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Abstract: The analysis of the body center of mass (BCoM) 3D kinematics provides insights on
crucial aspects of locomotion, especially in populations with gait impairment such as people with
amputation. In this paper, a wearable framework based on the use of different magneto-inertial
measurement unit (MIMU) networks is proposed to obtain both BCoM acceleration and velocity. The
proposed framework was validated as a proof of concept in one transfemoral amputee against data
from force plates (acceleration) and an optoelectronic system (acceleration and velocity). The impact
in terms of estimation accuracy when using a sensor network rather than a single MIMU at trunk
level was also investigated. The estimated velocity and acceleration reached a strong agreement
(ρ > 0.89) and good accuracy compared to reference data (normalized root mean square error
(NRMSE) < 13.7%) in the anteroposterior and vertical directions when using three MIMUs on the
trunk and both shanks and in all three directions when adding MIMUs on both thighs (ρ > 0.89,
NRMSE≤ 14.0% in the mediolateral direction). Conversely, only the vertical component of the BCoM
kinematics was accurately captured when considering a single MIMU. These results suggest that
inertial sensor networks may represent a valid alternative to laboratory-based instruments for 3D
BCoM kinematics quantification in lower-limb amputees.

Keywords: sensor network; wearable sensors; gait analysis; lower-limb amputation; CoM; prosthesis;
locomotion; MIMU; kinematics

1. Introduction

During the rehabilitation of people with lower-limb amputation, monitoring the
kinematics of the body center of mass (BCoM) or the 3D ground reaction forces may
reveal crucial information related to gait impairment [1–3]. Indeed, 3D BCoM motion has
been shown to provide insight on dynamical stability [4–6], gait energetics [7–9] and gait
asymmetries [1,10], in particular in this population. The gold standard methods to derive
3D BCoM motion rely on force plates and/or optical motion capture systems (OMCSs).
Force plates allow the direct retrieval of BCoM acceleration through the measurement of
the external forces applied on the body and the application of Newton’s second law [3].
While this method does not rely on any assumption regarding the body or its inertial
properties, integration constants must be determined to obtain the BCoM velocity or
displacement, which clearly impacts the accuracy of the results [2]. On the other hand,
OMCSs allow tracking the positions of body-worn markers. Therefore, the application
of the segmental analysis method, which consists in modeling the body as a chain of
rigid segments with known inertial properties, allows obtaining first the trajectory of the
segments’ centers of mass and, following a weighted average, that of the BCoM [11]. This
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method has been widely used in the literature for the estimation of BCoM displacement,
velocity and acceleration, with some authors proposing optimal marker sets to facilitate
the implementation of the method in the clinical field [12–15]. When this methodology is
used, it is important to ensure that the selected inertial model is adapted to the population
studied, as it has a significant impact on the estimated BCoM motion [2,16]. Both these
methods constrain the acquisition to occur in a dedicated laboratory, which may not be
adapted to clinical routine due to high system cost and complexity [17], and may result
in the acquisition of a few steps only, especially when the force-plate-based method is
adopted [2].

Therefore, in recent years, the use of wearable sensors has been advocated as an
alternative to laboratory-based instruments for the computation of BCoM motion and
ground reaction force [17,18]. In particular, magneto-inertial measurement units (MIMUs)
are lightweight and low-cost sensors, embedded with tri-axial accelerometers, gyroscopes
and magnetometers. These sensors measure the linear acceleration, the angular velocity
and the local magnetic field along/about the axes of an inertial frame defined by the
MIMU case (“MIMU local frame”). These signals can then be fused to provide an estimate
of the orientation of the MIMU local frame relative to a global (Earth-fixed) reference
frame [19,20]. Therefore, provided a MIMU is rigidly attached to a body segment, it might
provide an estimation of its motion and thus be used for segmental analysis [21–23].

However, the implementation of segmental analysis with MIMUs is not as straightfor-
ward as one may think.

First, for each MIMU-bearing segment, the acceleration is measured at the origin of
the MIMU local frame and must be transferred to the segment center of mass (SCoM),
which is not immediate since MIMUs do not provide an estimation of their absolute
position. To overcome this limitation, some authors have proposed positioning MIMUs or
accelerometers close to the underlying SCoM [22,24], which may compromise the accuracy
of the retrieved accelerations. Other authors have coupled a full-body inertial model to a
full-body kinematic chain [21,23]. This configuration is facilitated by commercial solutions,
such as the xSens MVN suit [25] or the myoMotion software and hardware systems [26].
However, these solutions are often expensive and can be cumbersome as they require
performing a rigorous sensor-to-segment calibration and impose the use of sensors on
each segment pertaining to the kinematic chain. Other authors have suggested using
OMCSs [27] or photographs [28] to initialize the absolute position of MIMUs with respect
to the relevant SCoMs.

Second, the obtained SCoM accelerations are expressed in the MIMU local frames
and must therefore be fused in a consistent global reference frame before computing
the BCoM acceleration. However, the global frames sensed by several MIMUs may not
be consistent across MIMUs [29–31], which might lead to errors when fusing data from
multiple sensors. To correct for this global frame inconsistency, several authors have
suggested using OMCSs [27,31,32] or photographs [30] in order to compute, for each MIMU,
the orientation of its self-sensed global frame in a consistently defined global reference
frame. Alternatively, a recent study has proposed using hypotheses on the orientation of
segments during a static posture and sensor-to-segment calibration procedures to correct
the global frames sensed by each sensor [33].

In order to facilitate MIMU-based segmental analysis in the clinical field, it is essential
to keep the number of required sensors as low as possible while achieving sufficient
accuracy [14,17]. Therefore, similarly to what is done with OMCSs, the sacral method
paradigm, consisting of using a single sensor positioned on the lower back, has been widely
investigated [34–39]. While this approach is quick and easy to implement, it was shown to
lack accuracy when dynamical motion of the upper body was involved [2,37,39] or in case
of asymmetrical gait pattern [15,35], such as for people with lower-limb amputation [40,41].
Some authors have therefore proposed optimal sensor networks in order to limit the
number of segments instrumented with MIMUs for the computation of BCoM-derived
parameters [39,42,43]. To identify the optimal location and number of sensors, several
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approaches were used: Zijlstra and coworkers instrumented the trunk and pelvis segments
based on their higher mass compared to the other body segments [43], Najafi and coworkers
instrumented the shank, thigh and trunk based on the observation that the motion studied
(golf swing) involved mainly rotations around the ankle and hip joint [39] and, lastly,
Shahabpoor and coworkers have proposed identifying the optimal location of sensors by
analyzing the contributions of the individual accelerations of each SCoM in the total BCoM
acceleration [24]. This last methodology is of particular interest since it is the only one
applied for gait and since the MIMU-bearing segments are chosen both based on their mass
and their motion. Consequently, it has been recently applied to the gait of ten people with
transfemoral amputation and has shown that instrumenting the trunk, thighs and shanks
or feet allows an accurate estimation of BCoM acceleration [44]. However, in this study,
MIMU data were simulated using an OMCS in order to overcome the two above-mentioned
issues related to reference frame consistency and absolute position. The validation of the
obtained optimal sensor networks in the same population, i.e., people with transfemoral
amputation, using data from actual MIMUs remains to be performed.

Another challenge when using MIMUs rather than OMCSs is the inherent noise in the
sensor signals, which may lead to drift when integrating the acceleration to compute the
instantaneous velocity—or displacement—of the BCoM. A solution to mitigate the drift
is to express the instantaneous velocity over a gait cycle as the sum of a cyclical term and
an average velocity of progression, computed from the stride length divided by the stride
duration [38,45].

In light of all these considerations, this work aimed at proposing a wearable framework
allowing the estimation of both the BCoM acceleration and instantaneous velocity from
an optimal network of MIMUs. Several networks of MIMUs were investigated based
on the results obtained in ten people with transfemoral amputation using an OMCS in a
previous work [44]. As a proof-of-concept, the framework implemented in one person with
transfemoral amputation is presented. Its accuracy was validated against force platforms
(BCoM acceleration) and optical motion capture data (BCoM acceleration and velocity).
The following criteria were taken into account in the development and validation of the
proposed wearable-based framework: (1) setup and acquisition durations should be as
short as possible, with a minimum number of sensors; (2) calibration procedures and
processing complexity should be kept at a minimum. Compliance with these criteria is
assumed to facilitate the future transfer of the proposed framework to the clinical field.

2. Materials and Methods
2.1. Implementation of a Wearable Framework

In order to estimate BCoM acceleration and velocity using an optimal sensor network
of segment-mounted MIMUs, a wearable framework was implemented, consisting of the
three following steps:

• Computation of the 3D acceleration of each SCoM from MIMU data based on an
inertial model;

• Expression and fusion of SCoM accelerations in a consistent common global frame RG;
• Estimation of the 3D BCoM acceleration and velocity from a weighted average of

selected SCoM accelerations.

Since trunk, thighs, shanks and feet are the major contributors to 3D BCoM acceleration
for people with transfemoral amputation [44], seven MIMUs were mounted on these
segments and manually aligned with their respective longitudinal axes. Consistently with
the cited reference, in the present work, the BCoM acceleration and velocity obtained
from different combinations of sensors including from three to five of the abovementioned
MIMUs were investigated with the proposed methodology (see Section 2.1.3). The next
paragraphs describe the three steps of the framework in further detail, while its evaluation
is detailed in Section 2.2.
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2.1.1. Computation of 3D SCoM Acceleration in the MIMU Local Frames

In a first step, 3D SCoM accelerations are computed from segment-mounted MIMUs
in their respective MIMU local frame RMIMUi .

For each MIMU-bearing segment, the computation of SCoM acceleration (asCoMi ) from
the acceleration measured at the origin of the MIMU (aoIMUi ) is straightforward under the
assumption that the SCoM and the MIMU are both rigidly attached to the same rigid body,
and it only requires knowing the relative position between the SCoM and the MIMU origin
(Equation (1)).

asCoMi = aoIMUi + ΩIMUi ∧
(
ΩIMUi ∧ rIMUi−sCoMi

)
+

.
ΩIMUi ∧ rIMUi−sCoMi in RMIMUi (1)

where ΩIMUi is the angular velocity measured by the MIMU,
.

ΩIMUi is the MIMU angular
acceleration and rIMUi−sCoMi is the relative position between the MIMU origin and the
SCoM expressed in RMIMUi .

However, it is not possible to directly obtain the position of a SCoM in its associated
MIMU local frame. With the assumption that MIMUs are rigidly attached to their respective
underlying segments, the relative position between each pair of SCoM and MIMU is
constant in the MIMU local frame. Therefore, it is sufficient to determine this relative
position at just one single instant in another reference frame, provided that the orientation
of the MIMU local frame is known in this reference frame. Using an inertial model
personalized to each participant with calibrated photographs, both the SCoM and the
MIMU positions can be retrieved in a consistent reference frame corresponding to that
of the photographs. The relative positions being expressed in the photograph frame, the
orientation of each MIMU local frame in the photograph frame must be determined to
express the relative position in the MIMU local frame and deduce the acceleration of each
SCoM from Equation (1).

The present framework relies on a 15-segment subject-specific inertial model derived
from Pillet and coworkers [46]. Similarly to [46], the photographs are calibrated using
retro-reflective markers located on the ground and on the upper body. The positions of
these markers are recorded with an OMCS while the photographs are being taken. For each
MIMU, the position of its origin is then manually identified on the photographs, which
allows computing its relative position with respect to the underlying SCoM (roIMUi−sCoMi )
in the OMCS reference frame ROMCS. Then, the transformation matrix POMCS−MIMUi from
each MIMU local frame RMIMUi to ROMCS must be known during the static acquisition.
While the global frame RGFi sensed by each MIMU has its vertical axis (zGFi ) coincident
with that of the OMCS, each MIMU global frame and the OMCS frame may have a
different heading due to perturbations of the magnetic field [29,30,47]. Consequently, the
orientation output provided by each MIMU PGFi−MIMUi cannot be directly used to estimate
the transformation matrix POMCS−MIMUi from RMIMUi to ROMCS during the static phase.
Instead, the framework relies on the knowledge of the manual alignment of MIMUs with
the OMCS frame during the initial static posture.

The static posture in which the participant is being photographed has been defined
such that he/she is standing facing the direction of progression. It is assumed that,
in this position, each MIMU is aligned such that one of the axes of the MIMU local
frame lies in the sagittal plane of the participant (which coincides with that of the OMCS
frame—Equation (2)). Under this assumption and considering that (1) the vertical axis
of the MIMU global frame coincides with that of the OMCS (Equation (3)) and (2) the
orientation of the MIMU local frame in its global frame is known, it is then possible to ex-
press the orientation of the OMCS reference frame in the MIMU local frame POMCS−MIMUi
during the static acquisition (Equations (4)–(7)). Figure 1 details the procedure for a MIMU
positioned at the trunk level.

xMIMUi ∈ {xOMCS ; zOMCS} (2)

zOMCS = zGF known in RMIMUi (3)
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Figure 1. Computation of the orientation of the trunk MIMU local frame in the OMCS reference frame PMIMU−OMCS during
the static posture (at t = t0). To determine the orientation matrix, the axes of the OMCS reference frame must be determined
in the MIMU local frame. PMIMU−GF is retrieved from the orientation output of the MIMU at t = t0 (a). PMIMU−OMCS

is unknown at t = t0 (b) but it might be approximated using (c). Using the orientation output of the MIMU, the vertical
direction zGF of the MIMU-sensed Earth-fixed frame is known in RMIMU . Furthermore, since MIMUs’ attitude is not
affected by magnetic perturbations, the vertical direction detection by MIMUs is robust and is consistent with that of the
OMCS global frame ROMCS. Therefore, zGF = zOMCS in RMIMU . The manual alignment of the MIMU on body segments
and the static posture taken by the participant allows assuming that the x axis of the MIMU local frame xMIMU is in the
plane defined by xOMCS and yOMCS axes. This in turn can be used to approximate xOMCS and yOMCS in RMIMU (d). Lastly,
PMIMU−OMCS is obtained at t = t0 as the inverse of POMCS−MIMU (e).

From Equations (2) and (3):

xOMCS ∈
{

xMIMUi ; zGF
}

RMIMUi
(4)

Then, yOMCS is orthogonal to the plane defined by
{

xMIMUi ; zGF
}

RMIMUi
and

yOMCS|RMIMUi
=

zGF|RMIMUi
× xMIMUi |RMIMUi∣∣∣∣∣∣zGF|RMIMUi
× xMIMUi |RMIMUi

∣∣∣∣∣∣ (5)

xOMCS|RMIMUi
= yOMCS|RMIMUi

× zGF|RMIMUi
(6)
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POMCS−MIMUi =

 xOMCS
yOMCS
zOMCS


RMIMUi

(7)

The transformation matrix POMCS−MIMUi obtained during the static phase allows
expressing the vector rIMUi−sCoMi obtained in the OMCS frame ROMCS in the MIMU local
frame RMIMUi . It follows that SCoM accelerations can be computed in their respective

sensor frame at all timestamps following Equation (1), where
.

ΩIMUi is obtained using a
5-point stencil differentiation of the angular velocity ΩIMUi .

2.1.2. Merging SCoM Accelerations in a Consistent Common Global Frame

Since MIMUs may sense inconsistent global frames (RGF) [29], a consistent common
global reference frame RG must be defined consistently for all MIMUs in order to merge
the SCoM accelerations in a global reference frame and to compute the BCoM acceleration.
In the present study, the reference frame sensed by the trunk MIMU RGFtrunk , rotated so
that one axis is coincident with the direction of progression, is chosen as the common
global reference frame ( RG = Rz(θ)× RGFtrunk , see Figure 2). This choice is supported
by the lesser exposition of the trunk MIMU to magnetic perturbations compared to the
MIMUs located on other segments, as the trunk lies farther from the ground [30] and is
subject to low height variation while walking [48]. The direction of progression can be
inferred from the orientation output of the trunk MIMU using the fact that one of its axes
lies in the sagittal plane of the participant and is, therefore, oriented towards the direction
of progression.
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progression, using the orientation of the trunk MIMU local frame (RMIMUtrunk ).

For each MIMUi, the constant transformation matrix PG−GFi between the MIMU’s
sensed global frame RGFi and the common global reference frame RG = Rz(θ)× RGFtrunk
is obtained during the initial static posture at the beginning of each acquisition using
the known orientation in ROMCS of both the trunk MIMU (POMCS−MIMUtrunk) and MIMUi
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(POMCS−MIMUi) (Section 2.1.1), as well as their known orientation outputs (PMIMUtrunk−GFtrunk ,
PMIMUi−GFi) (Equations (8)–(10)):

PG−GFtrunk = Rz(θ) (8)

PG−GFi = PG−GFtrunk × PGFtrunk−GFi = Rz(θ)× PGFtrunk−GFi (9)

PG−GFi = Rz(θ)× PGFtrunk−MIMUtrunk (t0)× PMIMUtrunk−OMCS (t0)× POMCS−MIMUi (t0)× PMIMUi−GFi (t0) (10)

Using the constant transformation matrix PG−GFi and the orientation output pro-
vided by each MIMU ( PMIMUi−GFi = P−1

GFi−MIMUi
), the acceleration of each SCoM can be

expressed in a consistent global reference frame at all timestamps:

aG
sCoMi

(t) = PG−GFi × PGFi−MIMUi (t)× aMIMUi
sCoMi

(t) (11)

2.1.3. Estimating 3D BCoM Acceleration and Velocity
Selected Sensor Networks

As mentioned above, based on the results of a previous work that analyzed the contri-
butions of the body segments to the BCoM acceleration in ten people with transfemoral
amputation [44], three sensor networks each composed of 3 to 5 segments were considered
as good candidates for the estimation of BCoM acceleration and velocity (Table 1). BCoM
acceleration and velocity obtained using a unique MIMU at the trunk level were also
analyzed to verify the hypothesis that using multiple sensors instead of a single sensor
would improve the accuracy of the estimates.

Table 1. List of the sensor networks investigated for the estimation of 3D BCoM acceleration and
velocity using the wearable framework.

Number of Sensors Instrumented Segments

5 Trunk, thighs, shanks
5 Trunk, thighs, feet
3 Trunk, shanks
1 Trunk

3D BCoM Acceleration

For each of the selected sensor networks, SCoM accelerations of the included seg-
ments were expressed in RG and fused to compute 3D BCoM acceleration, with mSegi
representing the mass of the ith segment derived from the personalized inertial model
and N representing the number of MIMU-bearing segments included in the network
(Equation (12)):

aBCoM =
N

∑
i=1

msegi

∑N
j=1 msegj

aSCoMi (12)

3D BCoM Velocity

The 3D BCoM velocity was computed stride per stride as the sum of the average
walking speed and the cyclical component. Stride segmentation was performed at the
prosthetic heel strike from shank MIMU readings [49,50]. Subsequently, the average
component of 3D BCoM velocity (or “average walking speed”) was estimated as the ratio
of the displacement of the prosthetic shank along the direction of progression within a
stride to the stride duration, using the kinematic model specifically developed for people
with lower-limb amputation by Durrafourg and coworkers [51]. The cyclical component of
the 3D BCoM velocity was computed from direct numerical integration of 3D MIMU-based
BCoM linear acceleration followed by high-pass filtering [52].
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2.2. Evaluation of the Wearable Framework
2.2.1. Experimental Protocol

A proof-of-concept validation was performed to evaluate the wearable-based frame-
work. One male individual with transfemoral amputation (mass: 83 kg, stature: 1.69 m,
age: 35 years old) gave his written informed consent to participate in the study, which was
conducted according to the guidelines of the Declaration of Helsinki and approved by an in-
dependent Ethics Committee (Comité de Protection des Personnes, NX06036, approved on
1 March 2019). He was instrumented with a full-body marker set and seven MIMUs (Xsens
Technologies B.V., Enschede, The Netherlands, 100 samples·s−1) on the feet, shanks, thighs
and trunk, each mounted on a 3D-printed plastic support with housings for four reflective
markers (Figure 3). An OMCS (Vicon, Oxford Metrics, UK, 200 samples·s−1) recorded the
markers’ 3D position while four photographs (front, back, both sides) were taken. Then,
starting from a static standing posture, the participant walked at self-selected speed along
an 8 m pathway, with three force plates (AMTI, Advanced Mechanical Technology, Inc.,
Watertown, MA, USA, 1000 Hz) in the middle. Synchronization between instruments was
achieved by an electronic trigger signal. Only trials with three successive foot contacts on
the force plates (i.e., a complete stride), were considered for further analysis.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 19

the displacement of the prosthetic shank along the direction of progression within a stride 
to the stride duration, using the kinematic model specifically developed for people with
lower-limb amputation by Durrafourg and coworkers [51]. The cyclical component of the 
3D BCoM velocity was computed from direct numerical integration of 3D MIMU-based 
BCoM linear acceleration followed by high-pass filtering [52]. 

2.2. Evaluation of the Wearable Framework 
2.2.1. Experimental Protocol

A proof-of-concept validation was performed to evaluate the wearable-based frame-
work. One male individual with transfemoral amputation (mass: 83 kg, stature: 1.69 m,
age: 35 years old) gave his written informed consent to participate in the study, which was 
conducted according to the guidelines of the Declaration of Helsinki and approved by an 
independent Ethics Committee (Comité de Protection des Personnes, NX06036, approved
on 1 March 2019). He was instrumented with a full-body marker set and seven MIMUs 
(Xsens Technologies B.V., Enschede, The Netherlands, 100 samples·s−1) on the feet, shanks,
thighs and trunk, each mounted on a 3D-printed plastic support with housings for four
reflective markers (Figure 3). An OMCS (Vicon, Oxford Metrics, UK, 200 samples·s−1) rec-
orded the markers’ 3D position while four photographs (front, back, both sides) were
taken. Then, starting from a static standing posture, the participant walked at self-selected 
speed along an 8 m pathway, with three force plates (AMTI, Advanced Mechanical Tech-
nology, Inc., Watertown, MA, USA, 1000 Hz) in the middle. Synchronization between in-
struments was achieved by an electronic trigger signal. Only trials with three successive 
foot contacts on the force plates (i.e., a complete stride), were considered for further anal-
ysis.  

Figure 3. Full-body marker set and custom 3D-printed plastic MIMU housing.

2.2.2. Data Processing 
Data were filtered using a zero-phase fourth-order Butterworth filter. Cut-off fre-

quencies were identified using a spectral analysis approach (5 Hz for marker and MIMU 
raw data, 10 Hz for force plates). Reference SCoM accelerations were obtained by double
differentiation of OMCS-based SCoM positions. Each differentiation step was followed by 
a zero-phase low-pass Butterworth fourth-order filter with cut-off frequencies set to 8 Hz 
(velocity) and 10 Hz (acceleration). Reference 3D BCoM acceleration was computed from

Figure 3. Full-body marker set and custom 3D-printed plastic MIMU housing.

2.2.2. Data Processing

Data were filtered using a zero-phase fourth-order Butterworth filter. Cut-off fre-
quencies were identified using a spectral analysis approach (5 Hz for marker and MIMU
raw data, 10 Hz for force plates). Reference SCoM accelerations were obtained by double
differentiation of OMCS-based SCoM positions. Each differentiation step was followed by
a zero-phase low-pass Butterworth fourth-order filter with cut-off frequencies set to 8 Hz
(velocity) and 10 Hz (acceleration). Reference 3D BCoM acceleration was computed from
the force plates’ signal while reference 3D BCoM velocity was computed from the inertial
model, to avoid error propagations due to ill-chosen integration constants when estimating
the velocity from force platforms.

For each sensor network configuration, reference and MIMU-based SCoM and BCoM
accelerations/velocities were compared using Pearson’s correlation coefficient ρ, root mean
square error (RMSE) and peak-to-peak normalized RMSE (NRMSE, as introduced in [53])
averaged over the trials. Errors in the estimation of BCoM velocity were also quantified
in percentage of the average walking speed in the direction of progression (ARMSE).
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The average and standard deviation of the (normalized) RMSE respectively indicate the
accuracy and precision of the methods.

3. Results

Seven trials, resulting in thirteen strides, were analyzed. Only the middle strides
occurring entirely on the force plates were considered for the investigation of BCoM
acceleration accuracy (i.e., seven strides), whereas the whole set of strides was analyzed for
the SCoM acceleration and BCoM velocity.

3.1. SCoM and BCoM Acceleration

Results of the comparison between MIMU-derived and OMCS-based SCoM acceler-
ations are provided in Table 2. Correlations between MIMU-based and reference SCoM
acceleration were small at both feet and moderate at the sound shank in the mediolateral
direction but were strong otherwise (ρ > 0.7).

Table 2. Accuracy of segments’ center of mass accelerations estimated with MIMU compared to the optical motion capture
reference in terms of root mean square error (RMSE), normalized RMSE and Pearson’s correlation coefficient (ρ). Means
(standard deviations) over the considered stride cycles are reported.

Segment
RMSE (m·s−2) NRMSE (%) Pearson’s ρ

Anteroposterior Mediolateral Vertical Anteroposterior Mediolateral Vertical Anteroposterior Mediolateral Vertical

Prosthetic
foot 2.94 (0.61) 2.74 (0.65) 2.00 (0.21) 5.2 (1.1) 26.1 (4.0) 6.6 (0.7) 0.97 (0.01) 0.27 (0.14) 0.96 (0.01)

Sound foot 3.64 (1.10) 3.99 (0.70) 3.31 (1.05) 6.3 (1.9) 22.1 (5.4) 8.4 (1.4) 0.96 (0.03) 0.19 (0.18) 0.90 (0.06)
Prosthetic

shank 1.58 (0.33) 1.21 (0.39) 1.38 (0.08) 5.0 (1.0) 16.7 (5.3) 12.4 (0.8) 0.97 (0.01) 0.71 (0.16) 0.88 (0.02)
Sound shank 2.08 (0.43) 1.49 (0.43) 1.56 (0.19) 8.9 (1.6) 18.9 (4.1) 12.4 (1.9) 0.93 (0.03) 0.42 (0.20) 0.83 (0.05)

Prosthetic
thigh 1.94 (0.07) 0.50 (0.11) 0.79 (0.02) 18.5 (0.6) 7.6 (1.7) 7.5 (0.4) 0.83 (0.03) 0.94 (0.04) 0.96 (0.00)

Sound thigh 2.10 (0.66) 0.72 (0.12) 0.94 (0.33) 10.5 (1.5) 14.6 (1.8) 9.5 (1.7) 0.85 (0.10) 0.74 (0.08) 0.90 (0.07)
Trunk 0.95 (0.05) 0.48 (0.04) 0.43 (0.22) 12.8 (1.1) 12.9 (1.1) 5.7 (2.4) 0.73 (0.04) 0.89 (0.02) 0.97 (0.03)

Average (all
segments) 2.04 (0.99) 1.47 (1.25) 1.39 (0.95) 10.0 (4.6) 16.6 (6.3) 9.1 (2.8) 0.87 (0.10) 0.62 (0.30) 0.92 (0.06)

Results of the comparison between MIMU-based and force-platform-based BCoM
accelerations are provided in Table 3 and in Figure 4. Correlations between MIMU-based
and reference BCoM acceleration were strong for all the tested sensor networks in all
directions (ρ > 0.7). The added value of using multiple sensors instead of a single sensor at
trunk level is demonstrated by the increased accuracy and the better fit of reference BCoM
acceleration in the anteroposterior and mediolateral directions when using multiple-sensor
networks (Table 3, Figure 4).

Table 3. Accuracy of sensor-network-based MIMU-derived BCoM acceleration as compared with force-platform-based
acceleration in terms of root mean square error (RMSE), normalized RMSE and Pearson’s correlation coefficient (ρ). Means
(standard deviations) over the considered stride cycles are reported.

Sensor
Network

RMSE (m·s−2) NRMSE (%) Pearson’s ρ

Anteroposterior Mediolateral Vertical Anteroposterior Mediolateral Vertical Anteroposterior Mediolateral Vertical

Trunk, thighs,
shanks 0.54 (0.02) 0.32 (0.03) 0.57 (0.06) 13.7 (0.9) 14.0 (2.1) 8.5 (0.5) 0.93 (0.01) 0. 89 (0.04) 0.95 (0.01)

Trunk, thighs,
feet 0.33 (0.02) 0.37 (0.03) 0.51 (0.05) 9.7 (0.7) 13.7 (0.7) 7.4 (0.4) 0.93 (0.01) 0.88 (0.02) 0.96 (0.01)

Trunk,
shanks 0.40 (0.06) 0.50 (0.05) 0.54 (0.04) 11.6 (2.1) 21.5 (2.7) 7.7 (0.4) 0.89 (0.03) 0.74 (0.08) 0.96 (0.00)
Trunk 0.66 (0.05) 0.70 (0.05) 0.63 (0.06) 17.0 (1.2) 23.5 (2.0) 8.8 (0.6) 0.78 (0.02) 0.76 (0.05) 0.95 (0.00)

3.2. BCoM Velocity

A comparison of the accuracy of sensor-network-based BCoM velocity to that of the
reference inertial model is presented in Table 4. MIMU-based and reference BCoM velocity
averaged over the thirteen prosthetic strides are displayed in Figure 5. Interestingly, the
sensor networks that achieved the best estimation of BCoM velocity were different from
those that achieved the best fit for BCoM acceleration. The five-MIMU sensor network
including the shanks performed better than that including the feet in all directions, as
displayed by the higher Pearson’s correlation coefficients and the lower RMSEs. BCoM
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velocity estimated with the trunk SCoM acceleration achieved a good fit of BCoM velocity
with excellent correlations in the mediolateral and vertical direction (ρ ≥ 0.92), but only
a moderate agreement in the anteroposterior direction (ρ = 0.57). Furthermore, high
errors were recorded for this model in the anteroposterior and mediolateral directions
(RMSE ≥ 0.08 m·s−1).
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Table 4. Accuracy of body center of mass (BCoM) velocity derived from the sensor-network-based BCoM acceleration compared to the
reference velocity computed from optical motion capture in terms of root mean square error (RMSE), RMSE normalized to average
walking speed (ARMSE) and peak-to-peak normalized RMSE (NRMSE).

Sensor
Network

RMSE (m s−1) ARMSE (%) NRMSE (%) Pearson’s ρ

Anteroposterior Mediolateral Vertical Anteroposterior Anteroposterior Mediolateral Vertical Anteroposterior Mediolateral Vertical

Trunk,
thighs,
shanks

0.05 (0.02) 0.05 (0.01) 0.03 (0.02) 3.7 (1.0) 14.9 (4.2) 13.2 (3.0) 6.0 (0.8) 0.94 (0.04) 0.96 (0.03) 0.99 (0.00)

Trunk,
thighs, feet 0.05 (0.01) 0.06 (0.02) 0.03 (0.01) 3.8 (0.8) 18.6 (5.3) 15.6 (3.9) 6.0 (0.6) 0.84 (0.05) 0.90 (0.04) 0.99 (0.01)

Trunk,
shanks 0.04 (0.01) 0.05 (0.01) 0.03 (0.01) 3.0 (1.1) 13.2 (5.0) 13.7 (2.4) 6.7 (1.0) 0.92 (0.03) 0.94 (0.01) 0.99 (0.00)
Trunk 0.08 (0.01) 0.09 (0.01) 0.04 (0.01) 6.4 (0.6) 26.4 (2.8) 20.8 (1.7) 7.6 (0.8) 0.57 (0.06) 0.92 (0.02) 0.99 (0.00)
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4. Discussion

This study aimed at proposing and validating a framework for the estimation of both
BCoM acceleration and velocity from an optimal network of MIMUs. Based on the results
of an OMCS-based study performed on ten people with transfemoral amputation [44],
several sensor networks were investigated, including from 3 to 5 MIMUs positioned
on the trunk and on one or more pairs of the lower limb segments. The added value
of using a multiple-sensor network instead of a single sensor at trunk level was also
investigated by comparing the accuracy of the estimated quantities using the various
sensor networks to that obtained with a single trunk-mounted MIMU. This pilot study
demonstrated the feasibility of accurately estimating the 3D BCoM instantaneous walking
velocity and acceleration for people with transfemoral amputation by using five MIMUs.
The importance of this study resides in the lack of methods available to accurately estimate
3D BCoM kinematics from a limited number of sensors during gait, including for people
with a lower-limb amputation. However, the fact that the framework was validated on one
participant only should be kept in mind before generalization of the achieved results to the
population of transfemoral amputees.

4.1. SCoM and BCoM Acceleration

In the developed framework, the BCoM acceleration is estimated through a weighted
average of SCoM accelerations obtained from MIMUs. To the authors’ knowledge, this
is the first study that reported accuracy results for the estimation of SCoM accelerations
from MIMUs.

Interestingly, when more than three sensors were used for estimating the BCoM
acceleration, higher errors were recorded on average for the estimation of accelerations
at the SCoMs than at the BCoM. Accelerations estimated at the shanks and feet had the
highest errors and were poorly (sound limb) or moderately (prosthetic limb) correlated
with the reference SCoM acceleration in the mediolateral direction. A possible reason for
this discrepancy lies in the assumptions made regarding the alignment of the MIMU local
frames with those of the global reference frame in static condition. Indeed, the participant
was not specifically asked to stand with his feet parallel, which necessarily affected the
hypothesis that one axis of the foot-mounted MIMU local frames lies in the sagittal plane.
Natural outward alignment of the feet of 20◦ has been reported in the literature [54], which
would have had an impact on the orientation of both the feet and the shanks. However,
sensor networks that included feet and thigh segments were shown to be superior to
their counterparts using shank-mounted MIMUs in terms of accuracy with the BCoM
acceleration (Table 3).

In the present study, BCoM acceleration estimated using a single trunk-mounted
sensor resulted in lower accuracy in the anteroposterior and mediolateral directions than
that reported by Mohamed Refai and coworkers with a single MIMU at pelvis level in
eight asymptomatic participants [35]. However, the presented framework achieved higher
accuracy in the vertical direction and higher consistency with the reference acceleration
pattern in the mediolateral and vertical directions, as demonstrated by higher correlation
coefficients. When estimated using multiple sensors, MIMU-based BCoM acceleration
results were in agreement with those reported in healthy subjects using OMCS-based
accelerations [24]. Indeed, using three sensors (MIMUs mounted on the trunk and shanks),
the method proposed in the present study achieved similar to improved accuracy (mean
NRMSE) and better precision (standard deviation of the NRMSE) compared to the method
proposed by Shahabpoor and coworkers using the acceleration of three different segments
(trunk, pelvis and a thigh) in healthy participants (present study vs. healthy participants:
11.6 ± 2.1% vs. 16 ± 2.0% in the anteroposterior direction, 21.5 ± 2.7% vs. 18 ± 6.7% in
the mediolateral direction and 7.7 ± 0.4% vs. 7 ± 1.7% in the vertical direction). Although
walking variability for people with lower-limb amputation is higher with respect to typical
gait [55], it may be speculated that the increased precision in the present study could be
related to the fact that only intra-subject variability was considered since a single participant
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was tested. Conversely, six asymptomatic subjects ambulating at different walking speeds
were recruited in [24]. It is worth noting that, in the former study, BCoM acceleration was
estimated from a weighted average of SCoM accelerations derived from optical motion
capture measurement. Therefore, decreased accuracy and precision are expected when
transferring the methodology to MIMUs. The validity of the method presented in [24]
when using wearable sensors was only investigated in the vertical direction, where a mean
accuracy of 8.7% was achieved (1.7% decrease in accuracy). Therefore, the results achieved
in the present study using a three-MIMU configuration can be considered very promising.

Increasing the number of MIMUs allowed improving the accuracy of the estimated
BCoM acceleration, particularly in the mediolateral direction (Table 3). Interestingly, the
five-MIMU sensor network including sensors on the thighs and shanks resulted in an
improved accuracy only in the mediolateral direction compared to the three-MIMU sensor
network that did not include the thighs, while an increased accuracy in the anteroposterior
direction was also observed when considering the five-MIMU network including the
sensors on the thighs and feet. High consistency between reference and MIMU-based
3D BCoM acceleration patterns was observed with all the investigated sensor networks,
with perceivable deviations in the mediolateral direction for the three-MIMU configuration
(Table 3, Figure 4).

In light of these results, the three-segment sensor network including both shanks and
the trunk appears to be optimal when the sagittal plane BCoM acceleration is targeted
(anteroposterior and vertical directions). Differently, when the 3D BCoM acceleration must
be estimated with high accuracy, a five-sensor model including the trunk, both thighs and
either both feet or both shanks is to be preferred.

4.2. BCoM Velocity

BCoM velocity was computed stride per stride using the sum of a cyclical component
and an average component (average walking speed). The former was derived from the
kinematic model developed in [51], which imposes the use of a MIMU mounted on the
prosthetic shank, even when the sensor networks used for BCoM acceleration estimation
did not include a sensor at the shank. In order to keep the number of sensors at a minimum,
it is therefore preferred, with this integration method, to use sensor networks including the
shank segments rather than the feet. On the other hand, the numerical integration of the
foot acceleration between successive foot flat periods could be used to estimate the average
walking speed [56]. However, reliable detection of foot flat events from inertial sensors
may not be straightforward for people with lower-limb amputation.

BCoM velocity estimated from a single sensor at trunk level showed a slight phase
anticipation in the anteroposterior direction (Figure 5) and lacked accuracy in the antero-
posterior and mediolateral directions (average RMSE ≥ 0.08 m s−1) (Table 4). The use of
multiple sensors arranged in networks allowed improving the estimated velocity by up
to 13.2% in the anteroposterior direction. Interestingly, the three-MIMU sensor network
including the trunk and shanks provided the most accurate estimate of BCoM velocity in
the anteroposterior direction, with errors in the order of 3.0 ± 1.1% of the average walking
speed (average RMSE = 0.04 ± 0.01 m s−1). Adding supplementary sensors at the thighs
resulted in a better fit of the curve pattern in the anteroposterior and mediolateral directions
(Figure 5), but it resulted in a slight decrease in accuracy in the anteroposterior direction
(RMSE of 0.05 ± 0.02 m s−1, corresponding to 3.7 ± 1.0% of the average walking speed)
due to the overestimation of BCoM velocity peaks in that direction (Figure 5). Therefore,
although three MIMUs allowed estimating BCoM acceleration and velocity with a good
accuracy index, using five MIMUs on the trunk, thighs and shanks should be preferred if a
strong accuracy is required, especially in the mediolateral direction. The model including
the foot sensors achieved lower accuracy in the anteroposterior and mediolateral directions
than the models including the shanks. This might be a consequence of the assumption of
parallel feet required for computing the relative orientation of the reference frames sensed
by the feet MIMUs in the global reference frame (see Equation (2)).
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As only a few studies in the literature have focused on the estimation of the instan-
taneous BCoM velocity, a direct comparison of our results with the existing literature is
arduous. Furthermore, all former studies investigating the instantaneous BcoM velocity
used the assumption that the BcoM was fixed in the pelvis anatomical frame. Sabatini
and Mannini investigated a method for the estimation of the instantaneous velocity of
a MIMU positioned at the pelvis compared to the velocity of an optical motion capture
marker positioned on top of the MIMU [38]. Validation results are proposed separately for
the cyclical component (limits of agreement (±1.96 standard deviation) of ±0.10 m s−1 in
the anteroposterior and mediolateral direction and ±0.05 m s−1 in the vertical direction)
and average component (RMSE = 0.07 m s−1 when ambulating overground). A smaller
dataset was used in the present study, but higher accuracy was achieved for the cyclical
component (±1.96 standard deviation of the RMSE:±0.03 m s−1 in all directions, including
when using a single sensor at the trunk level).

Regarding the average walking speed, several authors have proposed algorithms for
its estimation using inertial sensors [45]. Only two studies reported an estimate of the
average walking speed within less than 3.7% of its nominal value. In [57], the average
walking speed was estimated from double integration of the acceleration of a foot-mounted
MIMU in 20 healthy participants (young and elderly) and achieved higher accuracy but
lower precision (1.5 ± 5.8% of the actual walking velocity) than the proposed method.
Using a shank-mounted MIMU and a kinematic model relying on stance knee flexion,
which is absent for people with transfemoral amputation, Yang and coworkers estimated
the average walking speed within 4.0% of its nominal value [58].

4.3. Limitations and Perspectives

The developed framework allowed the estimation of the instantaneous walking speed
and acceleration of the body center of mass from five MIMUs positioned on the trunk and
the thigh and shank segments of one person with transfemoral amputation. Results should
be confirmed in a larger cohort prior to generalization.

As a major requirement, the proposed wearable framework was designed to be as
compatible as possible with clinical use. Currently, the framework requires the use of
a camera and an optoelectronic system for the personalization of the geometric inertial
model and the estimation of the relative position of each MIMU to the center of mass
of the underlying segment in the intermediary photograph reference frame during a
static acquisition. The use of these external devices, and especially of the optical motion
capture system, compromises the direct transfer of the framework to the clinical field.
The optical motion capture system was used for the calibration of photographs and for
the construction of an initial geometric inertial model based on anatomical landmarks.
Projections of the initial volumes on the frontal and sagittal photographs were manually
reshaped so as to fit the participant’s body contours [46]. Therefore, using a different system
for the calibration of photographs—or a method that does not require taking photographs
at all—would facilitate the transfer of the framework to the clinical field. Regarding
the first solution, the use of a device of known shapes and dimensions would allow
calibrating photographs without the use of an OMCS. As for a possible alternative to taking
photographs, body segmental inertial parameters and positions of anatomical landmarks
and MIMUs could be retrieved from body meshes obtained with a 3D scanner. A semi-
automatic method, requiring less than one minute of acquisition, has been proposed and
validated in nine healthy participants [59]. Its validity for impaired people, in particular
for people with a lower-limb prosthesis, remains to be verified. All in all, making the
framework fully wearable does not appear to be a major issue, even if it would require
some further development and validation. It should be noted that the method would still
rely on an external portable device (camera/3D scanner) in order to retrieve the SCoM and
MIMU positions in a consistent intermediary global frame (the scanner or camera frame).
Therefore, the impact of errors in the estimations of the relative positions of MIMUs and
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SCoM on the output parameters (SCoM and BCoM acceleration, BCoM velocity) remains
to be investigated.

It should be noted that, in order to obtain the relative position of MIMUs and SCoM
in the MIMU local frame, the framework uses a static calibration during which both
the relative SCoM/MIMU positions and the orientations of MIMUs are estimated in an
intermediary global frame. To do so, MIMUs were aligned such that one of the axes of their
respective local frame lay in the sagittal plane of the motion. It should be stressed that
this strong hypothesis was required only to derive the SCoM positions in their respective
MIMU local frames and was not directly used for the definition of a consistent common
reference frame or to derive segment orientation over time. Therefore, the impact of the
misalignment of MIMUs on their respective underlying segment is believed to be minimal,
which would not have been the case if the aim of this study was to derive joint angles [48,60].
Verification of this hypothesis should also be investigated in further studies.

The proposed framework could finally be enhanced in order to obtain complementary
biomechanical parameters, such as individual limb ground reaction forces estimated from
MIMUs [17,18]. For people with lower-limb amputation, in particular, receiving/giving
feedback on the load distributed to each lower limb represents an interesting track for
rehabilitation [61]. Several models proposing a smooth transition of the weight from one
limb to another have been investigated in the literature [21,53], but their appropriateness
for impaired gait remains to be assessed. Therefore, developing a method allowing the
estimation of the ground reaction force under each foot from MIMU-based BCoM accelera-
tion for people with transfemoral amputation represents a relevant track of research for
future works. Furthermore, insight on mechanical energy exchanges can be inferred from
the product of instantaneous BCoM velocity with the ground reaction force under each
limb [8,62,63]. If data regarding the metabolic cost are available (possibly using regression
equations from a body-worn accelerometer [64]), information about the actual patient’s
locomotion efficiency can also be obtained. Such information about mechanical work,
energy or efficiency can prove useful for the prescription of prosthetic components. An
example in this field is provided by the work of Agrawal and colleagues [10], who proposed
and validated an index based on the external work asymmetry between the sound and
prosthetic limb to discriminate different prosthetic foot designs.

5. Conclusions

The results of the proposed framework are encouraging and suggest that MIMUs may
represent a promising alternative to lab-based instruments when the 3D BCoM acceleration
or velocity is targeted. Using a network of five MIMUs on the trunk, thighs and shanks
indeed allowed the estimation of 3D BCOM acceleration and velocity in a person with
transfemoral amputation with a strong agreement with reference data obtained from force
platforms (acceleration: ρ ≥ 0.89) and an optical motion capture (velocity: ρ ≥ 0.94) with
high accuracy (NRMSE ≤ 14% for the 3D acceleration and ≤ 15% for the 3D velocity).
When only 2D BCoM kinematics are targeted, an inertial sensor network consisting of three
MIMUs on the trunk and shanks was found to yield a similar level of accuracy and precision
(ρ ≥ 0.89, NRMSE ≤ 13% for both 2D acceleration and 2D velocity). Results of this proof-
of-concept study still need to be confirmed on a larger cohort to demonstrate the validity
of MIMUs as an alternative motion capture system for 3D BCoM kinematics tracking.
Furthermore, a test–retest design should be implemented to verify the inter-operator and
intra-subject reproducibility of the method.

In the medium term, future studies will aim at assessing (1) the accuracy achieved
when a fully wearable framework (that is, without an optical motion capture system) is
implemented and (2) the impact of MIMU misplacement on the estimation of SCoM and
BCoM kinematic parameters.
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