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Abstract: Panoramic dental radiography is one of the most used images of the different dental
specialties. This radiography provides information about the anatomical structures of the teeth. The
correct evaluation of these radiographs is associated with a good quality of the image obtained. In
this study, 598 patients were consecutively selected to undergo dental panoramic radiography at the
Department of Radiology of the Faculty of Dentistry, Universidad Nacional de Asunción. Contrast
enhancement techniques are used to enhance the visual quality of panoramic dental radiographs.
Specifically, this article presents a new algorithm for contrast, detail and edge enhancement of
panoramic dental radiographs. The proposed algorithm is called Multi-Scale Top-Hat transform
powered by Geodesic Reconstruction for panoramic dental radiography enhancement (MSTHGR). This
algorithm is based on multi-scale mathematical morphology techniques. The proposal extracts
multiple features of brightness and darkness, through the reconstruction of the marker (obtained
by the Top-Hat transformation by reconstruction) starting from the mask (obtained by the classic
Top-Hat transformation). The maximum characteristics of brightness and darkness are added to
the dental panoramic radiography. In this way, the contrast, details and edges of the panoramic
radiographs of teeth are improved. For the tests, MSTHGR was compared with the following
algorithms: Geodesic Reconstruction Multiscale Morphology Contrast Enhancement (GRMMCE),
Histogram Equalization (HE), Brightness Preserving Bi-Histogram Equalization (BBHE), Dual Sub-
Image Histogram Equalization (DSIHE), Minimum Mean Brightness Error Bi-Histogram Equalization
(MMBEBHE), Quadri-Histogram Equalization with Limited Contrast (QHELC), Contrast-Limited
Adaptive Histogram Equalization (CLAHE) and Gamma Correction (GC). Experimentally, the
numerical results show that the MSTHGR obtained the best results with respect to the Contrast
Improvement Ratio (CIR), Entropy (E) and Spatial Frequency (SF) metrics. This indicates that the
algorithm performs better local enhancements on panoramic radiographs, improving their details
and edges.

Keywords: panoramic dental radiography; contrast enhancement; multi-scale mathematical
morphology; top-hat transformation
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1. Introduction

Panoramic dental radiography is one of the most widely used medical imaging
techniques, both by the general practitioner and in the various dental specialties [1–3].
A good quality of the image obtained is essential to its correct interpretation. This can
be affected by various factors such as the device used, the acquisition technique and the
subsequent processing of the acquired images [4,5]. One of the limitations of this type of
images is that it is a two-dimensional representation of a three-dimensional object, so the
different anatomical structures are superposed in the images obtained.

Contrast enhancement techniques not only help the dentist make a better assessment
of the radiographs, but they are also used as a preprocessing of other more advanced
automatic identification schemes based on deep learning [6]. Many contrasts, brightness,
detail and edge enhancement algorithms have been proposed. Histogram-based algorithms
are very popular for improving image contrast, brightness and detail. Among the most
popular are Histogram Equalization (HE) and Contrast-Limited Adaptive Histogram
Equalization (CLAHE) [7]. There are many variants of the histogram-based algorithms,
and they have been used to make improvements in different types of images [5,8–15].
Ahmad et al. [16] compared contrast enhancement techniques based on histograms. These
techniques help to improve the visual quality of the images. This allows specialists to
better identify pathologies within the images. In addition, Rahmi-Fajrin et al. [12] studied
how contrast enhancement results affect the dentist’s evaluation. A relatively new contrast
enhancement technique is based on mathematical morphology. This uses top-hat operations
to extract bright and dark features from the image. These features are finally added to
the original image. In this way, the contrast of the images is enhanced [17,18]. In [19], a
method for improving chest radiographs that use Top-Hat transformations to iteratively
extract useful image features is presented. The selection of the optimal scale is made
taking into account the measurement of the contrast enhancement ratio. Other algorithms
based on multi-scale mathematical morphology have been proposed more recently to
improve the performance of Top-Hat transformations [20–22]. These schemes proved to be
effective at improving contrast, detail and edges of images, and they have been applied
to different types of images satisfactorily [20–27]. In [27], an algorithm using the Top-Hat
transformations by reconstruction at multiple scales is presented. This makes it possible to
improve the contrast of medical images without distorting them. There are also techniques
with hybrid approaches, which consist of the strategic combination of two or more image
enhancement techniques [4,28–30]. In [29], a hybrid contrast enhancement scheme based
on CLAHE and morphological operations is presented. With this approach, it is possible to
enhance contrast and reduce noise in dental X-ray images.

This article presents a novel contrast and detail enhancement algorithm for panoramic
dental radiography images. The proposed enhancement approach uses multi-scale math-
ematical morphology. First, in each iteration, the classic top-hat transform (mask) of the
image and the top-hat transform by image reconstruction (marker) are calculated. Then, the
marker is reconstructed starting from the mask. Here, only the most important bright and
dark anatomical structures that may be present in panoramic dental radiographs are taken
into account. Next, the extracted features are fused together by calculating the maxima
between all the iterations of the bright and dark scales. Finally, the most important bright
and dark areas are added to the original image.

Experimental results were evaluated using metrics that quantify global contrast, local
contrast and detail and edge enhancement. Then, dental specialists performed an objective
evaluation of the results obtained by the algorithms in a blind way.

The most important contributions of the work are:

1. A novel algorithm for contrast, detail and edge enhancement of panoramic dental
radiographs based on multi-scale mathematical morphology is proposed.

2. Objective clinical evaluation of the results, obtained by the algorithms, was performed
by specialists.
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The organization of the article is as follows. Section 2 presents the set of panoramic
radiographs and the proposed algorithm. Section 3 presents the experiments, discussions
and clinical evaluation of the results. Finally, Section 4 presents the conclusions of the work.

2. Materials and Methods

This section presents the dataset on which the tests are performed and the
proposed algorithm.

2.1. Dataset

In total, 598 patients (361 female and 237 male) were selected from consecutive pa-
tients undergoing dental panoramic radiography at the Department of Radiology of the
Faculty of Dentistry, Universidad Nacional de Asunción. Of these images, 107 images have
the following characteristics: complete dentition, without restorations and without radio-
graphically detectable pathologies. Images of this type were then used to make a clinical
validation of the results obtained by the different algorithms to be compared in Section 3.4.
The mean age was 36.7 years. Written informed consent was obtained from each patient
following the school’s protocol. The digital radiograph images were stored in jpeg format
with a resolution set to 2041 × 1024 pixels. The radiographs were taken between March
2015 and February 2020 using a panoramic radiograph (I-Max touch, Owandy Radiology,
France) with a tube voltage of 80 kV, tube current of 9 mA and an acquisition time of 14.4 s.
The dataset is available online https://doi.org/10.5281/zenodo.4457648, accessed on 26
January 2021.

The dataset contains mixed and permanent dentition images, with all teeth and
missing teeth, no restorations and with different types of restorations. Example panoramic
radiographs contained in the database are shown in Figure 1.

(a) 2.jpg (b) 4.jpg

(c) 34.jpg

Figure 1. Example panoramic radiographs: (a) mixed dentition; (b) partially edentulous permanent dentition; and (c)
complete permanent dentition.

2.2. Proposed Algorithm

The proposed algorithm, described in this section, is called Multi-Scale Top-Hat trans-
form powered by Geodesic Reconstruction for panoramic dental radiography enhancement
(MSTHGR). The proposed algorithm (MSTHGR) is a variation of the method described

https://doi.org/10.5281/zenodo.4457648
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by Roman et al. [27]. The main variation is in Equations (14) and (15). These equations
seek to highlight the differences between the light and dark areas of the image (contrast)
without altering too much the naturalness of the image. The results show images with
greater detail and sharper edges.

Let I be the original image and H a flat structuring element. The dilation δH(I) and
erosion εH(I) are defined as follows [31]:

δH(I)(u, v) = max
(x,y)∈H

(I(u− x, v− y)), (1)

εH(I)(u, v) = min
(x,y)∈H

(I(u + x, v + y)), (2)

where (u, v) and (x, y) are the pixel coordinates of I and H, respectively. The opening and
closing operations can be defined from the dilation and erosion operations.

Morphological opening [17] is obtained by dilating the image that is first eroded using
the same structuring element. Morphological opening of I for a H structuring element is
denoted by γ(I, H) and defined as:

γ(I, H) = δȞ(εH(I)), (3)

where Ȟ is the reflection of H.
Morphological closing [17] is obtained by eroding the image that is first dilated using

the same structuring element. Morphological closing of I for a H structuring element is
denoted by φ(I, H) and defined as:

φ(I, H) = ε Ȟ(δH(I)). (4)

If a structuring element is symmetrical, then it is equal to its reflection, i.e., H = Ȟ.
Top-hat transform by opening (WTH) [17] is obtained by subtracting from image I its

morphological opening γ(I, H), and it is defined as follows:

WTH(I, H) = I − γ(I, H). (5)

Top-hat transform by closing (BTH) [17] is obtained by subtracting from the morpho-
logical closing φ(I, H) the image I, and it is defined as follows:

BTH(I, H) = φ(I, H)− I. (6)

In geodesic transformations, two input images are used. The first image is modified
by a morphological transformation and restricted above or below the second image. The
morphological transformations allowed are erosion and dilation [32].

Let g be the marker image and I be the mask image and both have the same domain
(Dg = DI and g ≤ I). The geodesic dilation of size 1 or δ

(1)
I (g) is defined as the minimum

point to point between I and the dilation of g, i.e., δ
(1)
I (g) = min(δH(g), I). If we perform m

times the geodesic dilation of g with respect to I, we have to δ
(m)
I (g) = δ

(1)
I (g)[δ(m−1)

I (g)].
Geodesic dilation of g from I iterated to stability is called dilation by reconstruction [32]
and is defined as:

Rδ
I (g) = δ

(s)
I (g), (7)

where s is such that δ
(s)
I (g) = δ

(s+1)
I (g).

Let g be the marker image and I be the mask image and both have the same domain
(Dg = DI and g ≥ I).

The geodesic erosion of size 1 or ε
(1)
I (g) is defined as the maximum point to point

between I and the erosion of g, i.e., ε
(1)
I (g) = max(εH(g), I). If we perform m times the

geodesic erosion of g with respect to I we have to ε
(m)
I (g) = ε

(1)
I (g)[ε(m−1)

I (g)].
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Geodesic erosion of g from I iterated to stability is called erosion by reconstruction [32]
and is defined as:

Rε
I(g) = ε

(s)
I (g), (8)

where s is such that ε
(s)
I (g) = ε

(s+1)
I (g).

Opening by reconstruction [32] of an I image is defined as the reconstruction of I from
the m size erosion of I:

γ
(m)
R (I) = Rδ

I (εHm(I)), (9)

where I is the mask image, εHm(I) is the marker image and m is a scale factor of the
structuring element. If Hm is convex, then it is obtained as follows:

Hm = H1 ⊕ H1 ⊕ · · · ⊕ H1︸ ︷︷ ︸
dilation m-1 times

, (10)

where ⊕ is the operator of binary dilation. Binary dilation is the sum (vector) of all possible
pairs of coordinate points of the H1 set. That is, let p and q be the spatial coordinates of H1,
then H1 ⊕ H1 = {(p + q)| for all p, q ∈ H1}.

Closing by reconstruction [32] of an I image is defined as the reconstruction of I from
the m size dilation of I:

φ
(m)
R (I) = Rε

I(δHm(I)), (11)

where I is the mask image and δHm(I) is the marker image.
Structures removed by the opening by reconstruction can be recovered by the white

top-hat transform by Reconstruction (RWTH) [32]:

RWTH(I) = I − γR(I). (12)

Similarly, structures removed by the closing by reconstruction can be recovered by the
dark top-hat Transformation by Reconstruction (RBTH) [32]:

RBTH(I) = φR(I)− I. (13)

The multiple features of the bright areas are obtained, which are extracted by RTH [33]
as follows:

RTHi = Rδ
WTi

(RWi), (14)

where WTi = WTHi(I, Hi) is themask imageobtainedbyEquation(5), Hi = H1 ⊕ H1 ⊕ · · · ⊕ H1︸ ︷︷ ︸
dilation i-1 times

(⊕ is the operator of binary dilation) and 1 ≤ i ≤ n, RWi = RWTHi(I) = I − γ
(i)
R (I) is

the marker image obtained by Equation (12), RTHi are the i-scales of brightness that are
extracted from the image and i = {1, 2, 3, ..., n}.

Similarly, the multiple features of the dark areas of the image are extracted using
RBH [33] as follows:

RBHi = Rδ
BTi

(RBi), (15)

where BTi = BTHi(I, Hi) is the mask image obtained by Equation (6), RBi = RBTHi(I) =
φ
(i)
R (I) − I is the marker image obtained by Equation (13) and RBHi are the i scales of

darkness extracted from the image.
The subtractions between the multiple scales of the bright regions of the image are

obtained as follows [27]:
SWi−1 = RTHi − RTHi−1. (16)

Similarly, the subtractions between the multiple scales of the dark regions of the image
are obtained as follows [27]:

SBi−1 = RBHi − RBHi−1. (17)
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The maximum is obtained from all the multiple scales obtained in the different stages.
The maximum bright and dark scales, extracted from the image, are calculated as follows:

SRTH = max
1≤i≤n

{RTHi}, (18)

SRBH = max
1≤i≤n

{RBHi}. (19)

Figure 2 shows the bright and dark areas (maximum) extracted at the multiple scales.
The pixels in Figure 2a,b were multiplied by a constant equal to 10, and then their comple-
ment was calculated. This is to better highlight the contour of the teeth. These operations
were made for better visualization by the reader and they are not real operations applied
to the algorithm.

(a) SRTH (b) SRBH

Figure 2. Bright and dark areas (maximum).

All maximum bright and dark scales, extracted from the image by subtraction, are
obtained as follows:

SSW = max
2≤i≤n

{SWi−1}, (20)

SSB = max
2≤i≤n

{SBi−1}. (21)

Figure 3 shows the maximum of the differences in the bright and dark areas. The
pixels in Figure 3a,b were multiplied by a constant equal to 10, and then their complement
was calculated. This is to better highlight the contour of the teeth. These operations were
made for better visualization by the reader and they are not real operations applied to
the algorithm.

(a) SSW (b) SSB

Figure 3. Differences in the bright and dark areas (maximum).
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Finally, image enhancement is carried out as follows:

IE = I + (SRTH + SSW)− (SRBH + SSB), (22)

where IE is the panoramic dental radiography with contrast enhancement.
Figure 4 shows the final process of enhancing panoramic radiographs. The pixels in

Figure 4a,b were multiplied by a constant equal to 10, and then their complement was
calculated. This is to better highlight the contour of the teeth. These operations were
made for better visualization by the reader and they are not real operations applied to
the algorithm.

(a) (SRTH + SSW) (b) (SRBH + SSB)

(c) I (d) IE

Figure 4. Enhancement of panoramic radiograph 34.jpg.

2.3. Edge Detection or Segmentation Application

Image enhancement algorithms are commonly used to adjust images, either for visual
interpretation or as preprocessing for other algorithms such as edge detection or segmen-
tation. The image features extracted by segmentation or edge detection algorithms are
then used by classifiers to determine to which group the observed object belongs. An
application that consists of first applying an edge detection (for example Sobel’s algorithm)
to the panoramic radiograph and then a thresholding algorithm to decompose it into its
most representative parts can be seen in Figure 5. The Sobel algorithm performed better
edge detection in the enhanced image and its thresholding (algorithm based on maximum
entropy [34]) shows more representative parts of the image, as can be seen in Figure 5d,f.

Another potential utility of enhanced panoramic radiographs could be their use in
a learning environment, for example teaching and practicing interpretation of normal
anatomical structures in panoramic radiographs.
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(a) Original image (34.jpg) (b) Enhanced image with MSTHGR

(c) Original image with edges detected (d) Enhanced image with edges detected

(e) Image 5c binarized. (f) Image 5d binarized.

Figure 5. Application of an edge detection algorithm on an image preprocessed with MSTHGR.

3. Results and Discussion

This section presents the experimental results carried out to validate the proposed
algorithm. To successfully validate the proposed algorithm, two objectives were set:

• To quantify the performance of the proposed algorithm in terms of improving panoramic
dental radiography. For this purpose, comparisons were made against other state-of-
the-art algorithms and evaluation metrics were used to quantify the numerical results
obtained by the algorithms.

• Analyze clinically in an objective way how contrast enhancement algorithms affect
panoramic radiographs. For this purpose, dentists performed a visual evaluation and
objectively assess a sample of the results obtained.

3.1. Assessment Metrics

The results were evaluated with the following metrics:

• Relative Enhancement in Contrast (REC) [35,36] quantifies the contrast of the enhanced
panoramic radiography. The greater the REC is, the better contrast the dental image
will have. REC is defined as,

REC =
C(IE)

C(I)
, (23)
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where I is panoramic dental radiography, IE is dental imaging with contrast enhance-
ment and C is image contrast. C is defined as,

C(I) = 20× log

[
1

MN

M

∑
u=1

N

∑
v=1

(
(I(u, v))2 − (

1
MN

M

∑
u=1

N

∑
v=1

I(u, v))2

)]
, (24)

where M×N are the dimensions of the dental image and (u, v) are the spatial coordinates.
• Contrast Improvement Ratio (CIR) [37] quantifies the local contrast of the enhanced

medical image. The greater the CIR is, the better local contrast the medical image will
have. CIR is defined as,

CIR(I, IE) =
∑(u,v)∈D |ω(u, v)− ω̃(u, v)|2

∑(u,v)∈D ω(u, v)2 , (25)

where ω is local contrast of original dental imaging, ω̃ is local contrast of enhanced
dental imaging and D is the domain of values. ω is defined as,

ω(u, v) =
|ρ− ι|
|ρ + ι| , (26)

where ρ is center pixel and ι is the average of the neighboring values in a window of
3× 3.

• Entropy (E) [11,24,36], in digital image processing, is used to quantify the details or
features of the image. The greater is the E, the better is the detail. E is defined as,

E(I) = −
L−1

∑
k=0

P(k)log2(P(k)), (27)

where k is intensity of the pixel in the image, P(k) is probability of occurrence of the
k-value in the image, b is number of bits of the image and L is equal to 2b and b = 8
for grayscale images.

• Spatial Frequency (SF) [38], in digital image processing, is the metric that quantifies
the spatial information contained in the image. If SF has a large value, the enhanced
panoramic radiograph is considered to have more spatial information. SF is defined
as follows:

SF =
√

RF2 + CF2, (28)

where

RF =

√√√√ 1
M× N

M

∑
u=1

N

∑
v=1

[I(u, v)− I(u− 1, v)]2, (29)

CF =

√√√√ 1
M× N

M

∑
u=1

N

∑
v=1

[I(u, v)− I(u, v− 1)]2. (30)

• Peak signal-to-noise ratio (PSNR) [22,27], in digital image processing, is the metric
adopted to quantify the distortion introduced in the image enhancement process. If
PSNR has a large value, the enhanced panoramic radiograph is considered to have
less distortion. PSNR is defined as follows:

PSNR(I, IE) = 10× log10
(L− 1)2

MSE(I, IE)
. (31)
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The Mean Squared Error (MSE) is defined as:

MSE(I, IE) =
1

M× N

M−1

∑
u=0

N−1

∑
v=0

(I(u, v)− IEN(u, v))2. (32)

• Absolute Mean Brightness Error (AMBE) [22], in digital image processing, is the
metric that quantifies the average brightness preservation of enhanced panoramic
radiographs. If AMBE has a small value, the enhanced panoramic radiograph is
considered to have preserved its average brightness. The AMBE is defined as follows:

AMBE(I, IE) = |A(I)− A(IE)|, (33)

where A(I) is the average brightness of the panoramic radiographs and A(IE) is the
average brightness of the panoramic radiographs with contrast enhancement.

3.2. Comparator Algorithms

MSTHGR was compared with the following algorithms: Geodesic Reconstruction Mul-
tiscale Morphology Contrast Enhancement (GRMMCE) [27], Histogram Equalization (HE),
Brightness Preserving Bi-Histogram Equalization (BBHE) [8], Dual Sub-Image Histogram
Equalization (DSIHE) [9], Minimun Mean Brightness Error Bi-Histogram Equalization
(MMBEBHE) [10], Quadri-Histogram Equalization with Limited Contrast (QHELC) [13],
Contrast-Limited Adaptive Histogram Equalization (CLAHE) [7] and Gamma Correction
(GC) [39].

The MSTHGR, GRMMCE, HE, BBHE, DSIHE, MMBEBHE and QHELC algorithms
were implemented using the ImageJ library [40]; for MSTHGR and GRMMCE, based on
mathematical morphology, an extra library called MorphoLibJ [41] was used.

The MSTHGR and GRMMCE algorithms have the following parameters: original
image I, number of iterations n = 7 and a disk shape structuring element with initial radius
r = 1, where the radius increases in each iteration in a range r = {1, 2, 3, · · · , n}. Bai [42]
used a small number of iterations, because the best details that can be extracted from the
image are at small scales. Therefore, in this experiment, we used the number of iterations
n = 7.

The CLAHE and GC algorithms were implemented in MATLAB 2014b. The parame-
ters used were the default ones.

3.3. Numerical and Visual Results

The algorithms were tested on the 598 panoramic radiographs. Table 1 shows the
average numerical results obtained by the algorithms. The two best average results are
highlighted in bold. The MSTHGR algorithm obtained high average results in the CIR, E
and SF metrics. However, it is also competitive in the other metrics.

Table 1. Average results obtained by the algorithms.

Algorithms REC CIR E SF PSNR AMBE

I - - 7.209 17.681 - -
MSTHGR 1.007 0.773 7.462 20.019 31.242 0.548
GRMMCE 1.003 0.245 7.369 19.051 35.700 0.103

HE 1.069 0.220 6.989 17.802 14.437 42.027
BBHE 1.074 0.197 6.943 18.314 18.147 19.601
DSIHE 1.075 0.197 6.942 18.327 17.801 20.741

MMBEBHE 1.019 0.194 6.975 17.588 27.787 3.081
QHELC 1.004 0.029 7.169 17.745 44.536 0.529
CLAHE 1.042 0.335 7.820 18.590 16.857 22.288

GC 1.010 1.151 7.458 17.705 38.690 1.508
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The proposed MSTHGR method is slightly better than GRMMCE (REC) in terms of
contrast, but it is worse in terms of noise (PSNR) and Absolute Mean Brightness Error
(AMBE). This is because the contrast enhancement is in trade-off relation to noise and
average brightness. The better is the contrast values (REC), the worse are the PSNR and
AMBE values. This can be seen in Figure 6. However, the improvement obtained by the
MSTHGR method achieves better clinical assessments by dentists (this can be seen in
Section 3.4).

Figure 6 shows the results of each metric in box plots. It can be observed that MSTHGR
obtained less dispersed numerical values for the E and AMBE metrics. The values obtained
by MSTHGR in the E, PSNR and SF metrics had a similar dispersion to the set of algorithms
that integrate this study. It is also possible to observe that MSTHGR obtained values for
the CIR metric with a similar dispersion to GC, but relatively higher than that obtained by
the other algorithms.

(a) REC (b) CIR

(c) E (d) SF

(e) PSNR (f) AMBE

Figure 6. Box plots of the results obtained by the algorithms.
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The statistical analysis was carried out by means of non-parametric tests considering
the amount of data in the database. Paired observations were made through the Wilcoxon
Signed Rank Test [43], taking as pairs the results of each algorithm with respect to the
proposed algorithm. The results of the Wilcoxon Signed Rank Test are presented in Table 2.

Table 2. The Wilcoxon Signed Rank Test for paired observations.

Algorithms Metrics
REC CIR E SF PSNR AMBE

MSTHGR—GRMMCE

Negative ranks 0 0 4 0 598 4
Positive ranks 598 598 594 598 0 594

Z −21.187 −21.187 −21.184 −24.413 −24.413 −24.086
Sig. asymptotic (bilateral) ≈0 ≈0 ≈0 ≈0 ≈0 ≈0

MSTHGR—HE

Negative ranks 595 20 0 0 0 598
Positive ranks 3 578 598 598 598 0

Z −21.171 −20.85 −21.187 −24.413 −24.413 −24.413
Sig. asymptotic (bilateral) ≈0 ≈0 ≈0 ≈0 ≈0 ≈0

MSTHGR—BBHE

Negative ranks 595 20 0 1 0 597
Positive ranks 3 578 598 597 598 1

Z −21.171 −20.924 −21.187 −24.331 −24.413 −24.331
Sig. asymptotic (bilateral) ≈0 ≈0 ≈0 ≈0 ≈0 ≈0

MSTHGR—DSIHE

Negative ranks 595 20 0 1 0 598
Positive ranks 3 578 598 597 598 0

Z −21.178 −20.935 −21.187 −24.331 −24.413 −24.413
Sig. asymptotic (bilateral) ≈0 ≈0 ≈0 ≈0 ≈0 ≈0

MSTHGR—MMBEBHE

Negative ranks 499 21 0 0 32 595
Positive ranks 99 577 598 598 566 3

Z −17.355 −20.922 −21.187 −24.413 −21.796 −24.168
Sig. asymptotic (bilateral) ≈0 ≈0 ≈0 ≈0 ≈0 ≈0

MSTHGR—QHELC

Negative ranks 35 11 0 0 598 268
Positive ranks 563 587 598 598 0 330

Z −19.734 −21.159 −21.187 −24.413 −24.413 −2.494
Sig. asymptotic (bilateral) ≈0 ≈0 ≈0 ≈0 ≈0 0.013

MSTHGR—CLAHE

Negative ranks 589 26 598 0 0 596
Positive ranks 9 572 0 598 598 2

Z −23.677 −22.287 −24.413 −24.413 −24.413 −24.250
Sig. asymptotic (bilateral) ≈0 ≈0 ≈0 ≈0 ≈0 ≈0

MSTHGR—GC

Negative ranks 416 566 167 4 580 408
Positive ranks 182 32 431 594 18 190

Z −9.528 −21.796 −10.755 −24.086 −22.941 −8.874
Sig. asymptotic (bilateral) ≈0 ≈0 ≈0 ≈0 ≈0 ≈0

With respect to the evaluated database and at a statistical significance level of α = 0.01,
the following can be observed:

• For the REC metric, MSTHGR was numerically superior to the GRMMCE, QHELC
and GC algorithms.

• For the CIR metric, MSTHGR was numerically superior to the GRMMCE, HE, BBHE,
DSIHE, MMBEBHE, QHELC and CLAHE algorithms.

• For the E metric, MSTHGR was numerically superior to the GRMMCE, HE, BBHE,
DSIHE, MMBEBHE, QHELC and GC algorithms.

• For the SF metric, MSTHGR was numerically superior to all compared algorithms.
• For the PSNR metric, MSTHGR was numerically superior to the HE, BBHE, DSIHE,

MMBEBHE and CLAHE algorithms.
• For the AMBE metric, MSTHGR was numerically superior to the HE, BBHE, DSIHE,

MMBEBHE, CLAHE and GC algorithms.

The p-value close to zero (≈0) in the Wilcoxon signed-rank test for most of the paired
observations leads to the conclusion that there are statistically significant differences be-
tween the medians obtained by the proposed MSTHGR algorithm and the other algorithms.
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Figure 7 shows that the panoramic dental radiographs, enhanced with the MSTHGR
algorithm, presented a greater definition at the edges of the teeth in general, as well as a
better visualization of the different structures, such as enamel, dentin and pulp chamber,
which compose them. In addition, they allowed a visualization of the restorations at the
coronary level in the cases where they were present. At the root level, the light of the root
canals could be observed with greater definition. At the level of the mandibular condyle,
a better definition of the edges could be observed as well as a better observation of the
bone trabeculae. In the regions of the maxillary sinuses and inferior dental canal, no great
variations were found in comparison with the original images.

(a) Original image (67.jpg) (b) Histogram of Origi-
nal Image

(c) Enhanced image with MSTHGR (d) Histogram of
MSTHGR-enhanced
image

(e) Enhanced image with GRMMCE (f) Histogram of
GRMMCE-enhanced
image

Figure 7. Cont.
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(g) Enhanced image with HE (h) Histogram of HE-
enhanced image

(i) Enhanced image with BBHE (j) Histogram of BBHE-
enhanced image

(k) Enhanced image with DSIHE (l) Histogram of DSIHE-
enhanced image

(m) Enhanced image with MMBEBHE (n) Histogram of
MMBEBHE-enhanced
image

Figure 7. Cont.
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(o) Enhanced image with QHELC (p) Histogram of
QHELC-enhanced
image

(q) Enhanced image with CLAHE (r) Histogram of
CLAHE-enhanced
image

(s) Enhanced image with GC (t) Histogram of GC-
enhanced image

Figure 7. Visual results.

3.4. Clinical Validation and Prospects

The objective of the clinical validation is to quantify how the enhancement algorithms
affect panoramic radiographs from the perspective of the dentists. In other words, the aim
is to check whether the results obtained in the previous experiment are related to those
observed by the dentists. For this purpose, 20 sample images were first taken from a total
of 107 images with the following characteristics: complete dentition, without restorations
and without radiographically detectable pathologies. This represents a sample with a
22% error rate and a 99% confidence rate. Next, these 20 images were processed with the
MSTHGR, GRMMCE, HE, BBHE, DSIHE, MMBEBHE and QHELC algorithms and pre-
sented to a group of three dental specialists for qualitative evaluation. The algorithms were
anonymized by a numerical code as follows: BBHE (1); DSIHE (2); HE (3); MMBEBHE (4);
MSTHGR (5); GRMMCE (6); QHELC (7); CLAHE (8); and GC (9). The dentists performed
an evaluation of the improved radiographs with respect to the original image. The obser-
vation was made in seven different anatomical regions: maxillary anterior teeth, maxillary
posterior teeth, maxillary sinuses, mandibular anterior teeth, mandibular posterior teeth,
mandibular condyles and mandibular canals. For each region, the scores were: 0 (worse
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than the original), 1 (no variation) and 2 (better than the original). Therefore, 9 algorithms
× 20 images × 7 regions were analyzed, making a total of 1260 regions analyzed.

3.4.1. Statistical Analysis

The sum of scores obtained in the seven anatomical regions for each enhancement/
algorithm was the dependent variable treated as numerical data. Interobserver agreement
was determined by the intraclass correlation coefficient (ICC). The criteria for strength of
agreement proposed by Koo and Lee [44] were used for ICC interpretation: 0.00–<0.50, poor
agreement; 0.5–0.75, moderate agreement; >0.75–0.90, good agreement; and >0.90, excellent
agreement. Normality (Shapiro–Wilk) and Homogeneity of Variance (Levene) tests were
statistically significant (p < 0.05). Therefore, a Kruskal–Wallis test was run to determine
if there were differences in median sum of scores according to enhancement/algorithm.
Statistical analysis and graphical representation of data were performed with R version
3.6.0 at a 5% significance level.

3.4.2. Descriptive Statistics

Interobserver agreement was good (ICC = 0.835, 95% CI: 0.779–0.877). The Kruskall–
Wallis test was statistically significant (p < 0.001). The results of the multiple compar-
isons using the Dunn test with Benjamini–Hochberg adjustment are shown in Table 3
(first column).

Table 3. Descriptive statistics of the sum of scores according to the enhancement algorithm applied.

Algorithm Sample Average Standard Deviation Minimum Q1 Median Q3 Maximum

BBHE a 20 3.60 1.789 1 2 3.5 4.50 7
DSIHE a 20 3.85 1.843 1 2 4.0 6.00 7

HE a 20 4.25 1.713 1 3 4.0 6.00 7
MMBEBHE a 20 3.00 2.200 1 1 2.0 4.25 7
MSTHGR c 20 10.00 2.077 6 9 10.0 12.00 14
GRMMCE b 20 6.80 0.616 5 7 7.0 7.00 7

QHELC b 20 6.90 0.308 6 7 7.0 7.00 7
CLAHE b 20 7.00 0.000 7 7 7.0 7.00 7

GC bc 20 7.55 0.826 6 7 8.0 8.00 9
Note: Different superscript letters in the first column indicate statistically significant differences (p < 0.05) according to Dunn test with
Benjamini–Hochberg adjustment.

In the box and whisker plot (Figure 8), the medians are marked with a horizontal
line in the box. The lower and upper limits of the box are the first (Q1) and third (Q3)
quartiles, respectively. Values below Q1 and over Q3 are located in the whiskers. Outliers
are represented by open dots.

Figure 8. Box and whiskers diagram. Distribution of the sum of scores according to the enhancement
algorithm used.
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In general, we can conclude that the algorithm MSTHGR improves the visual quality
of the images with respect to the compared algorithms.

3.5. Usefulness for Diagnosis in Clinical Settings

The proposed algorithm allowed a clear observation of the teeth as well as the other
anatomical regions analyzed in the selected images. Moreover, the different dental hard
tissues (enamel–dentin junction), root canals and periodontal ligament were clearly visible.

4. Conclusions

Contrast and detail enhancement of panoramic radiographs helps dentists better
evaluate the anatomical structures of the teeth present in the image. For this reason,
an algorithm for contrast and detail improvement of panoramic dental radiographs is
presented in this work. In addition, the help of dental specialists in the quantification of
the results obtained by the algorithms is highlighted. They objectively evaluated the real
impact of the improvements and how they affected the panoramic dental radiographs.

Experimentally, the numerical results show that the MSTHGR obtained the best results
with respect to the CIR, E and SF metrics. This indicates that the proposal makes local
improvements to the panoramic radiographs, enhancing their details and edges. With
respect to the REC, PSNR and AMBE metrics, the proposal improves the global contrast
of the radiographs, introduces less distortion to the image and preserves the average
brightness. Even though its numerical results are inferior to some algorithms, the proposed
method proved to be competitive.

The visual results obtained by the algorithms were clinically evaluated by specialist
dentists. In general, according to the evaluations, the MSTHGR algorithm was better at
enhancing the visual quality of panoramic dental radiographs.

As future work, quantitative evaluations of the improvements made to the images by
areas of interest can be performed. In addition, this algorithm can be used as a preprocess-
ing of other applications for automatic detection of pathologies affecting bone (cysts and
tumors) or teeth (resorptions and caries).
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