calculated spatial attention αS

ij, temporal attention αT
ij ,

and the GCN [21]. The GCN repeats the process of updating to include sufficient spatio-
temporal contexts in each node by reflecting information of neighboring nodes to each
node based on the temporal attention and the spatial attention. In the proposed model, a
context graph is first constructed to perform CR. The context graph has two types of nodes,
an object node, and a relationship node. It also has three types of edges that connect the
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pairs of (subject node, relationship node), (relationship node, object node), and (subject
node, object node), respectively. Unlike the existing GCN [21], the spatio-temporal GCN of
the proposed model not only uses the spatial attention αS

ij and the temporal attention αT
ij ,

but also enables exchanging information between the node pairs (subject node, relationship
node) and (relationship node, object node) as well as (subject node, object node) through
the three types of edges.

The detailed CR process of each level is as follows. First, each subject and object node
of the initial visual context graph for visual context reasoning are filled with I3D visual
features of the object tracklets and CNN visual features of frames belonging to the tracklet
range. Each relationship node is filled with I3D visual features of each subject tracklet
and object tracklet that have corresponding relationship and relative features [1] of the
(subject, object) pair. Equation (3) represents the three types of relative features used in the
proposed model. In Equation (3), Ci

s and Ci
o denote the center coordinates of the bounding

box of the subject tracklet and the object tracklet, respectively; Si
s and Si

o denote the size of
the bounding box of the subject tracklet and the object tracklet, respectively.

∆C =
(

C1
s − C1

o , . . . , CL
s − CL

o

)
,∆C =

(
C1

s − C1
o , . . . , CL

s − CL
o

)
,∆M =

(
∆C2 − ∆C1, . . . , ∆CL − ∆CL−1

)
(3)

When the initial visual context graph is created, the spatial attention αS
ij and the

temporal attention αT
ij to be applied to each edge connecting two object nodes are calculated.

As two object tracklets oi and oj are located closer in space, the spatial attention αS
ij on the

edge between the corresponding object nodes should be strengthened. Furthermore, as
two object tracklets oi and oj are overlapped longer in time, the temporal attention αT

ij on
the edge between the corresponding object nodes should be also strengthened. Therefore,
the spatial attention αS

ij and the temporal attention αT
ij are computed using Equations (4)

and (5), respectively.

αS
ij = max

(
d
(
oi, oNi

))
/ ∑

j ∈ Ns
i

(
d
(
oi, oj

))
(4)

αT
ij = exp

(
tIoU

(
oi, oj

))
/ ∑

j ∈ NT
i

(
exp

(
tIoU

(
oi, oj

)))
(5)

In Equation (4), d
(
oi, oj

)
denotes the distance between the centroids of the two object

tracklets, and NS
i denotes a set of other object tracklets spatially adjacent to the subject

tracklet. In Equation (5), tIoU
(
oi, oj

)
denotes the degree of temporal overlap between

two object tracklets, and NT
i denotes a set of other object tracklets temporally adjacent to

the subject tracklet. Using the pre-calculated spatial attention αS
ij and temporal attention

αT
ij , each subject node and object node in the spatio-temporal context graph is updated,

as shown in Equation (6). Each relationship node is updated, as shown in Equation (7),
reflecting the contexts of the neighboring nodes.

zo
i = σ(αWsoZo + WsrZr + WroZr) (6)

zr
i = σ(zr

i + WrsZo + WroZo) (7)

In Equations (6) and (7), s, r, and o denote a subject node, a relationship node, and an
object node, respectively. Attention α denotes the sum of spatial attention and temporal
attention ((αS + αT). In Equations (6) and (7), Zo denotes information received from neigh-
boring subject and object nodes, and Zr denotes information received from neighboring
relation nodes. In Equations (6) and (7), Wso, Wsr, Wro, and Wrs denote weights between the
subject–object, subject–relationship, relationship–object, and relationship–subject nodes,
respectively. As expressed in Equations (6) and (7), visual context reasoning is performed
while passing through the two spatio-temporal GCN layers.
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When the visual context reasoning is completed, each object node in the visual context
graph uses an object classifier and each relationship node uses a relationship classifier
to calculate the class distribution to which the corresponding node belongs. In order to
start performing semantic context reasoning, a new semantic context graph with the same
structure as the visual context graph is generated. Each node of this semantic context graph
is initialized with the probability distribution for each class of the visual context graph
node corresponding to this node. Semantic context reasoning is performed through the
two spatio-temporal GCN layers in the same way as visual context reasoning. In this case,
the same spatial attention αS

ij and temporal attention αT
ij as for visual context reasoning are

used. The final spatio-temporal context graph G∗ST obtained through this process has a
higher-level semantic context based on a lower-level visual context.

In the ORC stage of VSGG-Net, the objects constituting the video scene graph and
the relationships between them are determined using the spatio-temporal context graph
G∗ST . In this stage, the object nodes and relational nodes are classified into the most likely
categories, based on the information of each node in the spatio-temporal context graph
G∗ST . Figure 5 shows the process of classifying objects and relationships in the proposed
model. Each object node in the spatio-temporal context graph G∗ST passes through a softmax
function and labeled with the object class of the highest score. Each relationship node
passes through a softmax function and labeled with the top five relationship classes of
the highest scores. For object classification, cross entropy is used as the loss function; for
relationship classification, binary cross entropy is used as the loss function. This allows
the proposed model to have various relationships for one object pair at the same time. In
other words, the proposed model allows an object pair of (“child”, “dog”) to have multiple
relationships such as child-caress-dog and child-next_to-dog at the same time as shown
in Figure 5.
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In datasets such as VidOR and VidVRD, there are relationships that appear with high
frequency, such as “next_to” and “in_front_of”, as well as many relationships appearing at
a low frequency, such as “cut” and “shake_hand_with." Relationships with a low frequency
of appearance inevitably have a lower recognition rate compared to those with a high
frequency of appearance in the relationship classification process. In the ORC stage of
VSGG-Net, a relationship class weighting technique, as shown in Equation (8), is applied
to solve the long-tailed relationship distribution problem. This technique adjusts the
weight of the loss of the relationship class in the loss function according to the frequency
of appearance. According to this technique, the lower the frequency of appearance, the
higher the weight of the relationship loss in the loss function, as shown in Equation (8).
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In Equation (8), N(rk) denotes the number of relationship instances corresponding to the
relationship class k in the training dataset, and wc denotes the weight of the relationship
class c in the loss function LR for learning the relationship classifier.

wc = so f tmax
(

∑n
k=1 N(rk)

N(rc)

)
(8)

By applying this relationship class weighting technique, VSGG-Net can obtain a
high classification performance even for relationships with a relatively low frequency
of appearance.

4. Experiments
4.1. Dataset and Model Training

A performance evaluation experiment of VSGG-Net is performed using two bench-
mark datasets, VidOR [10] (https://xdshang.github.io/docs/vidor.html) and VidVRD [3]
(https://xdshang.github.io/docs/imagenet-vidvrd.html). The VidOR video dataset in-
cludes 80 object types and 50 relationship types. The relationships in VidOR are largely
divided into spatial relationships, such as “above” and “behind” and action relationships,
such as “drive” and “chase.” The VidOR dataset, consisting of a total of 10,000 videos,
is divided into 7000 training data, 835 validation data, and 2165 test data. Meanwhile,
the VidVRD video dataset includes 35 object types and 132 relationship types. The Vid-
VRD dataset, consisting of a total of 1000 videos, is divided into 800 training data and
200 test data.

The proposed model, VSGG-Net, is implemented using PyTorch, a Python deep
learning library, in an Ubuntu 16.04 LTS environment. The model is trained and evaluated
in a hardware environment with a GeForce GTX 1080Ti GPU card installed. For model
training, the batch size is set to 4 and the epoch is set to 10. In addition, the learning rate is
0.001, and the stochastic gradient descent (SGD) is used as the optimizer. The tracklet pair
proposal subnet of the proposed model has a total of 19,760 trainable weights, while the
context reasoning and classification subnet includes a total of 63,872,665 trainable weights.

4.2. Experiments

The first experiment is conducted to prove the positive effect of the tracklet pair
proposal (TPP) used in VSGG-Net. This experiment compares the following cases: no
separate tracklet pair proposal mechanism is applied (None); only temporal filtering
is applied (TF); temporal filtering and neural net-based relatedness scoring are applied
(TF+NS); temporal filtering and statistical relatedness scoring are applied (TF+SS); and
temporal filtering, neural net-based relatedness scoring, and statistical relatedness scoring
are all applied as in VSGG-Net (TF+NS+SS). The number of the proposed tracklets, as well
as the recall R@1 and the precision P@5 of the object tracklet pairs, are used as performance
metrics. The performance metrics used in experiments are listed in Table 2. An average of
986 object tracklets appear in the video of the VidOR dataset used in this experiment.

Table 2. Performance metrics.

Performance Metrics Description

R@1, R@50, R@100
R@K is the recall with Top K results.
recall = |{relevant ones}∩{retrieved ones}|

|{relevant ones}|

P@1, P@5, P@10
P@K is the precision with Top K results.
precision = |{relevant ones}∩{retrieved ones}|

|{retrieved ones}|

mAP mean Average Precision. The mean of the average
precision scores for each query

https://xdshang.github.io/docs/vidor.html
https://xdshang.github.io/docs/imagenet-vidvrd.html
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Table 3 shows the results of this experiment. TF+NS+SS, like VSGG-Net, and TF+SS
showed the highest performance in terms of recall R@1 and precision P@5. It was followed
by TF+NS, TF, and None in terms of precision P@5. This result suggests that temporal
filtering and two relatedness scoring methods used in the proposed model are very effective
for tracklet pair proposal. In addition, statistical relatedness scoring is relatively more
effective than neural net-based scoring in general. Meanwhile, in terms of the number of
proposed object tracklets, TF+NS+SS and TF+SS significantly reduced the number of object
tracklets compared to None or TF, but increased the object tracklets by a slightly larger
number compared to TF+NS. Considering that both TF+NS+SS and TF+SS had higher
recall and precision than TF+NS, the performance of TF+NS+SS and TF+SS for tracklet pair
proposal is relatively higher. Based on these experimental results, the temporal filtering
and the two relatedness scoring methods proposed in this paper are effective in the object
tracklet pair proposal, and the effect is maximized when they were used together.

Table 3. Results for tracklet pair proposal using different methods on VidOR validation set. (The
average number of tracklets in a video = 986).

Method # of pairs (↓) R@1 (↑) P@5 (↑)
None 958,192 - 0.467

TF 21,560 - 20.78
TF+NS 10,235 70.79 30.98
TF+SS 13,992 97.44 31.19

TF+NS+SS (Ours) 13,965 97.37 31.23

The second experiment is conducted to prove the superiority of the CR method of
VSGG-Net using a spatio-temporal graph neural network. This experiment compares
the following cases: no separate attention is applied (GCN); only spatial attention is
applied (S-GCN); only temporal attention is applied (T-GCN); and both spatial attention
and temporal attention are applied as in VSGG-Net (ST-GCN). In addition, the relation
detection performance and relation tagging performance are measured for each of the
four cases. The relation detection task takes a video as input to output a set of relation
triplets with localized objects. A relation triplet is considered to be correct if the same
relation triplet is tagged in the ground truth and both trajectories of its subject and object
have sufficient vIoU (volume Intersection over Union). The relation tagging task reduces
the influence of object localization, the output of which is a set of video relation triplets
annotated to the whole video without the localization of the object [4,8].

Table 4 shows the results of this experiment. ST-GNN applying both spatial attention
and temporal attention, as in VSGG-Net, demonstrated the highest performance of all cases.
Conversely, GCN applying neither spatial attention nor temporal attention demonstrated
the lowest performance as no spatio-temporal contexts were used. In addition, T-GCN
applying only the temporal attention showed slightly higher performance than S-GNN
applying only the spatial attention. These results confirm once again that the use of
temporal context is important in the video scene graph generation task. The experimental
results suggest that the CR method of VSGG-Net using a spatio-temporal graph neural
network is highly effective at improving the VSGG performance.

Table 4. Results of the CR method of different graph neural networks on VidOR validation set.

Method
Relation Detection Relation Tagging

R@50 R@100 mAP P@1 P@5

GCN 6.11 7.32 6.24 50.70 47.81
S-GCN 7.66 10.51 8.90 55.39 52.54
T-GCN 7.74 10.85 8.97 56.51 54.35

ST-GNN (Ours) 8.15 11.53 9.80 58.44 54.16
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The third experiment is conducted to compare the performance of VSGG-Net accord-
ing to the level of context reasoning. This experiment compares the cases of only visual
reasoning, only semantic reasoning, and visual reasoning + semantic reasoning as in the
proposed model. In addition, the relation detection performance and relation tagging
performance are measured for each of the three cases.

Table 5 shows the results of this experiment. The case of performing both visual
reasoning and semantic reasoning, which were context reasoning methods of different
levels as in VSGG-Net, demonstrated the highest performance of all cases. In addition,
the case performing only visual reasoning showed higher performance than the case
performing only semantic reasoning. These results suggest that visual reasoning using
visual information is important in the video scene graph generation task. Using both
context reasoning methods, as in VSGG-Net, also proved to be effective in detecting
various types of relationships appearing in the video.

Table 5. Results of context reasoning using different levels on VidOR validation set.

Level.
Relation Detection Relation Tagging

R@50 R@100 mAP P@1 P@5

visual reasoning 7.98 11.48 9.76 58.21 54.09
semantic reasoning 5.63 6.42 5.69 50.90 45.02

visual reasoning + semantic
reasoning (Ours) 8.15 11.53 9.80 58.44 54.16

The fourth experiment is conducted to confirm the superiority of VSGG-Net by com-
paring the performance with existing models. Of the compared models, MAGUS.Gamma [4]
and MHA [7] are segment-based models that divide videos into segments, whereas RE-
LAbuilder [8], VRD-STGC [9], and VSGG-Net are sliding window-based models. The
RELAbuilder [8] model uses the sliding window during post-processing to accurately
readjust the length of the detected relationships. The VRD-STGC [9] model and VSGG-Net
use the sliding window when detecting object tracklets prior to relationship prediction.

Table 6 shows the experimental results using the validation set of VidOR. VSGG-Net
shows better performance than the existing models in both relation detection and relation
tagging. Compared to the segment-based model MAGUS.Gamma [4], the proposed model
demonstrates an improved performance of 18.28% in R@50, 30.57% in R@100, and 49.39%
in mAP (mean average precision), which are performance measures for relation detection.
It also demonstrated an improved performance of 14.14% in P@1 and 32.97% in P@5, which
are performance measures for relation tagging. Compared to the VRD-STGC [9] model
using a similar sliding window technique, the proposed model demonstrates an improved
performance of 16.46% in R@100 and 43.06% in mAP, which are performance measures
for relation detection. It also demonstrated an improved performance of 19.46% in P@1
and 47.25% in P@5, which are performance measures for relation tagging. The proposed
model shows the most remarkable performance improvement in mAP of relation detection
and both P@1 and P@5 of relation tagging. These experimental results demonstrate the
outstanding performance improvement of the context reasoning method of VSGG-Net
using a spatio-temporal context graph and a graph neural network.

Table 6. Comparison of the proposed method with state-of-the-art models on VidOR validation set.

Model
Relation Detection Relation Tagging

R@50 R@100 mAP P@1 P@5

RELAbuilder [8] 1.58 1.85 1.47 33.05 35.27
MAGUS.Gamma [4] 6.89 8.83 6.56 51.20 40.73

MHA [7] 6.35 8.05 6.59 50.72 41.56
VRD-STGC [9] 8.21 9.90 6.85 48.92 36.78

VSGG-Net (Ours) 8.15 11.53 9.80 58.44 54.16
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Meanwhile, another sliding window-based model, VRD-STGC [9], shows higher per-
formance than the segment-based models MAGUS.Gamma [4] and MHA [7], which could
be interpreted as confirming the superiority of sliding window-based models compared to
segment-based models. However, RELAbuilder [8], a model that uses a sliding window for
post-processing after relationship detection, shows the lowest performance of the compared
models, suggesting that the sliding window technique during post-processing had little
effect on improving performance.

Meanwhile, Table 7 shows the experimental results using the test set of VidVRD,
another benchmark dataset. In this experiment, new models (VidVRD [3], VRD-GCN [5],
and GSTEG [6]) are also compared. VSGG-Net shows better performance than the existing
models in both relation detection and relation tagging. The proposed model demonstrates
an improved performance of 8.86% in R@50, 44.17% in R@100, and 6.71%, 7.27%, and
13.68% in P@1, P@5, and P@10, respectively, compared to the MHA [7] model, which
has the highest performance of the segment-based models. The proposed model also
demonstrates an improved performance of 0.8% in R@50, 0.36% in R@100, and 2.26%,
3.03%, and 3.84% in P@1, P@5, and P@10, respectively, compared to the VRD-STGC [9]
model, which is a sliding window-based model. However, when using the test set of
VidVRD, the MHA [7] model shows the highest performance in mAP. Tables 5 and 6
show experimental results using different datasets, VidOR and VidVRD, confirming the
generality and scalability of VSGG-Net.

Table 7. Comparison of the proposed method with state-of-the-art models on VidVRD test set.

Model
Relation Detection Relation Tagging

R@50 R@100 mAP P@1 P@5 P@10

VidVRD [3] 5.54 6.37 8.58 43.00 28.90 20.80

GSTEG [6] 7.05 8.67 9.52 51.50 39.50 28.23

VRD-GCN [5] 8.07 9.33 16.26 57.50 41.00 28.50

MHA [7] 10.38 9.53 19.03 57.50 41.40 29.45

VRD-STGC [9] 11.21 13.69 18.38 60.00 43.10 32.24

VSGG-Net (Ours) 11.30 13.74 18.35 61.36 44.41 33.48

4.3. Qualitative Analysis

In order to qualitatively evaluate the performance of VSGG-Net, some examples in
which the proposed model generated a scene graph among VidOR benchmark data are
used. In Figures 6–8, the upper part of each image shows the input video, the middle
part shows the final generated scene graphs, and the lower part shows the ground truth
scene graphs.

Figure 6 is an example of VSGG-Net generating correct scene graphs from the in-
put video to match the ground truth scene graphs. Only two objects appeared in this
scene, “child” and “toy.” All relationships detected by VSGG-Net, such as <child-next_to-
toy>, <child-hold-toy>, <child-pull-toy>, <child-hold-toy>, <child-in_front_of-toy>, <toy-
next_to-child>, and <toy-next_to-toy>, match with the ground truths not only in terms
of the triplets but also in terms of the temporal ranges of the relationship. Such results
show the relatively high object tracklet detection performance and tracklet pair proposal
performance of the proposed model. In addition, the proposed model predicted the two
action relationships <child-hold-toy> and <child-pull-toy> in order by effectively utilizing
temporal context information by context reasoning. However, the existing MAGUS.Gamma
model [4] did not detect the relationship <child-pull-toy> following <child-hold-toy>, be-
cause it could not make use of temporal context information. The results show the power
of our VSGG-Net’s context reasoning capability.
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In Figure 7, as in Figure 6, the objects and relationships detected by the proposed model
and the scene graphs generally match the ground truths. In particular, it succeeded in
detecting the “next_to” relationship even for two “adult” object tracklets that are separated
by some distance. Another sliding window-based model, VRD-STGC [9], determined
that these two “adult” object tracklets that did not spatially overlap each other did not
have a relationship with each other in the tracklet pair proposal stage. Meanwhile, the
proposed model failed to detect the relationship <adult-get_off-bicycle> appearing at
the end of the video. This relationship appeared and disappeared very briefly in the
video, occurring in approximately 10 frames. Because the minimum length of sliding
window used by the proposed model is set to 30 frames, it may have been difficult to
detect object tracklets with shorter lengths and the relationship between them. In order to
detect exceptionally short or long relationships like this, hyperparameters of the model
should be set to allow sliding windows of more various sizes to be used. We notice the
segment-based MAGUS.Gamma model [4] detected only multiple segmented relationships
<adult-ride-bicycle> without finding the corresponding long one. The result shows one of
the limitations of segment-based approach.

In Figure 8, the proposed model detected characters and spatial relationships, such
as “in_front_of” and “towards” well. However, the temporal range of the behavioral
relationship <child-watch-ball> detected by the proposed model did not extend for long
from the beginning of the video to the middle, ending shortly in the middle. This happened
due to the following reason. First, the object “ball” was hidden by another object “child”
in the middle of the video, disappearing from the video for a while and then reappearing.
Therefore, the object tracklet detector of the proposed model could not detect the tracklet of
the longer “ball” including the section where the “ball” temporarily disappeared. For this
reason, the proposed model only detected a shorter temporal range of the <child-watch-
ball> relationship. Current object detection technology and object tracking technology
that rely only on visual input cannot solve this problem realistically. Only by applying
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commonsense reasoning based on the scenes before and after the section where the object
disappears from the video will we be able to estimate the position and size of the object
during the section of disappearance. Technology that can accurately predict the scene,
including the disappeared objects during a specific section of the video based on the scenes
before and after the section, is expected to further enhance the ability of the proposed
model to comprehend a video. The MAGUS.Gamma model [4] erroneously detected “ball”
as “toy” from the beginning of the video. Therefore, the model could not also detect
relationships including the object “toy”. The results emphasize the importance of object
tracklet detection in video scene graph generation task.

5. Conclusions

In this study, a novel deep neural network model, VSGG-Net was proposed for video
scene graph generation (VidSGG). We first presented the design issues faced by existing
VidSGG models. Our proposed model effectively copes with these issues. A new tracklet
pair proposal method was identified. The model performs both low-level visual context
reasoning and high-level semantic context reasoning. It applies a class weighting technique
that increases the weight of sparse relationships in the classification loss function to im-
prove the detection performance for sparse relationships. The effectiveness of the model
was validated through experiments using the benchmark datasets VidOR and VidVRD.
Meanwhile, VSGG-Net has some limitations in detecting object tracklets with very short
or long lengths, as seen in the example in Figure 7. In addition to the efforts to diversify
the size of the sliding windows and increase the number of windows compensating for
this problem, it would be necessary to continue looking for new improvements. As seen in
Figure 8, VSGG-Net does not accurately detect the tracklet of an object that temporarily
disappears from the video, due to it being blocked by other objects in the middle of the
video. Therefore, further studies will be needed to expand the current proposed model and
generate an accurate scene graph even for a specific section of the video where the object
has temporarily disappeared based on the scenes before and after the section.
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