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Abstract: Smartwatches provide technology-based assessments in Parkinson’s Disease (PD). It is 
necessary to evaluate their reliability and accuracy in order to include those devices in an assess-
ment. We present unique results for sensor validation and disease classification via machine learn-
ing (ML). A comparison setup was designed with two different series of Apple smartwatches, one 
Nanometrics seismometer and a high-precision shaker to measure tremor-like amplitudes and fre-
quencies. Clinical smartwatch measurements were acquired from a prospective study including 450 
participants with PD, differential diagnoses (DD) and healthy participants. All participants wore 
two smartwatches throughout a 15-min examination. Symptoms and medical history were captured 
on the paired smartphone. The amplitude error of both smartwatches reaches up to 0.005 g, and for 
the measured frequencies, up to 0.01 Hz. A broad range of different ML classifiers were cross-vali-
dated. The most advanced task of distinguishing PD vs. DD was evaluated with 74.1% balanced 
accuracy, 86.5% precision and 90.5% recall by Multilayer Perceptrons. Deep-learning architectures 
significantly underperformed in all classification tasks. Smartwatches are capable of capturing sub-
tle tremor signs with low noise. Amplitude and frequency differences between smartwatches and 
the seismometer were under the level of clinical significance. This study provided the largest PD 
sample size of two-hand smartwatch measurements and our preliminary ML-evaluation shows that 
such a system provides powerful means for diagnosis classification and new digital biomarkers, but 
it remains challenging for distinguishing similar disorders. 
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1. Introduction 
Smart devices are broadly used in everyday life with many use cases for classification 

tasks, e.g., human activity recognition via wearable sensors, smart phones or cameras [1–
3]. In addition, there are emerging research applications for different diseases—in partic-
ular, movement disorders [4]. Our work focuses on smartwatch-based analyses in diag-
nostic research of Parkinson’s disease (PD). It is the second-most neurodegenerative dis-
order—following Alzheimer dementia—and worldwide burden has more than doubled 
over the last two decades [5]. Early and accurate diagnoses improve quality of life and 
reduce work losses, which is why missed diagnoses mean missed opportunities [6]. Cur-
rently, PD diagnosis is primarily based on clinical assessment, which is challenging and 
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associated with overall misclassification rates of around 20 to 30%; Rizzo et al., 2016 con-
ducted a meta-analysis and reported pooled diagnostic accuracy of 73.8% for general prac-
titioners or general neurologists with a 95% credible interval (CRI) of 67.8 to 79.6%. 

Clinical assessment may not identify subtle changes in movement pathologies as, 
e.g., weak tremor, its frequency or slowness of movement [7]. Regarding diagnostic accu-
racy and treatment monitoring, there is a strong need for new technological objective bi-
omarkers that are capable of capturing these subtleties with high precision and are ma-
chine-readable [4]. In the era of the digital transformation of healthcare, consumer wear-
ables with multi-sensor technology provide a source of objective movement monitoring, 
allowing for greater precision in recording subtle changes, unlike current clinical rating 
scales in hospital routine [8]. Though there is an increasing number of such wearables and 
mobile apps or even mature medical devices, such as the Parkinson’s KinetiGraphTM sys-
tem by Global Kinetics, Melbourne, Australia [9], there is a low number of large-scale de-
ployments [10]. 

Regarding PD, some systems have shown promising diagnostic potential when ana-
lyzing voice, hand movements, gait, facial expressions, eye movements and balance [11–
17]. Most of these promising examples have used machine learning approaches for disease 
classification. However, the reported accuracies need to be taken with high caution be-
cause the implemented models were trained and tested on low sample sizes regarding PD 
(n < 100), which carries a high risk of overfitting. Moreover, we could not find any ap-
proach that includes similar movement disorders as an important control group for dif-
ferential diagnoses. A simple classification model that only differentiates between PD and 
healthy controls is of only limited clinical use as it was only trained and tested between 
those classes and thus might have only learned to identify general movement anomalies, 
which differ from the healthy population but do not represent Parkinson-specific features. 
This is a common problem in binary classification, where the two classes are note exhaus-
tive, e.g., healthy vs. not-healthy is exhaustive. PD vs. healthy is not exhaustive as there 
are many diseases that are not PD and not healthy. For example, there are diseases similar 
to PD that show almost the same symptoms. Hence, such models could misclassify other 
movement disorders such as multiple sclerosis or essential tremor. Moreover, in clinical 
reality, the health practitioner or the neurologist cannot initially assume whether the pa-
tient is either healthy or has PD. Therefore, classification models for potential diagnosis 
should consider differential diagnoses. 

Our research focuses on acceleration-based hand movement analyses using a smart 
device system (SDS) that utilizes two smartwatches and a smartphone to distinguish PD 
from other movement disorders and healthy participants [18]. The study has recruited 
and measured > 400 participants and has generated one of the largest databases for PD, 
differential diagnoses and healthy subjects with acceleration data from a neurological ex-
amination including the left and right side of the body and structured clinical data on non-
motor symptoms (e.g., sleep disturbances, loss of smell, depression). The system includes 
simple consumer devices by Apple, utilizing smartwatches to capture acceleration and a 
paired smartphone for clinical data. To our knowledge, official information on the smart-
watch raw measurement accuracy is not publicly available. Therefore, the devices were 
evaluated by a systematic comparison with a gold standard utilizing a broadband seis-
mometer. 

Apart from this sensor validation, the SDS is integrated into a neurological examina-
tion. It consists of 10 steps to monitor and provokes specific movement characteristics 
such as tremor or slowness of movement. While the study is still running until the end of 
2021 and includes further smart device data such as tablet-based drawing and voice anal-
yses, this manuscript aims to focus on the following research aims: 
• Sensor validation to measure the precision of smartwatches regarding acceleration 

amplitudes and tremor frequencies. As a gold standard, we conducted a comparison 
experiment utilizing a seismometer and a high-precision shaker. As a result, we as-
sessed the level of precision regarding the smartwatches. This is particularly useful 
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in the case of subtle tremors, which have acceleration amplitudes of < 0.05 g and are 
hard to capture by human vision. 

• Timeseries features were extracted based on expert-based feature engineering and 
literature data. A broad range of machine learning models was trained and cross-
validated to assess classification performances. To complement the expert-based fea-
ture engineering by a pure automatic feature extraction method, a deep-learning neu-
ral network with the raw time series data as input was trained and cross-validated 
as well. 
The unique contribution of our work is a sensor validation experiment comparing 

consumer smartwatches to a gold standard seismometer and to evaluate machine learning 
models to assess the diagnostic potential based on one of the largest prospective exami-
nation studies that integrated smartwatches. 

2. Materials and Methods 
2.1. Overview of Data Processing Steps 

The smartwatch validation experiments were carried out during the human subject 
trial. The trial generated the acceleration and questionnaire-based data in clinical exami-
nations. Figure 1 provides an overview. The following section Study Data Generation in-
troduces into the human subject trial, which generates data for the machine learning task 
of disease classification. The section Smartwatch Sensor Validation details the validation ex-
periment with seismometer. The section Machine Learning Pipeline and Features describes 
data processing steps for the disease classification task. In particular, Table 3 and Figure 
3 provide a deeper insight into the data features and technical machine learning steps. 

 
Figure 1. Processing steps include smartwatch validation with seismometers and patient data generation via an observa-
tional study for diagnostic machine learning. 

2.2. Study Data Generation 
The prospective study started in 2018 and was extended till the end of 2021. It re-

ceived approval by the ethical board of the University of Münster and the physician’s 
chamber of Westphalia-Lippe (Reference number: 2018-328-f-S). It is being conducted at 
the outpatient clinic of movement disorders at the University Hospital Münster in Ger-
many. The details of the study design and the protocol have been published previously 
[18]. Study registration ID on ClinicalTrials.gov: NCT03638479. 

Table 1 lists participants population characteristics. Further information on de-
mographics, differential diagnoses is provided for each sample in the Supplementary Pa-
tient-Population. All diagnoses were confirmed by neurologists and finally reviewed by 
one senior movement disorder expert. 

Each participant wore two smartwatches, one on each wrist, while seated in an arm-
chair and following a pre-defined neurological examination, which was instructed by a 
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study nurse. This examination was designed by movement disorder experts with the pri-
mary aim to establish a simple-to-follow examination in order to capture the most relevant 
acceleration characteristics. The data consists of the acceleration data recorded by the 
smartwatches and further clinical data containing non-motor symptoms recorded on the 
paired smartphone. The non-motor symptoms are based on the Parkinson’s Non-motor 
Symptoms Questionnaire [19]. Each examination took 15 min per participant on average. 
Each assessment step is summarized is Table 2. The data-capturing app, which connects 
all devices, is installed on the smartphone. It is an in-house developed iOS-based research 
app [20] and will be provided as open source after the end of the study. 

Table 1. Participant population. DD: differential diagnoses including movement disorders other 
than PD as essential tremor, atypical Parkinsonism, secondary causes of Parkinsonism and dysto-
nia, multiple sclerosis. 

Disease Class Sample Size Average Age (SD) 
PD 260 66.26 (9.61) 
DD 101 60.82 (12.87) 

Healthy 89 61.45 (10.63) 

Table 2. Smartwatch-based examination steps. 

Step Duration (s) Description 
1a 20 Rest tremor. Participant is seated with his eyes closed in resting 

position, positioning standardized to Zhang et al. [21]. 
1b 20 Rest tremor while patient is calculating serial sevens. 
2 10 Lift and extend arms according to Zhang et al. [21]. 
3 10 Remain arms lifted. 
4 10 Hold 1 kg weight in each hand for 5 s. Start with the right hand. 

Then, have the participant’s arm rested again as in 1a. 
5 10 Finger pointing. Participant should point with their index finger 

to examiner’s lifted hand. Start with participant’s right index, 
then left, then repeat. 

6 10 Drink from glass. Have the participant grasp an empty glass 
with their right hand as if they would drink from it. Then repeat 
with the left hand. 

7 10 Cross and extend both arms.  
8 10 Bring both index fingers to each other. 
9 10 Let participant tap their nose with both index fingers. Start 

with the right, then with left index. Then extend the arms. 
10 20 Entrainment. The examiner stomps on the ground, setting the 

pace. The participant starts stomping with their right foot ac-
cording to the pace while leaving their arms extended. 
Repeat this with the left foot. 

2.3. Smartwatch Sensor Validation 
A seismometer is a device that captures weak ground motion caused by seismic 

sources, e.g., earthquakes, explosions or ambient noise [22]. These instruments generally 
have a large bandwidth and dynamic range [23]. The Trillium Compact by Nanometrics, 
Milpitas, CA, USA is a triaxial seismometer, measuring ground velocity and classified as 
a broadband instrument with −3 dB points at 120 s and 108 Hz. The self noise level is 
below −140dB and the clip level at 26 mm/s up to 10 Hz and 0.17 g above 10 Hz [24]. We 
combined the Trillium Compact with a Taurus 24-bit digital recorder [25], which digitizes 
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the motion that the seismometer measures. This combination allows for accurate meas-
urements of ground motion [26] and is therefore considered as a gold-standard instru-
ment for raw measurements of acceleration. 

We conducted a shaker table experiment, where two Apple watches, Series 3 and 4, 
and the Trillium Compact seismometer were simultaneously accelerated by oscillatory 
motions with tremor-typical frequencies and amplitudes. As tremor is an oscillatory 
movement, the use of a shaker table provides a means of testing accuracy of the method. 
The setup of the validation experiment is shown in Figure 2, where the seismometer and 
smartwatches were placed on a shaking table. 

The watches were further attached with tape to prevent unwanted movement due to 
the slightly curved backside of the watches. The shaker table was placed on a decoupled 
platform to reduce ambient noise and oscillates vertically with a range of frequencies and 
amplitudes. Due to the experimental setup and since the vibration table moves in the ver-
tical direction, only the z-axis of the watches and the seismometer was examined here. 
However, a significant difference in measurement accuracy between all three sensor com-
ponents of the seismometer is not to be expected since the device records on three orthog-
onal axes U.V.W, which are then rotated into vertical and two horizontal components 
north and east [24]. 

 
Figure 2. Experimental setup of the sensor validation experiment. Apple Watches Series 3 and 4 
and a Nanometrics Trillium Compact seismometer were placed on a vertical vibration table. The 
table simultaneously accelerated the devices by oscillatory motions with tremor-typical frequen-
cies and amplitudes. Both watches were connected to Apple iPhones (not in this figure) via Blue-
tooth, where the measurement data were stored. The seismometer data were collected on a digi-
tizer (not in this figure) that the device was connected to. 

The smartwatches are officially specified to have a sampling rate of 100 Hz and we 
set the sampling rate of the seismometer to 100 Hz as well. A total of 43 measurements 
were performed on two different days. The duration of each measurement was set to 20 s 
for the watches, similar to the assessment steps performed with patients. 

For each test, the table oscillated with a set amplitude and frequency that was kept 
constant during the measurement period. One test was carried out without vibration, to 
measure the difference in self noise of the watches and the seismometer. For the remaining 
tests, we changed the frequency of the oscillation between 3 Hz and 15 Hz, in 1 Hz steps, 
as this range covers tremor-typical frequencies [27]. The oscillation amplitude was varied 
between 0.002 g and 0.1 g, which is considered as high-resolution for tremor amplitudes 
as values < 0.01 g are barely visible by human vision but still clinically relevant to measure 
subtle tremor in early disease. The step sizes were between 0.0001 g and 0.02 g. 
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The data had to be processed after the experiments: First, the data of the seismometer 
were deconvolved with the instrument response. During the deconvolution, the counts 
per volts scaling factor of the raw data and the frequency-dependent sensor response were 
removed [28]. Since the seismometer records velocity while the watch records accelera-
tion, the seismometer data were differentiated, converted from mm/s^2 to SI units and 
divided by 9.81 m/s^2, such that the output is in multiples of g, the Earth’s acceleration. 

To determine the oscillation frequency for each 20 s measurement for both the seis-
mometer and watches, the data were analyzed in the spectral domain, by applying the 
fast Fourier transform (FFT). The dominant frequency of each dataset was identified and 
compared. Prior to the FFT, the end of the data were zero-padded to reach a frequency 
bin spacing of 0.01 Hz because the frequency scale of the shaker table only allowed 
changes in in 0.01 Hz steps. 

The oscillation amplitude was calculated in the time domain on the pre-processed 
datasets. For 20 consecutive periods, the maxima and minima of the signal were identified 
and used to calculate the peak-to-peak amplitudes. The resulting 20 peak-to-peak ampli-
tudes were averaged and divided by 2. Subsequently, the results of the watches were com-
pared to those of the seismometer in order to assesses the accuracy of the watches. 

2.4. Machine Learning Pipeline and Features 
Three relevant classification tasks were trained and cross-validated: 

1. PD vs. healthy 
2. Movement disorders (PD + DD) vs. healthy 
3. PD vs. DD 

It is assumed, that the first two tasks are of lower classification difficulty as the sys-
tem only needs to be trained for non-healthy characteristics. Such a system could still be 
helpful in home-based settings or at general practices, e.g., to indicate whether certain 
abnormal movement characteristics (e.g., hand tremor) are pathologic or still normal (e.g., 
physiological tremor). The third one requires more advanced and differential feature anal-
yses in order to distinguish movement disorders with similar phenotypical characteristics 
from each other. 

The extracted features are listed in Table 3. We provide further details and pseudo-
code of feature extraction in the Machine-Learning Supplement. A previously developed 
Python-based data analytics pipeline is reutilized [20]. The entire analytics process is sum-
marized and illustrated in Figure 3. The different machine-learning classifiers were sup-
port vector machines (SVM); a modern gradient-boosting decision-tree model called Cat-
Boost [29]; a multilayer perceptron (MLP), which is a classical type of an artificial neural 
network; and a deep-learning architecture. These were trained and validated within the 
framework of nested cross-validation [30] using five outer and five nested inner data folds 
to ensure unbiased training and testing, as well as unbiased optimization of hyperparam-
eters. While the inner folds are used to train each model and to optimize its hyperparam-
eters in a grid-search (m different hyperparameter values results in m different model 
configurations), the outer folds evaluate the test performance of trained and hyperparam-
eter-optimized models. Before each inner fold model training, we apply the random un-
dersampler from Scikit Learn 0.24.1 [31] in order to remove the bias towards the majority 
class by randomly removing samples of that set. Moreover, the standard scaler from Scikit 
Learn subtracts the mean and scales to unit variance for every feature. The principal com-
ponent analysis (PCA) reduces the dimensionality, the Scikit Learn-based ‘Select Percen-
tile’ step randomly selects a subset of features, which are then used for training the clas-
sifier. We optimize the hyperparameters for the PCA, the Select Percentile and the specific 
classifiers. A detailed list of hyperparameter optimizations is provided in the Machine-
Learning Supplement. 
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Figure 3. Overview of data analytics pipeline. SVM = support vector machine with radial basis function. CatB = CatBoost, 
MLP = multi-layer perceptron with two hidden layers, DL = deep-learning architecture. 

Table 3. Machine Learning Features. 

Feature Description 
Medical History Question-
naire 

Age height, weight, family history of PD (kinship with 
PD), effect of alcohol on tremor. Further details provided 
in Varghese et al. [18]. Medication is captured but not used 
as a training-feature as it is too closely linked to the target 
classes. 

Symptoms- 
Questionnaire 

The number of items answered with ‘yes’ in the Parkin-
son’s Disease Non-Motor Scale by the Movement Disorder 
Society [19]. 

Amplitude Distribution Apply Euclidean norm on all three acceleration axes to 
generate 1-dimensional time-series vector. Create an Am-
plitude histogram and pick the 30th to 70th percentile in 5 
percent steps. Applied for all assessment steps. 

Tremor Side Dominance Use the 90th percentile of the left and right arm accelera-
tion and calculate the ratio. Applied for all assessment 
steps. 

Standard Deviation of Ac-
celeration 

Calculate the standard deviation of the acceleration data. 
Applied for all assessment steps. 

Fast Fourier 
Transformation 

Calculate the three-dimensional FFT for the assessment 
step and use polynomials of degree 3 to approximate the 
FFT. The three coefficients are used as features. Applied 
for all assessment steps. 

The multi-layer perceptron and the deep-learning architecture is implemented using 
Keras and Google’s Tensorflow 2.4.0, which provides full GPU support [32]. We consid-
ered various state-of-the-art architectures including convolutional neural networks in 
ResNets and long–short-term memories (LSTM) [33]. Detailed architectures are provided 
in the Machine-Learning Supplement. 

To evaluate their performance for automatic time-series feature extraction from ac-
celeration data, they only received the raw acceleration data and the questionnaire data 
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(medical history + symptoms) as input, but not the engineered time-series features listed 
in Table 3. 

Test performances for all three classification tasks are reported as mean values for 
precision, recall and F1-measure based on the outer-fold validations including standard 
deviations. Due to the imbalance of the three disease classes, balanced accuracies [34,35] 
are provided as well. As such, the baseline performance of all binary classification tasks 
is 50%, which corresponds to random guessing. To analyze the information gain of differ-
ent features, we apply feature importance analyses via CatBoost for the second classifica-
tion task as this involves all disease classes. Then, bootstrap sampling is applied to gener-
ate information gain boxplots for the different features. 

3. Results 
3.1. Smartwatch Sensor Validation 

Figure 4a shows the differences between dominant frequencies of the seismometer 
(used as the gold standard device) and Apple Watches Series 3 and 4 data (consumer 
grade device). Overall, Apple watches Series 3 and 4 seemed to measure higher frequen-
cies than the seismometer; however, deviations were in the low milli-Hertz range (up to 
10 mHz). With increasing frequencies, there was an increase in frequency deviation for 
both watches and for all experiments. 

 
Figure 4. Differences between the dominant frequency measured by the Trillium Compact seismometer and Apple Smart-
watches Series 3 and 4 in a shaker table experiment. The experiment was conducted on two different days with the Apple 
watch Series 3. The figure shows the difference in dominant frequency (a) using the pre-defined watches’ sample rate and 
(b) using the watches’ actual sample rate (calculated with watch-specific timestamps) for spectral calculations. Data points 
that have exactly the same value lie on top of each other in the plot. To show the effect of amplitude on these frequency 
differences, some measurements were repeated by keeping the shaking table frequency constant and varying the shaking 
table amplitude. 

As mentioned above, the watches’ sampling rates were set to 100 Hz. When calculat-
ing the watches’ sample rate using the watch-specific timestamps, however, we found that 
the sampling rates of the watches were up to 0.6 Hz smaller than the specified 100 Hz. We 
provide further details on time variations between two data points for both watches in the 
Machine-Learning Supplement (Supplementary Figure 7 and Table 8). The increasing de-
viations with increasing frequency therefore resulted from assuming an incorrect sample 
rate of 100 Hz for spectral calculations. Figure 4b shows the difference between dominant 
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frequencies of the seismometer and smartwatches after correcting for the sample rate. For 
spectral calculation, the actual sample rate of the watches was used by utilizing the watch-
specific timestamps. In the considered range, no clear increase in deviation with increas-
ing frequency is recognizable anymore. Approximately 55% of the Series 3 and 59% of 
Series 4 dominant frequencies did not deviate from the seismometer up to the second dec-
imal place. The remaining measurements deviated by up to 0.01 Hz for both Series 3 and 
4. This still provides a high-precision tremor frequency capture, as clinical tremor docu-
mentation is performed in the range of 4 to 18 Hz and step sizes of full Hz units [27]. 

We measured the self noise of the seismometer and the watches on the non-vibrating 
table. The results are depicted in Figure 5 and show that the watches had a higher noise 
compared with the seismometer, but the RMS self-noise level was still below 0.001 g for 
both watches. The 0 g-offset was found to be below 2 × 10^−4 g. The power spectral density 
shows that the noise of the smartwatches had a similar intensity at different frequencies. 

 
Figure 5. (a) Self noise of watches and seismometer and (b) power spectral density (PSD) of 
watches, captured during a 20-s period without vibration of the shaker table. The power spectral 
density shows that the noise of the smartwatches had a similar intensity at all frequencies covered. 
However, Apple Watch 4 had a slightly higher self noise. 

Figure 6 depicts the difference in measured oscillation amplitude for the seismometer 
and the smartwatches. For all the measurements, smartwatch Series 3 and 4 measured 
higher amplitudes than the seismometer. Up to 0.04 g oscillation amplitudes, the ampli-
tude differences between the watches and the seismometer showed no trend and were 
below 0.002 g. Oscillation amplitudes > 0.05 g led to larger deviations for both Series 3 and 
4 and a trend is visible. We found the maximum deviation of 0.005 g. The amplitude meas-
urements of the watches and seismometer agree within their corresponding standard de-
viations. 
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Figure 6. Measured oscillation amplitude of the seismometer and the watches are plotted against 
each other. The standard deviations of the amplitude mean values are plotted as error bars (hori-
zontal error bar: seismometer values, vertical error bar: watch values). The grey line corresponds 
to a perfect agreement between the oscillation amplitude measured by the watches and the seis-
mometer. 

3.2. Classification Performances and Feature Importance 
Tables 4–6 list model performances for all three classification tasks. Apart from the 

deep learning model, the other three classical machine learning models performed similar 
in respect to their standard deviations, with balanced accuracies above 80% and precision 
and recall above 90% in the two simpler classification tasks. Regarding the most difficult 
task, which required separation of Parkinson’s disease from similar movement disorders, 
all three models performed lower with balanced accuracies between 67% and 74%. The 
MLP performed best in two of three tasks (PD + DD vs. healthy, PD vs. DD) in terms of 
balanced accuracies. 

Table 4. Performances for classification task 1: separate PD from healthy. Values correspond to 
mean (SD). MLP = multi-layer perceptron, SVM—rbf = support vector machine—radial basis func-
tion, simple DNN = simple deep neural network. 

Estimator Accuracy Balanced 
Accuracy Precision Recall F1 

MLP 0.864 (0.03) 0.815 (0.05) 0.907 (0.03) 0.913 (0.03) 0.909 (0.02) 
SVM—rbf 0.870 (0.02) 0.827 (0.01) 0.913 (0.01) 0.913 (0.03) 0.913 (0.01) 
CatBoost 0.887 (0.02) 0.819 (0.04) 0.901 (0.03) 0.956 (0.03) 0.927 (0.01) 

Simple DNN 0.768 (0.06) 0.591 (0.07) 0.782 (0.03) 0.954 (0.06) 0.859 (0.04) 
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Table 5. Performances for classification task 2: separate movement disorders (Parkinson’s disease 
and differential diagnoses) from healthy. Values correspond to mean (SD). MLP = multi-layer per-
ceptron, SVM—rbf = support vector machine—radial basis function, simple DNN = simple deep 
neural network. 

Estimator Accuracy Balanced 
Accuracy 

Precision Recall F1 

MLP 0.856 (0.04) 0.772 (0.05) 0.907 (0.02) 0.914 (0.03) 0.910 (0.02) 
SVM—rbf 0.838 (0.02) 0.750 (0.03) 0.901 (0.02) 0.897 (0.06) 0.897 (0.02) 
CatBoost 0.882 (0.03) 0.757 (0.06) 0.895 (0.02) 0.968 (0.03) 0.929 (0.01) 

Simple DNN 0.791 (0.03) 0.551 (0.06) 0.814 (0.01) 0.956 (0.03) 0.879 (0.02) 

Table 6. Performances for advanced classification task 3: separate Parkinson’s disease from differ-
ential diagnoses. Values correspond to mean (SD). MLP = multi-layer perceptron, SVM—rbf = sup-
port vector machine—radial basis function, simple DNN = simple deep neural network. 

Estimator Accuracy Balanced 
Accuracy Precision Recall F1 

MLP 0.823 (0.01) 0.741 (0.03) 0.865 (0.01) 0.905 (0.00) 0.885 (0.00) 
SVM—rbf 0.800 (0.02) 0.682 (0.04) 0.831 (0.02) 0.921 (0.01) 0.873 (0.01) 
CatBoost 0.817 (0.02) 0.678 (0.03) 0.826 (0.01) 0.956 (0.03) 0.887 (0.01) 

Simple DNN 0.735 (0.01) 0.512 (0.01) 0.751 (0.01) 0.965 (0.04) 0.844 (0.01) 

Figure 7 summarizes feature importance based on statistical information utilizing 
CatBoost. It shows that the highest overall gain is attributed to the sensor-based FFT fea-
tures, while the symptoms questionnaires provide high gain among all questionnaire-
based features. 

 
Figure 7. Importance of the features based on statistical information gain by CatBoost. 

Among the different combinations of DL architectures, the best-performing architec-
ture included a simple dense neural network that could only reach balanced accuracies 
lower than 60%. It is noteworthy that the inclusion of LSTMs consistently weakened the 
classification performance and therefore did not participate in our final DL architecture. 
As the DL components underperformed in this complex task of diagnosis classification, 
we wanted to figure out how DL would perform in a simple activity recognition task, for 
which DL architectures are commonly applied. Thus, they were validated using the per-
formed assessment steps as an activity recognition task (e.g., does time-series belong to 
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assessment step 6, “drinking glass”?). Here, the best DL model performed with an accu-
racy of 78.6% with the ResNet. The same tasks reduced to the assessment steps ‘drink 
glass’ and ‘point finger’ even performed with an accuracy of 94.6% using DL architecture 
with simple dense neural networks. The detailed architectures for the DL models and their 
performances are provided in the Machine-Learning Supplement. 

4. Discussion 
The SDS is an app-based mobile system that connects consumer devices for the high-

resolution monitoring of acceleration characteristics in different neurological disorders 
and questionnaire-based data capture of patient symptoms. 

The seismological sensor validation showed high agreement between the smart-
watches and the gold-standard setting. While clinical tremor documentation ranges be-
tween 4 and 18 Hz with step sizes of 0.1 to 1 Hz, the watches differed slightly from the 
gold standard at around 0.01 Hz. While the human tremor amplitude threshold can be 
estimated at <0.01 to 0.05 g [7], the smartwatch amplitude deviations were within the 
range of 0.001 and 0.005 g. This shows that the watches are capable of measuring move-
ment subtleties or hand-tremor amplitudes and frequencies with much greater precision 
than clinical documentation or even human vision. We reproduced these findings with 
multiple measurements and two Apple-based smartwatch models of different build years. 

When integrating two smartwatches and a paired smartphone to the SDS coupled 
with different AI-based classifiers, we could show high diagnostic accuracies, above 80%, 
partially with precision and recall above 90% for simple classification tasks. Related work 
shows even higher performances, consistently above 90% accuracy when using other data 
modalities, e.g., voice analyses [12]. However, while these findings doubtlessly show 
some diagnostic potential, they have to be interpreted with high caution as we believe 
these results are easily overestimated due to three key reasons: First, the overall sample 
size of almost all related studies were limited (n < 100). Second, model hyperparameters 
were not optimized in a separate nested set. Third, the same individuals were recorded 
multiple times, leading to identity confounding [36]. To address these frequent drawbacks 
and provide a higher degree of generalizability, we have generated—to the best of our 
knowledge—the largest database on this topic with more than 400 individually measured 
participants using nested cross-validation for all models and hyperparameters. In addi-
tion, we included the important control group of differential diagnoses. As expected, the 
most difficult task to separate PD from similar movement disorders was evaluated with 
much lower balanced accuracies of around 70%. This shows that further feature engineer-
ing and further integration of other promising modalities (acceleration, speech, voice or 
finger-tapping are needed. All these data modalities were studied in isolation with prom-
ising findings [4,12,37] and could be integrated within one system consisting of consumer 
devices. The results of our deep-learning architecture clearly show that automatic feature 
extraction is underperforming in this sample size dimension (n < 1000) and there is a 
strong need for engineering clinically relevant features in raw acceleration data. 

A common limitation with related work, which is also not addressed by this study, 
is the missing evaluation of real predictive capabilities for early diagnosis as we can only 
include patients that have already been diagnosed or healthy participants, for which we 
do not know if they will develop a disease condition. Our study included a broad range 
of different disease progress states according to Hoehn and Yahr [38] or years from disease 
onset, but an observational epidemiological study with healthy-to-PD transformation 
data would be ideal to test disease prediction. Nevertheless, our work can provide poten-
tial features and methods, which need to be studied in future study designs to evaluate 
prediction performance. Moreover, our work contributes to new digital and objective bi-
omarkers, which have the potential for disease stratification or disease monitoring of PD 
patients to provide personalized care and treatment optimization. As for all clinical deci-
sion support, further quality and risk management and medical device approval is neces-
sary for integration into routine diagnostics [39]. To the best of our knowledge, our study 
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generated the largest set of smartwatch-based measurements in a neurological examina-
tion with structured clinical data on symptoms and medical history. The anonymized raw 
acceleration and clinical data is going to be published after the end of the study (end of 
2021). This unique dataset will enrich the current open repositories for the time series pro-
cessing community and provide public access in order to enable further analyses beyond 
the research questions of this paper. 

Supplementary Materials: The following are available online at www.mdpi.com/1424-
8220/21/9/3139/s1, Supplement S1: Further Descriptions on Machine Learning, Data Analyses and 
Data Capture, Supplement S2: Patient population details. 
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