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Abstract: Intersection management is a sophisticated event in the intelligent transportation system
due to a variety of behavior for traffic participants. This paper primarily overviews recent studies
on the scenes of intersection, aiming at improving the efficiency or guaranteeing the safety when
vehicles pass the crossing. These studies are respectively surveyed from the perspectives of efficiency
and safety. Firstly, recent contributions to efficiency-oriented, intersection management overviews
from four scenes, including congestion avoidance, green light optimized speed advisory (GLOSA),
trajectory planning, and emergency vehicle priority preemption control. Furthermore, the studies on
intersection collision detection and abnormal information warning are surveyed in the safety category.
The corresponding algorithms for velocity and route management presented in the surveyed works
are discussed.

Keywords: intersection management; intelligent transportation system; congestion avoidance; green
light optimized speed advisory; trajectory planning; intersection collision detection; abnormal
vehicle warning

1. Introduction

With the growth in urbanization and ownership of cars, the intersection has become
one of the most central places on the road where the incidence of traffic accidents and
congestion is increasing year by year. NHTSA’s National Center found [1] that in the
756,570 intersection-related crashes for driver-attributed critical reasons, the most frequent
critical reasons were inadequate surveillance (44.1%), false assumption of another’s action
(8.4%), turned with obstructed view (7.8%), illegal maneuver (6.8%), internal distraction
(5.7%), and misjudgment of gap or other’s speed (5.5%). The investigation revealed that
travel delays due to traffic congestion caused drivers to waste more than 3 billion gallons
of fuel and kept passengers stuck in their cars for nearly 7 billion extra hours–42 h per
rush-hour commuter [2]. Thus, it is necessary to ensure safety, improve traffic efficiency,
save resources, and reduce pollution.

Currently there are two main vehicle-to-everything (V2X) technologies, whose pri-
mary application is focused on ITS, backed up by the key players of various automotive,
telecommunication, and transport industries: Dedicated short-range communications
(DSRC) and cellular vehicle-to-everything (C-V2X), respectively based on IEEE 802.11p
and 3GPP LTE/5G NR. [3] The development of Intelligent Traffic System (ITS) and the
appearance of Vehicular Adhoc Networks (VANETs), which refers to a set of smart ve-
hicles used on the road [4], help vehicles communicate with others and hugely improve
the efficiency of passing crossroads. The V2X network system implements information
exchange through wireless communication technology. V2X includes four major cate-
gories: Vehicle-To-Vehicle (V2V), Vehicle-To-Infrastructure (V2I), Vehicle-To-Pedestrian
(V2P), and Vehicle-To-Network (V2N). The collaboration of these four types is an important
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step to achieve autonomous driving and intelligent transportation. When applying V2X
vehicle networking to ITS, the system needs to send status information (position, speed,
direction, etc.) of the vehicle collected by radio frequency identification (RFID), sensors, etc.
installed on the vehicle to surrounding vehicles accurately through vehicles and roadside
units (RSU), vehicles, and vehicles along with other communication methods [5] in real
time. After information is gathered, an effective message is extracted through data analysis
and processing. Appropriate trajectories and speeds are calculated using corresponding
algorithms, providing intelligent decision-making basis for vehicle running.

The scenes are divided into two board classifications: Safety and efficiency. The idea
of this paper is shown in Figure 1. When approaching the intersection, the algorithms of
collision detection and abnormal information warning start working to detect the hidden
danger, guaranteeing cars safely passing the intersection. Two applications mentioned
above are devoted to doing it. Sensors will detect whether the congestion exists and then
the system uses algorithms to avoid it. After RSU sends the information about a traffic
light, Green Light Optimized Speed Advisory (GLOSA) calculates the speed of passing
the intersection without stopping. The metrics related to the speed advisory algorithms
are given below. In order to find an applicable route, trajectory planning algorithms play
an important role and give suitable routes. Combining methods of GLOSA and trajectory
planning, we can obtain the route and speed of passing the intersection, which provides
the driver with a better driving experience. To appreciate the particularity of emergency
vehicles, the paper provides three methods on how to assist ambulances, police cars, and so
on to cross an intersection promptly.

Based on these techniques, a new method is proposed to help a vehicle safely and
quickly pass the intersection. We compare the main algorithms and choose relatively good
methods in each scene. Vision-based detection is more cheap and has a wider range and its
development is more mature, it is useful to use this this way to help us detect the barriers.
Abnormal vehicle warning, control loss warning, and hazardous location warning are also
finished with the assistance of a camera. VANET combined with image processing can
be useful in good road conditions to avoid congestion. The part of GLOSA focuses on
metrics for evaluating algorithms. In addition, LOSB-F is chosen to assist in passing the
intersection without stopping. For trajectory planning, the Q-learning is selected for the
route. The final part is a special circumstance. Both the traffic light and vehicles will receive
messages to yield to it and help the emergency vehicles pass the intersection. Performance
criteria from the China Academy of Information and Communications Technology is listed
in Table 1. The main purposes of this paper are:

1. To reduce the number of acidents on the road;
2. To regulate the flow of vehicles and avoid congestion;
3. To eusure the transmission of information for safe driving and improve the efficiency

of the vehicle pass rate.

Table 1. Performance criteria of test scenes.

Criteria Data Range

HV speed 0–130 km/h

Communication distance >= 300 m

Position accuracy <= 5 m
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Figure 1. The process when closing to the intersection.

The structure of this paper is as follows: Two ways of intersection collision detection
and three cases of abnormal information warning are introduced in Section 2. Section 3
summarizes the scenes of efficiency which include four parts: (1) The methods of jam
detection and congestion avoidance, (2) metrics and three main algorithms of GLOSA,
(3) trajectory planning related to four different techniques, and (4) a particular situation:
The emergency vehicle priority preemption control. This paper will select a better method
from several algorithms based on each scenario and combine these methods to calculate
a more accurate and appropriate speed and route. The last part concludes the paper and
gives a further discussion according to the present works.

2. Safety

The method proposed in Sections 2 and 3 allow vehicles to cross the intersection
safely, efficiently, and with almost no pause. We need to continuously utilize intersection
collision detection and abnormal information warning to ensure maximum safety during
driving. The following briefly introduces several ways of improving efficiency and reduce
road congestion.

2.1. Intersection Collision Detection

In recent years, the number of deaths in road traffic accidents has continued to rise
steadily, reaching 1.35 million in 2016 [6]. Lack of concentration, fatigue, and immature
behavior are the leading causes of traffic accidents. Intersection Collision Warning is
therefore introduced to alert the driver from an impending collision. There are two main
scenarios for warnings at intersections: The HV starts at the intersection and the HV and
RV drive to the intersection at the same time, which is shown in Figure 2 and 3. Based on
different input signals, the commonly used obstacle detection is divided into two types:
Sensor-based and vision-based. The sensor-based dangerous target detection system has
achieved excellent performance and has been widely used in autonomous driving for the
strong environmental sensing capability of the sensors. However, laser radar sensors are too
expensive to attain large-scale applications, and their ability to identify object categories is
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limited. Therefore, visual information is essential in an actual autonomous driving system.
Inspired by human visual perception, the vision-based dangerous target detection system
uses an in-vehicle camera to detect obstacles directly [7]. The following two detection
techniques will be introduced separately and Table 2 compares these two ways.

Figure 2. HV starts at the intersection.

Figure 3. HV and RV drive to the intersection simultaneously.

2.1.1. Sensor-Based Detection Technology

As mentioned previously in the congestion, sensors are primarily used to collect road
information and we choose it to detect the situation of the road. The advances in sensors
technologies enable real-time collection of high-fidelity spatiotemporal data on transporta-
tion networks. For example, a set of speed sensors that are spatially distributed along the
street and can communicate through an externally determined network. The speed sensor
observes the average speed value of the vehicle within a certain time interval, and uses
a threshold-based method to generate a local prediction. Each sensor exchanges its local
predictions with its neighbors and aggregates the local predictions it receives using a
weighted majority aggregation rule to generate a final prediction [8]. However, this method
makes assumptions about the transportation infrastructure that are currently unsupported,
and do not explicitly model the detection delay and false alarm rate. Yasitha Warahena
Liyanage et al. propose a two-stage approach. In the first stage, each sensor generates
a decision using the Bayesian fastest change detection framework. In the second phase,
individual sensor decisions are aggregated by an optimal stopping method, which opti-
mizes the trade-off between aggregation costs and misclassification costs [9]. The proposed
two-stage approach achieves up to 65.2% and 87% improvement in the average detection
delay and probability of false alarm respectively, compared to the state-of-the-art. Liyan-
age [10] propose a Bayesian quickest change detection framework for accurate detection
in near–real–time of freeway accidents based on speed sensors. To exploit the spatial
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correlation between sensors, and to improve the robustness of the proposed solution, four
aggregation schemes are also proposed. We choose the second method to detect collision.

2.1.2. Vision-Detection Technology

Vision-based detection technology generally equips a camera in front of the car be-
cause the camera is cheaper than the sensor and can capture more traffic information,
including object categories, object distances, traffic signs, and signals. Target detection
obstacles are usually in the machine learning method, where the typical method usually
consists of the proposed region, the features of the extracted proposed region, and the
target recognition. An end-to-end target detection method [11] is proposed to improve
the detection speed. It integrates the proposed region, feature extraction, and target recog-
nition into a model to directly detect the target. The end-to-end approach can be used
naturally for target detection in autonomous driving and is validated in actual autonomous
driving data sets, such as KITTI. On this basis, a multi-task learning method based on
a convolutional neural network (CNN) is given [12], which combines target detection
with distance prediction. In order to facilitate distance prediction, the distance regression
problem is transformed into a classification problem by discretizing continuous distance.
According to the Cartesian product of object class and distance class, the joint optimization
goal of the model is further proposed. Optimizing the target with a CNN is similar to
a single-lens multi-box detector, taking into account both target detection and distance
classification. The experiment proves mathematically that when the two tasks are not
independent, the proposed Cartesian product-based combination strategy is better than
the linear multi-task combination strategy in the traditional MTL. The system experiments
show that the proposed method is superior to the existing SSD target detection method
and the traditional MTL method. A traffic accident detection method, including a self-
tuning iterative hard thresholding (ST-IHT) algorithm for learning sparse spatio-temporal
features and a weighted extreme learning machine (W-ELM) for detection is proposed in
this system [13]. Meanwhile, a two-point search strategy is proposed to adaptively find a
candidate value of Lipschitz coefficients to improve the tuning precision.

Table 2. Comparison of collison detection ways.

Detection Methods Tool Advantages Disadvantages

Sensor-based
detection [8,9]

radar, laser,
lidar, etc.

Safe; measuring distance directly
with less computing resources Expensive, short range, less accurate

Vision-based
detection [11,12] camera Cheap; wider range More computations; affected by shadows from

nearby buildings, overhead bridges or trees

2.2. Abnormal Information Warning(AIW)

As shown in Figure 4, when the driver is driving, they occasionally encounter abnor-
mal information, such as faulty vehicles and bottomless pits. At this time, the host vehicle
(HV) is needed to detect the road condition to tell the “driver”. The following describes
three abnormal conditions.

2.2.1. Abnormal Vehicle Warning (AVW)

When the remote vehicle (RV) turns on the fault warning light while driving, the HV
recognizes that it belongs to the abnormal vehicle based on the content of the received mes-
sage. The AVW function alerts the HV driver to the dangerous situation when the identified
abnormal vehicle may affect the driving route of the vehicle. This application is applicable
to abnormal vehicle reminders in the environment of urban and suburban ordinary roads,
highway intersections, and entrances to loops and highways. Lei Song et al. [7] propose
a new vehicle anomaly detection system based on in-vehicle monitoring system (IVMS).
The video is taken by a camera mounted on the front of the car. The traffic information
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extracted by the system is combined with GPS and electronic maps to detect abnormal
vehicles. The system can be installed on police cars, buses, and even private cars.

Figure 4. RSU reminds the HV of the danger.

2.2.2. Control Loss Warning (CLW)

When the RV is triggered by the brake anti-lock braking system (ABS), the body
stability system (BSS), the traction control system (TCS), and the lane offset warning
system (LOW) function, the main vehicle (HV) will alert the driver when the content
of the received message identifies that the vehicle is out of control and may affect the
HV driving route. Cuong Nguyen Khac et al. [14] propose a vehicle behavior analysis
system for the Intelligent Driver Assistance System (IDAS). First, frame estimation is
performed on all motion vectors of the moving target. Most safe moving vehicles are
eliminated by using the new recommended threshold range and ROI settings. K-means
clustering algorithm is used to cluster the remaining motion vectors to obtain segments of
the abnormal candidate vehicles. The learned algorithm such as support vector machines
(SVMs) and various features are used to classify the segmented candidate vehicles to
eliminate non-vehicle candidate vehicles. The experimental results show that the method
can detect the abnormally moving vehicles in front of the primary control vehicle during
night driving. Table 3 lists three types of abnormal information warning.

2.2.3. Hazardous Location Warning (HLW)

When the HV travels to potentially dangerous conditions (for example, there is deep
water under the bridge, deep pits on the road, wet roads, sharp turns in front, etc.) and
exists the risk of accidents, the HLW warns the HV driver. The European Union project
NordicWay (an interchange server funded by the European Union CEF-program (con-
nected to European equipment)), allows communication between vehicles from different
manufacturers to be seamless with each other and the surrounding infrastructure and
road operators have crossed the border to establish, implement, and have successfully
tested it [15]. The project demonstrates the functionality of the communication channel by
serving road engineering warnings (TMA-trucks, vehicle attenuators), hazardous location
warnings (vehicles with hazard lights activated), and wet road warnings (vehicles with
activated ESP or ABS). The project demonstrates this in the border areas of Sweden and
Norway, as well as in the border areas of Sweden and Denmark.

Table 3. Three types of abnormal information warning.

Type Usage Scenario Zone of Application Examples

Abnormal vehicle warning Radar, laser, lidar, etc. Intersections; roads of cities and suburban IVMS [7]

Control loss warning ABS, ESP, TCS, and LDW of RV Roads of cities and suburban IDAS [14]

Hazardous location warning Potentially dangerous condition
(e.g., holes of road surface) Road bends; the bad situation of road Interchange

server [15]
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2.3. Summary

This section mainly summarizes the collision detection tools currently in use, including
sensors, visual target detection, and general sensor-based object detection. With the help
of these hardware, it mainly talks about three abnormal information warning, including
abnormal vehicle warning, out of control warning, and some dangerous conditions in the
road warning, such as road sag.

3. Efficiency
3.1. Jam Detection and Congestion Avoidance

Road congestion has essential economic and social impacts in modern society, such
as wasting gasoline, affecting efficiency, and annoying drivers [16]. With the increasing
number of vehicles, road congestion has become increasingly serious, which is shown in
Figure 5, thus the application of congestion reminders has become necessary in driving.
This section focuses on road congestion detection techniques and how to help vehicles
avoid congestion.

Figure 5. Typical scene of congestion ahead of the HV.

3.1.1. Jam Detection

In any transportation hub system, using a unitary technology to detect whether
the road is congested has considerable errors. At present, the mainstream detection
technologies used to identify congestion are mainly divided into three categories: Image
processing, sensing techniques, and probe-vehicles-based techniques.

The idea of image processing is to capture real-time images with a camera or video to
calculate the density of cars so as to infer whether congestion will occur. Image process-
ing chiefly consists of three methods: The first is background extraction, which provides
complete information about the external features, but the problem is that this technique
is particularly sensitive to changes due to illumination and external events. To solve this
problem, Li et al. introduce an adaptive update of background extraction and propose
an improved algorithm based on historical statistics combining the multi-frame average
method [17]. In [18], the author developed a method to extract jam events by analyzing the
road background feature using multiple background images. The extraction of background
image is done by performing a difference on three consecutive frames. In the extracted
background image the corner feature is analyzed to detect traffic jam. Results of the experi-
ments show that the algorithm is robust and in real time. Besides, a scheme for assessing
the state of congestion from the operation of cross-correlation between successive frames
transmission in a CCTV (closed-circuit television) system is proposed [19]. The tests of this
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method are realized on a standardized dataset at different times of the day. Thus the results
obtained make it possible to alert about traffic jams. Simple background image extraction
is unstable in urban traffic videos, so the improved algorithm overcomes the image blur
and the difficulty of tracking at the peak of traffic when utilizing the simple multi-frame
average method. The Background Local Binary Pattern (BGLBP) handles a large number
of illumination changes that occur during background extraction, and the algorithm is
evaluated in three different ways [20]. The results shows that background extraction be-
comes more precise than before. A new method [21], which fits under the framework of
mathematical morphology, is based on a recently developed textural descriptor termed as
the Morphological Texture Contrast (MTC). In this work authors have employed the bright
and dark top-hat transformations to handle the bright and dark features separately. Both
bright and dark features extracted are subjected to the MTC operator for identifying the
texture components, which in turn are used to enhance the textured parts of the original
input image. Subsequently, this method is employed to segment the bright and dark tex-
tured regions separately from the two enhanced versions of the input image and the partial
segmentation results obtained are combined to constitute the final segmentation result.

Nonetheless, the vision-based approach faces severe changes caused by illumination,
shadows, swaying trees, and moving clouds. Therefore, the authors propose a real-time
algorithm [22] that performs background and front-segment segmentation without using
background modeling to overcome the above problems. In the first step, an improved block-
based frame difference method is established to quickly detect moving targets without
being affected by rapid illumination changes. In the next step, the dual foreground fusion
method is used for accurate target region extraction. In the third step, a texture-based
target segmentation method is used, which separates each car from the merged foreground
image spots and removes the shadows. In the fourth step, a pseudo foreground filtering
method based on the concept of motion entropy is proposed to remove the false target
region caused by the rickety tree or the moving cloud. Finally, a texture-based target
tracking method is used to track each detected target and then apply a virtual loop detector
to calculate the traffic flow. However, when it comes to disasters and significant events,
collecting data can be complicated whether it is background or foreground. Using aerial
images can solve this problem. Therefore we use satellites to obtain high-resolution images
and analyze traffic density based on photos to estimate whether congestion will occur. Ariel
images enhancement techniques, such as interpolation algorithms, decimated wavelet with
interpolation, wavelet zero paddings (WZP), and hybrid wavelet decomposition (HWD),
can improve the calculation accuracy of traffic density [23].

On the highway, sensor technology is widely used because of the high traffic vol-
ume and fast speed, and the use of image processing technology to determine whether
the blockage is rare. Sensors are classified as invasive and non-invasive. Non-invasive
technologies are based on video image processing, optics, and ultrasound as well as lidar
and microwave radar. The inductive loop, magnetometer, and pressure switch types are
three main sorts of the current intrusive technologies. Inductive loop (IL) sensors installed
at selected points of road infrastructure can be used for anonymous vehicle tracking in
the application to efficient traffic control and calculates the passing vehicle at a certain
point. However, various signal conditioning systems (SCS) cause disparities between the
vehicles magnetic signature (VMS). An approach is proposed to increase compatibility
between VMS from impedance SCS and generator-based SCS. A proper electrical model of
a generator-based SCS is used to produce a compatible VMS from an impedance SCS [24].
In [25], the authors propose a method based on the single-chip microcomputer inductive
loop vehicle sensor, which uses an automatic calibration algorithm based on the k-means
clustering. The circuit is simple, and the signal processing does not require intensive
computing power and can be implemented on a low-cost microcontroller. Inductive loops
are a cost-effective solution, but when they are installed on poor road surfaces, the failure
rate is high, resulting in reduced road life and obstructing traffic during maintenance
and repair. Magnetic sensors are not affected by weather conditions and are suitable for
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large-scale deployment and time-sustainable detection for traffic information acquisition,
thus providing more stable and reliable detection data than other technologies. The au-
thors [26] introduce a multi-functional wireless magnetic sensor and propose an alternative,
efficient and accurate detection method to solve the drift named “Wake effect” caused by
the weather environment and the traffic flow environment. Another paper improves the
performance of SCAN and Decision Algorithm (SDA) [27].The new algorithm, based on
magnetic sensors, adds a two-pass moving average filter to improve the signal to noise ratio
(SNR) after analog-to-digital conversion. The improved mathematical capabilities allow us
to capture additional features of vehicle orientation and classification. The performance of
the proposed algorithm is evaluated by field real-time experiments in a designated road
section. The results show that the roadside magnetic sensors can improve vehicle detection,
counting, travel time index, and classification in low speed and crowded traffic condi-
tions. In addition, since acoustic sensors are cheaper than other types of vehicle sensors,
and acoustic characteristics are robust to the environment changes like light, weather, etc.,
cross-microphone arrays are used [28] to collect roadside acoustic signals. The built-in
lane detection module then automatically detects the lane position. Finally, based on the
collected signals and the detected lanes, different measurement indexes reflecting road
conditions and traffic quality are derived.

Probe-vehicle-based techniques mainly use two technologies: GPS-based and smart-
phone-based technologies. The widespread use of car GPSs ensures that we can get traffic
data and detect blocking information. Using low-cost GPS equipment to monitor traffic
conditions in real-time, the paper [29] proposes a new real-time traffic evaluation coupling
method, which can successfully match more than 98% of GPS data with service routes.
The traffic network evaluation result shows that the method has reasonable practicability
and can obtain more accurate vehicle information, so that we can timely use the algorithm
to avoid congestion, thus alleviating traffic flow. With the development of smartphones,
the use of GPS on smartphones has become more widespread. Using the collective intelli-
gence recorded by smartphones, a sensor data platform is proposed for sensing, detecting,
and visualizing road surface roughness and driving behavior [30]. The authors collected
real driving records from different roads in Hyderabad and India, comparing the significant
differences in visual conditions in terms of road conditions and driving behavior.

The sensor is selected as the detection tool in this paper, due to the low judgment
accuracy of the current image processing technology and the fact that GPS loading is likely
to reveal the user’s location privacy, thus causing malicious attack.

3.1.2. Congestion Avoidance

With the increasing traffic congestion, the need for congestion avoidance technology in
traffic management is growing. These technologies utilize various methods and strategies
to avoid traffic congestion. These commonly used techniques include using a prediction
algorithm, VANET, and signal timing optimization to predict and avoid congestion at
common road network bottlenecks.

The driver can be informed by using prediction algorithm that the route is changed
from a crowded area to a non-crowded area so that strategies such as vehicle diversion have
also been proven to be an excellent choice to avoid congestion. Hu et al. [31] propose the
actual urban traffic simulative model (AUTM) to predict and avoid traffic jams. The map
and transfer (MT) transformation method in AUTM is used to obtain the actual urban
cellular space and to optimize vehicle dynamics taking advantage of spatial evolution
rules. The authors conduct a large number of experimental simulations in several real
cities and the results show that the accuracy of traffic congestion prediction exceeds 89%.
Nevertheless, how to apply the dynamic strategy of traffic lights to improve traffic flow
is not considered. In the research [32], the authors propose an advanced dynamic traffic
network prediction and navigation model. Compared with the traditional shortest path
algorithm which considers the static network as the core, the first part of this guiding
method considers the potential traffic jam, gives the optimal driving suggestion for different
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times of day, designs the equilibrium Markov chain model, and this method is used to
dispatch vehicles to alleviate urban congestion. Inspired by the pooling operation in deep
learning, a representation framework [33] for traffic congestion data in urban road traffic
network is proposed. The framework consists of a grid-based urban road traffic network
partitioning and a pooling operation that reduces multiple values to aggregate values.
We also recommend using a pooling operation to calculate the maximum value in each
grid (MAV). Raw snapshots of traffic congestion maps are converted and represented as
a series of matrices that are used as inputs to the Spatio-temporal Congestion Prediction
Network (STCN) to evaluate the validity of representation in predicting traffic congestion.
M. A. Abdelwahab et al. [34] proposed a fast and reliable traffic congestion detection
method based on deep residual learning and video dynamic modeling of motion trajectory.
This method makes use of motion and deep texture features effectively, overcomes the
limitations of existing methods, and uses an effective representation learning method to
capture the underlying structure in traffic video by modeling the evolution of texture
features. This representation provides a significant improvement in detection results under
all weather conditions.

The basic idea of the prediction algorithm is to predict based on previous historical
data, which is not friendly to the real-time nature of traffic. The full application of VANET
solves this problem. A real-time queue length estimation method based on connected
vehicle data is proposed [35]. The probe data is used to identify the stop state of the
connected vehicles (CVs). On this basis, a queue length time series based on the stop time
and the position of CVs is established to describe the queuing process of the intersection.
Considering the statistical average traffic flow, the queue length time series and the stop
state of arrival characteristics of the real-time CV in the current cycle, it is serviceable to
use the linear fitting method to predict the critical queuing time and the Markov model to
estimate the real-time queue length. Another paper studies queue length estimation for
networked vehicles equipped with distance measurement sensors [36]. By extending the
previous formula, a simple plug and play model is established to estimate queue length
without requiring ground truth queue length. This method is simple to implement and can
be used in the traffic signal circular queue with known phase length. The derived model
was evaluated using data from microscopic traffic simulations.

Intelligent traffic light control can alleviate traffic congestion in an emergency and
avoid future traffic congestion. Many algorithms have been optimized for signal timing
to improve traffic flow. Vishu Gupta et al. propose an intelligent control method of traffic
lights to manage congestion events by controlling the order in which the traffic lights turn
green and modifying the time when the traffic lights turn green. In this paper, Hopfield
Neural Network (HNN) is used to obtain the optimal traffic light sequence of a single
intersection (node) and genetic algorithm is used to solve the optimal green time of traffic
lights in the four-phase road network [37].

The summary of congestion avoidance is shown in Table 4. An algorithm based
on VANET is chosen to check and predict the road congestion, because the real-time
performance of the prediction algorithm is not adequate and the realization of intelligent
traffic lights is difficult.

3.1.3. Summary

In the blocking inspection, we mainly use image processing technology, sensor tech-
nology, and probe-vehicle-based techniques. Since image processing has high requirements
for pictures and is easily affected by illumination and external events, it is only suitable
for good road conditions. However on complex roads like highways, we prefer to use
sensor technology. Relying on data from GPS and smartphones is also a good option when
research budgets are limited.
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Table 4. Summary of methods in congestion avoidance.

Type Model Main Technology Advantages Need To Be Improved

Using prediction
algorithm

AUTM [31]

Map and transfer;
optimized spatial
evolution rules; a

congestion avoidance
routing algorithm

Congesting forecasting more
than 89%

Considering more realistic
features in AUTM; applying
dynamic strategy of traffic

light; short of real-time

An advanced
dynamic traffic

network prediction
and navigation

model [32]

Equilibrium Markov
chain model;

time-dependent
navigation algorithm

Average speed improved

Network adaptation and
robustness; making the
network into real-time;

self-update

VANET
A real-time queue
length estimation

method [35]

Using Markov model
to estimate the

real-time CV; the
real-time queue

length estimation

Good performance in
handling the randomness;
high accuracy in real-time
queue length estimation

The impact of queue
estimation accuracy caused

by different CV distributions
in the queue

3.2. Green Light Optimized Speed Advisory (GLOSA)

The GLOSA system has the effect of reducing CO2 emissions and fuel consumption,
and avoiding unnecessary stops at intersections. GLOSA is divided into two situations:
Signal light and no signal light. Since no signal light is close to platooning’s thought, only
the signal light is discussed in this chapter, which is shown in Figure 6. When the vehicle
approaches the intersection, the GLOSA system will give a reasonable recommended
speed based on current and future traffic lights. These systems have been evaluated by
a variety of simulations. This article will introduce the technical evaluation elements
and environmental assessment elements of the system, as well as several mainstream
GLOSA algorithms.

Figure 6. Green wave speed guide scene.

3.2.1. Evaluation

Based on experience in actual testing and related work, Stahlmann et al. define a
comprehensive set of newly created metrics for the technical evaluation of the GLOSA
system, including latency, end-to-end delay, message delivery ratio, packet delivery ratio,
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stability of the prediction, and information distance. They cover all relevant system com-
ponents required for GLOSA system functionality, including system and communication
performance, as well as application-related measures and infrastructure aspects. Together,
they allow for a comprehensive assessment and analysis of GLOSA performance [38].

The above criteria are technical standards proposed for algorithm optimization, but in
actual simulation, we tend to look at more intuitive standards: CO2 emission, fuel con-
sumption, and travel time. Even in high-density traffic conditions, the paper [39] points
out that GLOSA can improve fuel economy and reduce carbon dioxide emissions by an
average of about 10%. HOwever not every time GLOSA can work, the simulation results
show that when the traffic per hour exceeds 400, GLOSA will lose the effect we want and
be less environmentally friendly than conventional vehicles.

3.2.2. Three Algorithms of GLOSA

With the assistance of VANET, the vehicle OBU is responsible for receiving information
from the RSU and knowing the traffic light time plan of the intersection in advance, thereby
determining the speed of the vehicle passing through the intersection under the condition
of avoiding the red light according to different algorithms. The green wave speed is
generally calculated based on the signal time and the distance from the signal light, so
we will introduce the basic computational formulas in theory and some different ways in
actual implementation.

As shown in Figure 6, d is the distance to the intersection, v is the initial speed, t is
the time to reach the traffic light plus the remaining time for the next green phase (tred
or tyellow+tred respectively), and a is the acceleration, the basic rules of motion, given by
(1)–(3) [40]:

d = v ∗ t + 1/2 ∗ a ∗ t2. (1)

The time to reach the traffic light (tTL) can be calculated as shown in (2):

tTL =

{
d/v,a = 0

−v/a + (v2/a + 2d/a),a 6= 0.
(2)

The target speed (vt) for the red light phase is calculated using (3):

vt = (2 ∗ d)/t− v. (3)

Based on these equations, predecessors propose many different algorithms. A number
of conventional vehicles currently in the sale are equipped with Adaptive Cruise Control
(ACC) auxiliary systems, such as the Weilai ES8, the Ford Co-Pilot360TM, and the BMW 5
Series. The ACC equipment-connected vehicle travelling at the signalized intersection is
often taken over by the driver without considering the signalized intersection constraints,
and the vehicle speed changes obviously. In response to this problem, using the upcoming
traffic signal information as the upper controller of the ACC system, Qi et al. [41] propose an
ecological driving intelligent prediction model (IDM) based on V2X communication. For the
intersection signal constraint problem considered in IDM, it is used as a virtual front vehicle
before the red light, and there is no obstacle to deal with when the green light is on. In order
to reduce the idling time at the intersection, a crossroad model method is proposed to
predict the arrival time and the downstream queue discharge time. The article also proposes
an eco-driving model combined with a deceleration strategy to resolve the combined signal
phase and time (SPaT) and vehicle state constraints. Numerical simulations show that
the speed profile generated by the eco-driven model is a speed consultant, which can
reduce idling time and fuel consumption level near the signalized intersection. In order to
ensure that CV followers can track the leader’s speed and interval time while achieving
uniform performance, a conformance-based CV queue model [42] considering V2X network
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topology is proposed. Two crossing decision methods considering the duration of yellow
light were proposed to determine the average expected speed of the leader and prevent
the leader from running the red light. The safe and energy-saving oriented SAM based on
triangle curve and logistics curve is used to guide the CV leader to approach and leave
the signalized intersection with stable driving behavior when the green light is completely
discharged from the queue for planning the speed trajectory of the CV leader.

The main obstacles faced by electric vehicles are the relatively short-range, inadequate
infrastructure, and the difficulty of long-distance travel. While the development of bat-
teries and other technologies has enabled future vehicles to overcome these difficulties,
it is necessary to reduce energy consumption by adopting more energy-efficient driving
behavior. The emergence of advanced sensing technologies and V2X technology opens up
new possibilities for security and energy-efficient applications. A model predictive opti-
mization method is proposed [43] where the power system model, traffic light sequence,
and other vehicles are used to calculate the energy efficiency speed and shift profile in the
limited optimization range, and the phase front and rear dynamic programming method is
employed for optimization.

Microscopic eco-speed control algorithms [44] are not like most of the existing research
in this area where research focuses on infrastructure control. The authors use the concept
of an instrumented vehicles (IV) queue, which connects multiple intersections in a journey
and is placed in multiple vehicles, proposing a greedy algorithm based on the driving
behavior “stop-and-go” and microscopic fuel and emission models. Seven algorithms
are introduced and compared in the simulation and the result comparison is shown in
Table 5. The model gives a speed trajectory to reduce fuel consumption and greenhouse
gas emissions. The goal is to control the speed of each vehicle at the micro level to
reduce fuel consumption and emissions (hydrocarbons and COx). A kind of energy saving
variable speed and shift trajectory is obtained by using the forward and backward dynamic
programming model predictive optimization method [45]. Since the length of event horizon
is limited, a method to create an independent time invariant auxiliary event horizon using
the minimum cumulative cost of history is proposed. The auxiliary horizon is used to
make a good long-distance estimation of the optimal terminal behavior of the optimal
trajectory within the conventional horizon. This method can be applied to different types
of optimization problems, but the focus is on predictive energy efficiency optimization of
electric vehicles.

Table 5. Performance comparison of GLOSA.

Algorithm CO2 Emission Reduction Fuel Consumption Reduction Travel Time Reduction

An extension of IDM and eco-driving model [41] 7.9% 2.3% 1.5%

A model predictive optimization approach [43] 6.2% 9% 4.1%

GDA [46] 6.8% 7.1% 6.8%

MCG [44] 5.7% 4.2% 3.4%

MCG-EA [44] 6.1% 2.1% 2.4%

LOSB-F [44] 6.3% 1.5% 2.0%

LOSB-E [44] 6.4% 2.5% 1.7%

3.2.3. Summary of GLOSA

This section focuses on several metrics for evaluating algorithms, including technical
and more intuitive criteria, CO2 emission, fuel consumption, and travel time. Then three
kinds of algorithms are compared: One is based on ACC, the other is greedy algorithm,
and the other is dynamic programming. These algorithms all show a good state for green
wave traffic, but few factors, such as road conditions in the actual scene, are not considered.
The subsequent algorithms can take the actual interference factors into account to make the
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results more valuable for reference. We also choose LOSB-F algorithms in [44] to calculate
the suitable speed to guarantee vehicles’ passing the intersection without stopping.

3.3. Trajectory Planning
3.3.1. Algorithms

After obtaining the permission of the green wave, using methods of trajectory plan-
ning for local planning which is shown in Figure 7, the vehicles pass the intersection.
For automated road vehicles, the trajectory planner should meet the requirements of dif-
ferent time scales. First, in just a few seconds, it must guarantee a collision-free trajectory
for all road participants and a reasonable safety margin and comfort [47]. The funda-
mental goal of the trajectory planning work is to manage the driverless vehicle without
collision to pass through the intersection, to keep the vehicle running continuously, and to
reduce the waiting time of passing the intersection [48]. The trajectory planning methods
are mainly divided into two categories: Traditional algorithms and methods based on
reinforcement learning.

Figure 7. The scene of trajectory planning.

Traditional algorithms of trajectory planning can be divided into technologies based
on graph search and on sampling. The methods of graph search extend the path planning
technique to ensure the vehicle state over time. Among the autonomous vehicles, the most
commonly used graph search techniques based on trajectory planning techniques are state
lattice, elastic-band (EB), and A-star [49]. The state lattice is a search graph in which the
vertices represent states, and the edges represent paths that connect states that satisfy
the kinematic constraints of the robot. The vertices are placed in the usual way so that
the same path can be used to connect all the vertices. This state grid must accommodate
road planning by indicating only the states that may be in the solution. In addition,
the state lattice must be extended to a dynamic environment by increasing the time and
speed dimensions. State grids can handle multiple dimensions, such as position, velocity,
and acceleration, and are suitable for local planning and dynamic environments. However,
they have high computational costs because it evaluates every possible solution in the
diagram. The path planning method based on the elastic band optimization technique [50]
uses a graph with elastic nodes and edges to represent the state space. Elastic nodes are
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defined by adding an inner edge and an outer edge to the spatial node to connect adjacent
spatial nodes. A predictive control method [51] based on the model is used to generate
the optimal trajectory to avoid collision. In many cases, emergency braking cannot be
performed. The safety factor of collision avoidance is implemented in each movement
stage of the vehicle, and the nonlinear constraints between the brake and the steering
angle are established for emergency motion planning of the vehicle. The efficiency of
solution is evaluated through a simulation of different scenarios, which points out the
direction for the application research of practical autonomous vehicle problems. The issue
of optimal collision planning for vehicle collision avoidance based on the time elastic
band (TEB) [52] framework has been studied. The collision avoidance trajectory is given
by optimizing the TEB of multiple local optimization targets. The resulting trajectory
constitutes the best compromise between simple braking and lane changing, avoiding
collisions with the smoothest possible path. Since TEB considers vehicle dynamics, road
boundaries, static obstacles, and constraints imposed by moving vehicles, this method is
suitable for general critical trajectory situations. An obstacle avoidance trajectory planning
method [53] for vehicle sin process can be used to plan the trajectory with continuous
curvature and approximately zero longitudinal acceleration in the fixed frame system of
a vehicle’s body. Then, according to the characteristics of each subsystem, the trajectory
tracking algorithms of the full-drive steering subsystem and the under-drive longitudinal
subsystem of the work-in-process vehicle are constructed respectively by using the non-
singular terminal sliding mode control and nested saturation method. In the sense of the
Lyapunov stability theory, the stability and asymptotic convergence of the tracking error
of the closed-loop system are proved. The A-star algorithm is commonly used for path
planning or unstructured trajectory planning. Fassbender et al. propose a method named
two new A-star [54] that expand the node for road trajectory planning. The first scheme
attempts to find a trajectory by numerical optimization, connecting the current node of the
vehicle directly to the target node. The second option uses a pure tracking controller to
generate the short side (which guides the car along the whole situation reference path).
The basic algorithm formula [55] is shown as follows:

f (n) = g(n) + h(n) (4)

During the operation, A* algorithm selects the node with the lowest f (n) value
(highest priority) from the priority queue as the node to be traversed next time. N represents
node; f (n) is the comprehensive priority of node n; g(n) is the cost of n from the starting
point; and h(n) is the expected cost of node n’s distance from the end point, which is also
the heuristic function of A* algorithm.

As for heuristic function h(n), there are three main functions. The first type is Manhat-
tan distance [56]. We need to calculate the distance from node to goal as shown in Figure 8.
The calculation is as follows. D refers to the movement cost between two adjacent nodes,
which is usually a fixed constant.

Figure 8. From node to goal.
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Function heuristic(node) =

dx = abs(node.x− goal.x)

dy = abs(node.y− goal.y).

Return (4):

D ∗ (dx + dy) (5).

The second type is diagonal distance [56]. The calculation is as follows. D2 refers to
the cost of movement between two obliquely adjacent nodes.

Function heuristic(node) =

dx = abs(node.x− goal.x)

dy = abs(node.y− goal.y).

Return (5):

D ∗ (dx + dy) + (D2− 2 ∗ D) ∗min(dx, dy). (6)

The last type is simple and we use it commonly, which names Euclidean distance [56].
The calculation is as follows.

Function heuristic(node) =

dx = abs(node.x− goal.x)

dy = abs(node.y− goal.y).

Return (6)

D ∗ sqrt(dx ∗ dx + dy ∗ dy). (7)

The technology based on sampling randomly samples the state space to find the
connection between the current state of the car and the next target state. In autonomous
vehicles, the most commonly used sampling technique based on trajectory planning tech-
niques is a rapidly-exploring random tree (RRT) [57]. The RRT method for trajectory
generation uses a random sample in the state space to incrementally construct a search tree
from the current state of the car. For each random state, a control command is applied to the
nearest vertex of the tree to create a new state that is as close as possible to the random state.
Each vertex of the tree represents a state, and each directed edge represents a command
for extending the state. Candidate trajectories are evaluated according to various criteria.
The RRT method based on sampling has a lower computational cost for high-dimensional
space, and as long as there is a solution and time is sufficient, the solution can always
exit. However, the results are not continuous and stable. A rough trajectory is obtained
by using a sampling search planner, and then it is optimized by numerical optimization.
Among the mainstream sampling search planners, most sampling operations are not flexi-
ble. If the sampling density is low, the solution will inevitably fail; if the sampling density
is high, the dimension curse will appear. In this paper, authors propose an improved RRT*
algorithm [58] for trajectory search, which uses a sampling search planner to get a rough
trajectory, and then optimizes it through numerical optimization, so as to improve the
sampling flexibility of trajectory search and eliminate the randomness of search. A new
smoother based on quadratic programming (QP) is proposed to refine coarse trajectories.

Reinforcement learning (RL) usually include two parts: Agent and environment.
The frame is shown in Figure 9. The interaction of two parts is as follows: The agent,
which is under the environment of state st, chooses action to get the reward rt and enter
into the state st+1. RL in the field of driverless means that unmanned vehicles use their
own sensors to constantly interact with the environment to acquire knowledge of the
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unknown environment. RL has the advantage of learning online through trial and error
through interaction with the environment, acquiring knowledge in the environment of
action and evaluation, and improving action plan [59]. The paper introduces three methods:
Instantaneous difference method, Sarsa method, and Q-learning which is the more effective
environment-model-independent algorithm and can be learned online.

Figure 9. The frame of reinforcement learning.

The Q-table, whose row and column respectively represent the value of state and
action is the core of Q-learning, is shown in Figure 10. Thus, the value Q(s,a) of Q-table is
used to measure whether the behavior that state ‘s’ adopt action ‘a’ is fine [60].

Figure 10. Process of Q-learning.

In the process of training, the algorithm uses the Bellman Equation to update the
Q-table. The formula is as follows [61]:

Q(s, a) = r + γ ∗max[Q(s′, a′)]. (8)

Although RL is efficient in trajectory planning under stochastic dynamic environment,
it is also a challenge and a research problem in speeding up the convergence of the al-
gorithm, reducing space complexity, and improving learning ability in the environment.
Reinforcement learning based on neural network can improve the problem of insufficient
storage space, approaching the Q function through the neural network, and constantly
updating the value of Q after obtaining the state of unmanned vehicle. The neural networks
is trained according to the BP algorithm and the path planning is completed.

In addition to the above algorithms, various intelligent information optimization
methods have also been introduced into the field of path planning. The intelligent water
drop algorithm [62], ant colony algorithm [63], and tentacle algorithm [64] all improve the
algorithm performance to a certain extent and enhance the quality of trajectory planning.

Table 6 compares the algorithms from three aspects: Real-time performance, robust-
ness, and time complexity. It can be seen that the RRT algorithm in the traditional algorithm
has better performance in real-time and robustness, and the A* search rate is faster; the
algorithm based on reinforcement learning has a certain improvement in real-time and
robustness compared to the traditional algorithm, but the time complexity is worse.
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Table 6. Algorithms performance of trajectory planning.

Algorithm Real-Time Robustness Time Complexity

State lattice [49] 85% ++ ++++

EB [50] 75% + ++++

A* [54] 88% ++ +++

RRT [57] 79% ++ ++

Q-learning [60] 90% +++++ ++

3.3.2. Summary of Trajectory Planning

This part mainly introduces several common algorithms of trajectory planning and
compares their performance. At present, A* algorithm and Q-learning based planning
method are more commonly used. Relatively speaking, the performance of Q-learning is
improved, so we can focus on optimizing the relevant algorithms based on Q-learning in
future research.

3.4. Emergency Vehicle Priority

This section proposes a particular vehicle: The emergency vehicle. Statistics show that
emergency vehicles are more prone to accidents than other road users when performing
tasks, especially at intersections, as is shown in Figure 11. Statistics on the German rescue
service mission show that there are more than 14 million missions per year, which is
equivalent to having tens of thousands of emergency vehicles perform tasks every day.
Each task is carried out under tremendous time pressure because the local response time
controls the maximum time difference between the incoming call and the arrival of the
rescue team [65]. The emergency vehicle preemption system allows emergency vehicles
such as fire fighting trucks and ambulances to request and receive green traffic signal
indications as they approach an intersection [66]. Emergency Vehicle Preemption (EVP)
provides a green belt along the route at isolated and coordinated signal intersections,
interrupting normal traffic signal timing operations. EVP allows the EVs to pass without
stopping or waiting at the intersection, which may reduce travel time and reduce conflict
with other vehicles in the system.

Ma et al. [67] study the priority of EV signals from different directions and necessarily
pass the same intersection in a specific period time, and propose a multi-agent EV signal
priority control system based on multi-agent. The phase agent and management agent
are imported in the system, and the fuzzy logic theory is used to realize the internal
logic of various agents and the coordination mechanism between modules. The Dynamic
Preemption Algorithm (DPA) [68] is based on the idea of adjusting the traffic signal
cycle at each intersection along the road to ensure sufficient green light to allow the
emergency vehicles to pass through the intersection with minimal delay without stopping.
The algorithm must determine the emergency vehicle at a particular location and then
decide the exact seconds at which the preemption must begin in the traffic signal phase
period based on the Global Positioning System (GPS) information received from the EV.
The decision of position must strike a balance between two essential requirements: One
is that the minimum travel time for an emergency car should approximately equal to its
theoretical free travel time, the other is that the additional delay for other vehicles should
reach the minimum or be slight enough at the same intersection.
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Figure 11. Priority for emergency vehicle scheduling.

The algorithms comparison of the aboved are shown in Table 7. Many of the devel-
oped preemption strategies are based on a single intersection. These strategies rely on
local detection and clearing intersections one by one, and the signal preemption process
cannot be initiated before an emergency vehicle is detected; the inherent delays at the
intersection are unavoidable. This signal preemption strategy can only be initiated after
the detection of the emergency vehicles, which often leads to inevitable intersection delay.
Mu et al. propose a signal preemption control method named Timed Colored Petri Nets
(TCPN) to reduce the delay of emergency vehicles at intersections [69]. TCPN is used to
establish a traffic flow model, traffic signal display, phase switching model, and traffic
signal switching control model. An urban transportation network model consists of three
sub-models. An emergency vehicle preemptive optimization control system is designed,
including monitoring subsystem, phase time determination subsystem, and phase switch-
ing control subsystem. Louati et al. propose a method [70] that facilitates the passage
of emergency vehicles through urban intersections. They rely on preemptive technology
and multi-agent systems. Benchmarking and analysis are performed using VISSIM traffic
simulation software. The article considers several metrics to assess network performance,
including latency, travel time, vehicle queue occupancy, number of stops, distance travelled,
and speed.

Table 7. Algorithms comparison of emergency vehicle priority.

Algorithm Method Result

The multi-agent EV signal priority
control system [67]

Fuzzy logic theory; phase agent and management
agent

Passing time decreases by 16.4%
and stop times reduce by 8.21%

DPA [68]
The acyclic signal operation based on a real time

control approach; Passing Vehicle Search algorithm
(PVS)

The delay decreases by 12.51%

TCPN [69]
Establish a traffic flow model; traffic signal display

and phase switching model and traffic signal
switching control model

The maximal improvement rate
compared with the traditional

method is 29.49%

A distributed Traffic Signal Control
System (TSCS) [70]

LQF-MWM assumptions, preemption technique;
multi-agent system

The system reduces the total travel
time by 11.7% and 27.02% compared

to MAS-P-OSBFX-240S and
MAS-P-OSBFX-60S
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4. Conclusions

This paper focused on the safety of intersection and efficiency improvement by
the fast development of vehicle-to-vehicle and vehicle-to-infrastructure communications.
The overview of methods for intersection management is also presented and all of these
are useful to improve the traffic condition. A relatively good method was chosen from each
scene to construct a solution that was useful to pass through the intersection.

In future, virtual traffic lights will more likely become an attractive and mutual way
to ease traffic pressure. Intelligent collaboration between connected vehicles and roadside
units provides new opportunities for better road safety and vehicle traffic management via
innovative non-signalized intersections. We could build the road-network-wide conflict-
free geometric topology considering the vehicles’ conflicting relationships. To deal with
sophisticated traffic information brought about by a dynamic non-signalized intersection
environment, artificial intelligence (AI) solutions together with V2X communication tech-
nologies are proposed to provide data-driven intersection management strategies. AI
technologies that have been applied for vehicle traffic scheduling include reinforcement
learning, artificial neural networks, and mutil-agent systems. Algorithms in these three
directions can be employed separately or jointly. Intersection manager and vehicles are
normally looked upon as intelligent agents. Via a virtual traffic model projected in the
real world or directly using a practical traffic environment, agents are capable of obtaining
an optimal scheduling strategy based on the received feedback under different situations.
Non-signalized intersection management mechanisms can potentially leverage various AI
technologies to achieve road safety and enhance traffic management efficiency.
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Adaptive Cruise Control ACC
Abnormal Vehicle Warning AVW
body stability system BSS
Control Loss Warning CLW
convolutional neural network CNN
connected vehicles CVs
Dynamic Preemption Algorithm DPA
elastic-band EB
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Emergency Vehicle Preemption EVP
green light optimized speed advisory GLOSA
Global Positioning System GPS
Hazardous Location Warning HLW
Hopfield Neural Network HNN
host vehicle hv
hybrid wavelet decomposition HWD
Intelligent Driver Assistance System IDAS
intelligent prediction model IPM
intelligent traffic system ITS
instrumented vehicles IV
in-vehicle monitoring system IVMS
lane offset warning system LOW
map and transfer MT
radio frequency identification RFID
Reinforcement learning RL
rapidly-exploring random tree RRT
roadside units RSU
remote vehicle RV
signal phase and time SPaT
support vector machines SVMs
Timed coloured Petri nets TCPN
traction control system TCS
time elastic band TEB
Traffic Signal Control System TSCS
Vehicle-To-Infrastructure V2I
Vehicle-To-Network V2N
Vehicle-To-Pedestrian V2P
Vehicle-To-Vehicle V2V
Vehicular Adhoc Networks VANETs
signal phase and time SPaT
wavelet zero padding WZP
artificial intelligence AI
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