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Abstract: Leaf pigment content retrieval is an essential research field in remote sensing. However,
retrieval studies on anthocyanins are quite rare compared to those on chlorophylls and carotenoids.
Given the critical physiological significance of anthocyanins, this situation should be improved.
In this study, using the reflectance, partial least squares regression (PLSR) and Gaussian process
regression (GPR) were sought to retrieve the leaf anthocyanin content. To our knowledge, this is
the first time that PLSR and GPR have been employed in such studies. The results showed that,
based on the logarithmic transformation of the reflectance (log(1/R)) with 564 and 705 nm, the GPR
model performed the best (R2/RMSE (nmol/cm2): 0.93/2.18 in the calibration, and 0.93/2.20 in the
validation) of all the investigated methods. The PLSR model involved four wavelengths and achieved
relatively low accuracy (R2/RMSE (nmol/cm2): 0.87/2.88 in calibration, and 0.88/2.89 in validation).
GPR apparently outperformed PLSR. The reason was likely that the non-linear property made GPR
more effective than the linear PLSR in characterizing the relationship for the absorbance vs. content
of anthocyanins. For GPR, selected wavelengths around the green peak and red edge region (one
from each) were promising to build simple and accurate two-wavelength models with R2 > 0.90.

Keywords: leaf anthocyanin content; retrieval; partial least squares regression; gaussian process
regression

1. Introduction

Anthocyanins exist widely in the plant kingdom, and accumulate in the vacuoles
of cells and the tissues of plant vegetative and reproductive organs [1]. They are closely
associated with red, blue, and purple coloration of plants [2]. In the leaves, anthocyanins
are transiently present in certain developmental stages, such as the juvenile and senescence
phases, or persist throughout the leaves’ entire life span [3]. These pigments can be induced
by biotic or abiotic stress to help plants resist the adverse effects of the stress, such as
herbivory [4], photoinhibition [5], and chilling and freezing [6]. Therefore, anthocyanins
are of great significance to plants. The anthocyanin content provides crucial information
regarding the plant physiological status.

The traditional method to measure anthocyanin content is wet chemistry (e.g., Amr
and Al-Tamimi [7]). This method consists of many procedures, such as field sampling and
laboratory chemical assays, which are destructive, and time and labor intensive. However,
remote sensing provides a noninvasive and more efficient opportunity to fulfil this task.
The leaf reflectance or transmittance can be easily and rapidly measured with a remote
sensor in the field. With these spectral data, the anthocyanin content can be retrieved
simply and conveniently.
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Gamon and Surfus [8] and Sims and Gamon [9] used a red/green reflectance ratio of
broad bands to estimate the anthocyanin content. Gitelson et al. [10] built the anthocyanin
reflectance index (ARI), and then Gitelson et al. [11] further modified it to construct the
mARI (modified ARI). Vina and Gitelson [12] analyzed the sensitivity of four vegetation
indices to the anthocyanin content using green reflectance, and found that the visible
atmospherically resistant vegetation index (VARI) [13] was highly linearly related to the
ratio of anthocyanin content to the sum of the chlorophyll, carotenoid, and anthocyanin
content. Unlike these reflectance-based vegetation indices, van den Berg and Perkins [14]
built the transmittance-based anthocyanin content index (ACI). Steele et al. [15] modified
the ACI index and used the near-infrared and green reflectance instead of the transmittance.
Féret et al. [16] developed the radiative transfer model PROSPECT-D, which contains
the anthocyanin content as one of the input parameters. The anthocyanin content can be
obtained from the inversion of this model. Gitelson and Solovchenko [17] compared the
reflectance and absorbance (represented with –log(transmittance))-based approaches, and
advised synergistic use to obtain accurate estimation.

Although these studies have made great progress regarding the retrieval of the an-
thocyanin content, they are still rare in comparison to the fruitful retrieval studies on
leaf chlorophylls and carotenoids. In addition, these studies should also be further exam-
ined for applicability under other circumstances. For chlorophylls and carotenoids, many
advanced and sophisticated retrieval techniques have been proposed, such as stepwise
multiple linear regression [18], partial least squares regression (PLSR) [19,20], continuous
wavelet analysis [21], artificial neural network (ANN) [22], and Gaussian process regres-
sion (GPR) [23,24]. However, these methods have not been reported to retrieve the leaf
anthocyanin content yet. This situation may be caused for two reasons. First, anthocyanins
are non-photosynthetic, and are typically present (rich) in certain plant species (e.g., Trades-
cantia pallida), or during certain physiological stages (e.g., senescence) or when plants are
under stress. They are generally not as widely abundant in nature as the photosynthetic
chlorophylls. Therefore, their retrieval has not been fully addressed by the remote sens-
ing community. Second, the most practical reason is likely the relatively low content of
anthocyanins in green leaves, and the consequent difficulty in resolving anthocyanins from
other overlapping absorption signals (e.g., chlorophylls), which prevents their retrieval.
However, considering the essential physiological significance of anthocyanins for plants,
this situation should be improved. More retrieval techniques, especially the advanced ones,
should be developed for the leaf anthocyanin content.

Among the advanced retrieval methods, PLSR and GPR are two popular ones. PLSR
is a generalization of multiple linear regression. PLSR can analyze data with high collinear-
ity, noise, and numerous independent variables even when the number of independent
variables exceeds that of observations [25,26]. PLSR prevails widely in various fields, such
as bioinformatics and anthropology. GPR is a machine learning regression algorithm, and
it shows good accuracy in retrieval problems, such as estimation of the leaf area index [27],
oceanic chlorophylls [28], and soil moisture [29]. This method is nonparametric and based
on a Bayesian framework. Nonparametric methods do not require preliminary knowledge,
such as the form of a fitting function and, instead, directly infer relationships among the
data. To train a GPR model, one only needs to maximize the likelihood function. This
process is easy and efficient to realize compared to certain other nonparametric meth-
ods. For example, to train an ANN, one may have to do many trials to determine the
architecture. Another particularly useful property of GPR is that it also provides the pre-
diction errors [23,30]. With these, it is convenient for an analyst to assess the accuracy of
the estimations.

Therefore, in this study, we specifically explored two advanced techniques, i.e., PLSR
and GPR, to retrieve the leaf anthocyanin content using spectral reflectance data. To
our knowledge, this is the first time that these two techniques have been applied in leaf
anthocyanin content retrieval with reflectance. Two aspects were targeted: (1) obtaining a
model as simple as possible with only a few wavelengths while maintaining accuracy, and
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(2) comparing the performance of the various retrieval techniques, particularly the linear
PLSR vs. the nonlinear GPR models.

2. Materials and Methods
2.1. The Overall Process of This Study

Figure 1 summarizes the overall process of this study. First, leaf samples were collected.
The spectral reflectance for the leaves was measured, and then the anthocyanin content
was determined chemically. Various retrieval methods were investigated to retrieve the
leaf anthocyanin content. Their performance was compared and evaluated. The following
sections describe the content in detail.
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Figure 1. Flowchart of the research procedure.

2.2. The Datasets

The leaves of four species, European hazel (Corylus avellana L.), Norway maple (Acer
platanoides L.), and Virginia creeper (Parthenocissus quinquefolia (L.) Planch.) in Moscow,
Russia, and Siberian dogwood (Cornus alba L.) in Nebraska, USA, were sampled from 1992
to 2008. In the spring and autumn, the sunlit leaves of these species contained abundant
anthocyanins [31]. Healthy and homogeneously colored leaves without visible damage
were selected. The adaxial leaf reflectance was measured with (1) a clip attached to a
USB2000 radiometer (Ocean Optics, Dunedin, FL, USA; DOGWOOD2; see the following),
and (2) a 150–20 spectrophotometer (Hitachi, Tokyo, Japan) equipped with a 150-mm
diameter integrating sphere (DOGWOOD1, HAZEL, MAPLE, and CREEPER). The leaf
chlorophyll, carotenoid, and anthocyanin content was analytically determined. The chloro-
phylls and carotenoids were first quantified, and then the anthocyanins were quantified
after extract acidification using concentrated hydrochloric acid.

The measured data were downloaded from a webpage (see Acknowledgements) and
were stored in five Excel tables. All these datasets are mono-species: Siberian dogwood in
DOGWOOD1 and 2, European hazel in HAZEL, Norway maple in MAPLE, and Virginia
creeper in CREEPER. From these datasets, the records sharing the same spectral region
of 436–780 nm were picked and pooled together, forming a total dataset, TOTAL, of
210 samples.

2.3. The Basic Thought and Theory on PLSR and GPR
2.3.1. Partial Least Squares Regression

As there are numerous papers and books specific in the mathematic theory and
applications for PLSR (e.g., [25,26,32,33]), only the basic algorithms for this technique are
briefly introduced here.

Unlike multiple linear regression, PLSR does not directly use original independent
variables (X) and responses (Y) but utilizes the extracted components (scores) in regression.
In PLSR, there are outer relationships:

X = TP′ + E (1)



Sensors 2021, 21, 3078 4 of 18

Y = UQ′ + F* (2)

where T and U are, respectively, the X scores and Y scores. P and Q are the loading matrices.
The symbol ′ represents the transposition operation of a matrix. E and F* are error matrices.
There is an inner relationship:

^
uh = bh∗th (3)

where th is the hth column vector of T,
^
uh the regression of th against uh, and bh the

regression coefficient. uh is the hth column vector of U. The mixed relationship is

Y = TBQ′+ F (4)

where B is the coefficient matrix and F is the error matrix. The Euclidian or Frobenius norm
of F is to be minimized.

When determining the number of components (a) for the model, as many components
as the rank of X can be extracted. However, not all components are necessary, considering
the overfitting and that components of a higher order typically describe noise. Generally, a
can be determined through cross-validation to test the predictive significance of the com-
ponent. First, the data are divided into g (e.g., 10) groups. Second, with the a component(s),
PLSR models are built on reduced data with one group deleted (g models in total). From
each model, the differences between the actual and validated responses are calculated.
The squares of all these differences are summed together to form the predictive residual
sum of squares (PRESS). Similarly, with all data used, one PLSR model is built, and the
corresponding “sum” is obtained to form the sum of squares (SS). Third, the ratio PRESSa
/SSa−1 is calculated. If this ratio is smaller to around 0.9 for at least one of the Y-variables,
adding the ath component is regarded to be significant to reduce the error in prediction,
and vice versa.

In our study, PLSR was performed in MATLAB (Version R2017b; MathWorks) with
the function plsregress. When determining a, the TOTAL dataset was randomly evenly
divided into 10 groups, and the threshold for the component significance was set at 0.952.

2.3.2. Gaussian Process Regression

This section outlines the primary algorithm for GPR according to [34]. Let us consider
a dataset D = {(si, zi) | i = 1, 2, . . . , n} = (S, z), where si ∈ Rb is an observation (e.g.,
a spectrum) with b variables (e.g., wavelengths), and the scalar zi the response (e.g.,
anthocyanin content) to si. For brevity, D is further aggregated with S = [s1, s2, . . . , sn] and
z = [z1, z2, . . . , zn]’. Under the Gaussian process (GP) framework, z is the sum of a latent
function f (·) and an additive independent noise ε, z = f (s) + ε, where

f (s) ~ GP(0, k(s, s#)) (5)

ε ∼ N
(

0, σ2
n

)
(6)

s and z represents any one observation and the corresponding response, respectively.
Equation (5) means a GP is assumed on the latent function f (·). A GP is defined as a collec-
tion of random variables, any finite number of which have a joint Gaussian distribution,
and this is specified by a zero mean function and a covariance (kernel) function k(s, s#).
Equation (6) assumes the noise ε to follow a Gaussian distribution with a zero mean and
σ2

n covariance.
For the test data points (S*, z*) with n* observations, the prior joint distribution of z

and z* under the priors Equations (5) and (6) is[
z
z*

]
∼ N (0,

[
K(S, S)+σ2

n I K(S, S ∗)
K(S ∗ , S) K(S ∗, S∗)

])
(7)
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where K(S, S*) is an n × n* covariance matrix evaluated at all pairs of training and test
observations using k(s, s#), and similarly for K(S, S), K(S*, S), and K(S*, S*). I is an identity
matrix. The posterior distribution for z* is

z* |S, z, S* ~ N(µ*, Σ*) (8)

where
µ∗ = K(S∗, S)

[
K(S, S) + σ2

n I
]−1

z (9)

Σ∗ = K(S∗, S∗)− K(S∗, S)
[
K(S, S) + σ2

n I
]−1

K(S, S∗) (10)

µ* and Σ* are, respectively, the mean and covariance for the prediction at S*. In other words,
µ* is the best predicted value, and Σ* shows a confidence measure to this prediction. The
superscript −1 represents calculating an inverse matrix.

The above is the basic thought for GPR. Apparently, the covariance function k(s, s#)
plays a core role. In GPR, various covariance functions can be used. A typical choice is the
automatic relevance determination (ARD) [35] squared exponential:

k(s, s#) = σ2
f exp[−1

2

b

∑
m=1

(sm − s#
m)

2

σ2
m

] (11)

where σf is the signal standard deviation, and σm is the characteristic length scale for each
variable. Both hyper-parameters are > 0. The reciprocal of σm represents the relevance of
each variable, and a low value of σm indicates a high informative content of the variable
in regression.

To train the GPR model, we use the marginal likelihood

p(z|S) =
∫

p(z|f, S)p(f|S)df (12)

with the marginalization over the function values f . The log marginal likelihood function is

log[p(z|S)] = −1
2

z′[K(S, S) + σ2
n I]
−1

z− 1
2

log |K(S, S) + σ2
n I| − n

2
log 2π (13)

To maximize the marginal likelihood, the partial derivatives of Equation (13) to-
ward the hyper-parameters θ (σf, σm, σn) are calculated, where a gradient-based opti-
mizer is applied. Thus, the optimal solution for the hyper-parameters is determined.
Then, with the optimal hyper-parameters, the prediction at S* can be calculated through
Equations (9) and (10).

In our study, GPR was run using the public GPML code (Version 4.2; see Acknowl-
edgements) in the MATLAB (Version R2017b; MathWorks) environment.

2.4. Wavelength Selection, Model Building for PLSR and GPR

TOTAL had 345 wavelengths. Both PLSR and GPR can build a model with all of
these wavelengths. Such a model is clearly too complicated (and likely overfitting) to
be interpreted and transferred to other datasets. Therefore, some wavelengths must be
eliminated to simplify the model.

With this in mind, the first problem is how to determine to retain or remove a variable
in model building. Thus, an indicator should be introduced to assess the importance of
the variables. For GPR, the hyper-parameter σm indicates such an importance assessment.
A large σm value indicates low importance, and vice versa [36]. For PLSR, we used the
regression coefficients (β). A large absolute value of β (|β|) indicates high importance [37].

To build a regression model as simple as possible, first, the TOTAL dataset was
randomly evenly divided into 10 subsets. These 10 subsets were also used in all the model
calibrations and validations below. Second, the sequential backward band removal (SBBR)
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algorithm [38] was applied. This algorithm consists of two steps. (a) With all available
wavelengths (345 at the beginning), a model was calibrated on nine subsets. The remaining
subset was used for model validation. During calibration, the wavelength importance
indicator and indicator rankings were recorded. The indicator and indicator rankings in
the ten times of calibration were, respectively, added together. Using either the sum of the
indicator or the sum of the indicator rankings to evaluate the wavelength importance, the
least important wavelength for retrieval was removed. (b) With the remaining wavelengths,
step (a) was repeated until only one wavelength was left in the model. This last wavelength
should be the most important one associated with the response in retrieval. Third, starting
from this last wavelength, several mutually distant (distance > 10 nm) wavelengths were
picked out from the sequential regression models. These wavelengths consisted in the final
regression models. A distance was specified to avoid a strong correlation between too
near wavelengths. The 10 nm was selected because this is the lowest spectral resolution a
hyperspectral instrument should have.

In addition to the reflectance (R), the logarithmically transformed data log(1/R) were
also used, because this transformation can be regarded as a measure of leaf absorbance [18].

2.5. Other Retrieval Methods

We also examined some of the other retrieval methods, mentioned in Section 1. These
methods are summarized in Table 1. The Rx in the five vegetation indices represents the
reflectance at the wavelength of x nm or in a spectral range (e.g., red). For the red/green
ratio index, two forms were used. Red/Green-1 (specified as R675/R550) is a narrow band
ratio at single wavelengths, while Red/Green-2 is a broad ratio. For mARI, the first wave-
length (530–570 nm) had the strongest correlation with the anthocyanin absorption, and
was determined at 549 nm. Then, the second (690–710 nm) and third (NIR, 760–780 nm)
wavelengths were optimized (to make the R2 of linear regression for mARI vs. the antho-
cyanin content the largest) at 699 and 760 nm, respectively. Thus, mARI was determined as
(1/R549 − 1/R699) × R760. mACI was specified as R780/R550.

Table 1. Other methods to retrieve the anthocyanin content.

Name Formula Reference

Red/Green-1 Rred
Rgreen

This study

Red/Green-2 ∑699
600 Ri

∑599
500 Ri

[8,9]

ARI 1
R550
− 1

R700
[10]

mARI ( 1
R530−570

− 1
R690−710

)× RNIR [11]

mACI RNIR
Rgreen

[15]

PROSPECT-D [16]

2.6. Model Calibration, Validation, and Evaluation

For the vegetation indices in Table 1 and the final determined PLSR and GPR models,
10-fold cross-validation was performed on the TOTAL dataset. During each calibration-
validation process (including those in Section 2.4), the predicted and the actual anthocyanin
content was fitted with a linear model at a confidence level of 95%. The R2 and root-mean-
square error (RMSE) were calculated. The resulting 10 RMSEs and 10 R2 values were,
respectively, averaged as accuracy estimators. In addition, for the final PLSR and GPR
models, the correlation coefficient (r) and the scatterplots for the measured vs. predicted
anthocyanin contents were calculated and drawn, respectively. As for PROSPECT-D, the
prediction was directly derived with the model inversion.
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3. Results
3.1. Statistics for the Leaf Pigment Content

Table 2 shows the statistics for the datasets. The chlorophyll content had the largest
range and standard deviation, while those for the carotenoids were the smallest. Figure 2
displays the correlation coefficients between the pigments of the TOTAL dataset. The
chlorophylls and carotenoids had a relatively strong correlation, while anthocyanins had a
weak correlation with both chlorophylls and carotenoids.

Table 2. Description of the datasets. HAZEL did not have records of the carotenoid content, so HAZEL was excluded for
the carotenoid statistics of the TOTAL dataset. The original CREEPER had 81 leaves; however, there were six leaves whose
anthocyanin content was missing. Therefore, these six samples were removed. SD stands for standard deviation.

Dataset Reference
Spectral

Range (nm)
Number of

Leaves

Pigment Content (nmol/cm2)

Chlorophylls Carotenoids Anthocyanins

Mean ± SD Range Mean ± SD Range Mean ± SD Range

DOGWOOD1 [10,31,32] 436–796 23 5.13 ± 5.33 0.07–15.05 3.10 ± 2.22 0.42–7.88 8.64 ± 7.04 0.40–22.82
DOGWOOD2 [11] 400–1017 51 23.77 ± 7.58 1.53–39.81 5.39 ± 2.26 1.73–10.76 12.71 ± 8.21 1.07–30.23

HAZEL [31,39] 400–800 13 26.37 ± 3.55 22.69–34.62 None None 7.13 ± 4.19 0.25–13.61
MAPLE [11,31,32] 400–780 48 7.43 ± 7.36 0.14–32.98 5.25 ± 2.37 1.82–10.40 8.75 ± 6.83 1.12–21.67

CREEPER [31,39] 400–800 75 11.79 ± 14.92 0.09–53.76 3.13 ± 3.12 0.15–12.27 6.72 ± 8.66 0.00–26.97
TOTAL 436–780 210 13.88 ± 12.71 0.07–53.76 4.23 ± 2.85 0.15–12.27 8.88 ± 8.05 0.00–30.23
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3.2. Retrieval with GPR

Figure 3 shows the retrieval results with GPR. Generally, the accuracy was quite stable
with three or more wavelengths in the models. There are several abrupt fluctuations around
some numbers of wavelengths, but this did not influence the general trend of the accuracy.
With a given number of wavelengths (≥3, except those fluctuations), the retrieval between
calibration and validation was not much different. For example, at 120 wavelengths, based
on R and using the sum of the σm rankings as the wavelength importance indicator, the R2

values were both 0.93, and the RMSE values were 2.15 and 2.24 nmol/cm2 in calibration
and validation, respectively. Moreover, the retrieval based on log(1/R) was better than that
based on R. To assure high accuracy of the final models, the retrieval based on log(1/R)
was further investigated.
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Table 3 lists the retrieval results of the last five models with SBBR. From iterations
#1–5 with strategies 1 and 2, two optimal wavelengths were selected in sequence to build
the final GPR models. The retrieval results with these two final models are listed in Table 4.
These two final models resulted in nearly the same accuracy, and the model with strategy
1 was slightly better than that with strategy 2. With only two wavelengths, both models
maintained the similar accuracy as the models with ≥3 wavelengths in Table 3. Figure 4
shows the scatterplots for the actual vs. the predicted content from the two final models in
validation. The dots are uniformly distributed around the 1:1 line, indicating no apparent
bias in prediction.

Table 3. GPR retrieval of the last five iterations, using the SBBR algorithm based on log(1/R). The underlined are the
selected wavelengths for the final GPR models.

No.
R2 RMSE (nmol/cm2)

Wavelength (nm)
Calibration Validation Calibration Validation

Strategy 1: sum of σm as the wavelength importance indicator
#1 0.81 0.82 3.47 3.53 564
#2 0.87 0.88 2.89 2.93 564, 566
#3 0.93 0.93 2.18 2.23 564, 566, 705
#4 0.93 0.93 2.18 2.23 560, 564, 566, 705
#5 0.93 0.93 2.18 2.23 560, 561, 564, 566, 705

Strategy 2: sum of σm rankings as the wavelength importance indicator
#1 0.84 0.84 3.25 3.32 557
#2 0.87 0.88 2.90 2.96 557, 566
#3 0.94 0.94 1.89 2.03 477, 557, 566
#4 0.94 0.94 1.89 2.03 477, 557, 564, 566
#5 0.95 0.95 1.75 1.91 477, 557, 564, 566, 705

Table 4. Retrieval results with the final GPR models (log(1/R) based).

No.
Wavelength Importance

Indicator
R2 RMSE (nmol/cm2) Wavelength

(nm)Calibration Validation Calibration Validation

#1 Sum of σm 0.93 0.93 2.17 2.20 564, 705

#2 Sum of σm rankings 0.92 0.92 2.21 2.37 477, 557
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on R and using the sum of the |β| rankings as the wavelength importance indicator, the 
R2 values were both 0.67, and the RMSE was 4.65 and 4.71 nmol/cm2 in calibration and 
validation, respectively. The PLSR retrieval based on log(1/R) was remarkably better than 
that based on R. However, compared to Figure 3, the PLSR retrieval was generally clearly 
worse than those of the GPR models. To obtain an accurate PLSR model, the retrieval 
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3.3. Retrieval with PLSR

Figure 5 shows the retrieval results with PLSR. With six or more wavelengths, the
retrieval accuracy reached the highest and remained stable, and the accuracy in calibration
and the corresponding validation was very close. For example, at 120 wavelengths, based
on R and using the sum of the |β| rankings as the wavelength importance indicator, the
R2 values were both 0.67, and the RMSE was 4.65 and 4.71 nmol/cm2 in calibration and
validation, respectively. The PLSR retrieval based on log(1/R) was remarkably better than
that based on R. However, compared to Figure 3, the PLSR retrieval was generally clearly
worse than those of the GPR models. To obtain an accurate PLSR model, the retrieval based
on log(1/R) was further examined.
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Table 5 lists the retrieval results of the last seven models with SBBR. From iterations
#1–7 with strategies 1 and 2, the wavelengths in the final models were selected in sequence.
The retrieval results with the two final PLSR models are listed in Table 6. These two models
achieved almost the same accuracy, and this accuracy was also the same as the models with
≥6 wavelengths in Table 5. With a lower number of wavelengths, the final PLSR model
with strategy 1 was simpler than that with strategy 2. Compared to the two final GPR
models in Table 4, the two final PLSR models were more complicated and less accurate.
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Figure 6 shows the scatterplots for the measured vs. predicted content using the two final
PLSR models in validation. With the measured content < 18 nmol/cm2, the two models
performed well, while with content greater than this level, the predictions became worse
and showed an underestimation. For example, with the #1 model, at content less than
and greater than this level, the r and RMSE were 0.94 (p < 0.01), 2.34 nmol/cm2, and 0.28
(p = 0.11), 4.98 nmol/cm2, respectively.

Table 5. PLSR retrieval of the last seven iterations, using the SBBR algorithm based on log(1/R). The underlined are the
selected wavelengths for the final PLSR models.

No.
R2 RMSE (nmol/cm2)

Wavelength (nm)
Calibration Validation Calibration Validation

Strategy 1: sum of |β| as the wavelength importance indicator
#1 0.08 0.12 7.71 7.71 723
#2 0.09 0.12 7.67 7.74 723, 755
#3 0.09 0.12 7.67 7.74 722, 723, 755
#4 0.09 0.02 7.66 7.74 709, 722, 723, 755
#5 0.09 0.12 7.66 7.74 707, 709, 722, 723, 755
#6 0.87 0.88 2.88 2.89 566, 707, 709, 722, 723, 755
#7 0.87 0.88 2.88 2.90 566, 707, 709, 722, 723, 743, 755

Strategy 2: sum of |β| rankings as the wavelength importance indicator
#1 0.08 0.12 7.69 7.70 725
#2 0.09 0.11 7.68 7.75 725, 744
#3 0.09 0.12 7.67 7.75 725, 744, 755
#4 0.09 0.12 7.67 7.75 725, 744, 754, 755
#5 0.09 0.12 7.66 7.74 707, 725, 744, 754, 755
#6 0.87 0.87 2.90 2.94 564, 707, 725, 744, 754, 755
#7 0.87 0.87 2.90 2.94 564, 707, 723, 725, 744, 754, 755

Table 6. The retrieval results with the final PLSR models (log(1/R) based).

No.
Wavelength Importance

indicator
R2 RMSE (nmol/cm2)

Wavelength (nm)
Calibration Validation Calibration Validation

#1 Sum of |β| 0.87 0.88 2.88 2.89 566, 709, 723, 755

#2 Sum of |β| rankings 0.87 0.87 2.90 2.93 564, 707, 725, 744, 755
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3.4. Retrieval with Other Methods

The retrieval accuracy using Red/Green-1, -2, mACI, and PROSPECT-D were low,
with all R2 ≤ 0.81 and RMSE > 3.6 nmol/cm2. For ARI and mARI, the results were more
accurate (Table 7). These two vegetation indices performed better than the two final
PLSR models (Table 6); however, they were slightly worse than the two final GPR models
(Table 4).

Table 7. The retrieval results with ARI and mARI.

Method
R2 RMSE (nmol/cm2)

Calibration Validation Calibration Validation

ARI 0.91 0.91 2.45 2.43
mARI 0.90 0.91 2.54 2.54

4. Discussion
4.1. Comparison among the Retrieval Methods

From Section 3, we can see that GPR performed the best among all the investigated
methods. GPR is one of the machine learning techniques. In recent decades, machine
learning has been being extensively applied in the remote sensing of vegetation biochemical
content (e.g., water, chlorophyll), and can achieve higher accuracy than other methods
(e.g., [40–43]). Our study also demonstrated this situation. There may be several reasons
for this. First, considering the influence of other factors (e.g., chlorophyll absorption), the
relationship of leaf green reflectance vs. anthocyanin content was not linear. Therefore, the
linear models that directly use reflectance as independent variables and that fail to effec-
tively reduce the influence were disturbed, causing a loss in accuracy (PLSR, Red/Green-1,
-2, and mACI). However, the non-linear machine learning methods may grasp the relation-
ship of green reflectance vs. anthocyanin content well (see also Section 4.3). Second, the
machine learning methods can utilize many spectral wavelengths, and make optimization
to specific datasets. Vegetation indices use only several wavelengths, and thus may omit
potential useful information. Third, the main reason for good performance of ARI and
mARI was that they significantly reduced the interference from chlorophyll absorption
with the item −1/Rband (band is around 705 nm) [10,11].

For the radiative transfer models (PROSPECT-D here), they describe the physical inter-
action between leaf and light, and are simplification and generalization to this interaction.
Their accuracy in prediction mainly depends on how well the process is understood and ac-
counted for in modeling [44]. Thus, these models do not necessarily entirely adapt to some
specific circumstances. Nevertheless, with the physical basis, radiative transfer models do
not need calibration each time and can obtain consistent accuracy among datasets, while
the empirical methods (e.g., vegetation indices and machine learning) should be calibrated
first before use and the accuracy among datasets may vary greatly.

In short, machine learning methods have not been reported to retrieve leaf anthocyanin
content to date. Our results demonstrated the capability of GPR, and set a precedent. It
reminds us that other machine learning algorithms such as ANN may be also effective and
are worth trying. This needs further study.

4.2. The Most Important Wavelengths Selected and Performance of the Obtained Models

As shown in Figure 7, across wavelengths, the correlation coefficient for R vs. antho-
cyanin content had the opposite trend with that for log(1/R) vs. the content, and both
correlation coefficient series had the highest values in the green region. This range is
also where anthocyanins have the greatest absorbance, as anthocyanins’ molar extinction
coefficients show. After the logarithmic transformation, the correlation in the major ab-
sorption region of anthocyanins (436–650 nm) was enhanced overall. Most importantly,
the highest correlation value increased from −0.69 to 0.83. This may explain the better
performance of log(1/R)-based models than the R-based ones. Gitelson and Solovchenko
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also demonstrated the higher accuracy in anthocyanin content retrieval using absorbance
(represented with –log(transmittance)) as opposed to using R [17].
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0.93/2.18 nmol/cm2 for the calibration and 0.93/2.22 nmol/cm2 for the validation. This was 
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Figure 7. The correlation coefficient for R (solid line) and log (1/R) (dashed line) vs. the anthocyanin
content (nmol/cm2), and the molar extinction coefficient of anthocyanins obtained from thin-layer
chromatography extraction [45]. The green shaded area is the main distribution of the wavelengths
of the models in Tables 3 and 5.

From the wavelengths in the several last PLSR and GPR models (Tables 3 and 5), three
main spectral regions held during model building with SBBR (Figure 7). The first one
was at 557–566 nm. This was around the green peak and corresponded to the strongest
absorption region of anthocyanins. The second region was at 705–725 nm, which was
around the red edge region. This region was the transition area from the intense absorption
of chlorophylls to the strong scattering of the leaf structure. Although anthocyanins absorb
weakly in this range, containing this range in the model may allow for reduction in the
interference from the absorption by chlorophylls in the green region, as in ARI and mARI.

In addition, although the #2 model in Table 4 does not use a red edge region wave-
length, the #5 model in Table 3 with strategy 2 uses it (705 nm). According to Table 3,
when selecting 557 and 705 nm to build a GPR model, the retrieval result (R2/RMSE)
was 0.93/2.18 nmol/cm2 for the calibration and 0.93/2.22 nmol/cm2 for the validation.
This was slightly better than the #2 model in Table 4. Furthermore, all two-wavelength
combinations with one wavelength around the green peak and the other around red edge
region were selected to build two-wavelength GPR models. The retrieval results were
illustrated in Figure 8. As the figure reveals, the higher the R2 value in a model, the lower
the RMSE that this model achieved. The calibration and validation had nearly the same
pattern, indicating little accuracy difference (the maximum: 0.008 for R2 and 0.01 nmol/cm2

for RMSE). All models had R2 > 0.78, and 75.03% of models in the calibration and 74.19%
in the validation had R2 > 0.90. Clearly, the importance of the green peak and red edge
region for building simple and accurate two-wavelength GPR models was manifested.

The third spectral region was at 743–755 nm. This range was in the near-infrared
region and was used only by PLSR. The reflectance in this region was closely related to the
leaf structure. Containing it in the retrieval may help to distinguish the effect of the leaf
structure to lead to a more robust and accurate model.

These three regions have also proved essential in building anthocyanin vegetation
indices [10,11]. In addition, it should be noted that the final models obtained based on
the SBBR method do not assure the highest retrieval accuracy, as the #2 model in Table 4
implied (also refer to Figure 8). To build the most accurate model, the models on all
wavelength combinations must be examined and compared. However, this is not usually
practical and necessary. First, it is cumbersome and computationally intensive to examine
all combinations. As for the TOTAL dataset, there were as many as 2345−1 wavelength
combinations in total. Second, even if it is possible to test all combinations, the risk of
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overfitting must be considered, and the most accurate model is likely too complicated
to interpret and transfer on other datasets. Therefore, a variable (wavelength) selection
method is to find a “good” set of variables rather than the “best” set of variables [46].
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4.3. Performance of the Linear PLSR vs. the Non-Linear GPR Methods

Many remote sensing methods for pigment content retrieval are primarily based
on the specific absorption features of the pigment. For example, the NDVI (normalized
difference vegetation index) utilizes the strong absorption of chlorophylls in the red region.
The two anthocyanin vegetation indices, ARI and mARI (Table 1), use the strong absorption
of anthocyanins in the green region. From Section 4.2, the PLSR and GPR methods captured
this basis as well.

According to the application conditions of the Beer–Lambert law, at a low concen-
tration level, the absorbance vs. the concentration of a medium has a linear relationship.
However, at a high level, the molar extinction coefficient of the medium does not hold, and
the absorbance vs. the concentration will deviate from the law. Therefore, a linear model
may not properly characterize the whole process for the medium concentration growing
from a low to a high level. This likely explains why the two final PLSR models performed
well for the anthocyanin content < 18 nmol/cm2, while, for a higher content level, their
performance became worse. Unlike the linear PLSR, GPR is a non-linear method. With this
non-linear property, it may be more effective to characterize the relationship for absorbance
vs. content.

Figure 9 shows the anthocyanin absorbance at 550 nm as a function of content and the
prediction with the linear and GPR regression, based on this absorbance. At 550 nm, there
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were also other absorbers (mainly chlorophylls). In the red edge region, chlorophylls were
the primary absorbers while anthocyanins absorbed weakly. log(1/R550) − log(1/R708) can
be used as an estimate of the absorption of anthocyanins at 550 nm [17]. From the figure, the
variation trend of the dot distribution was not linear, indicating a non-linear relationship
for the anthocyanin absorbance vs. content. The linear model apparently deviated from
the dot distribution, while the GPR model captured the distribution characteristic well,
resulting in rather accurate results. Therefore, a simpler and more accurate retrieval model
was more likely to be obtained with GPR than with PLSR (Table 4 vs. Table 6).
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GPR also provides errors for the prediction, as Figure 10 shows. For clarity, only the
results for the European hazel leaves were drawn. Clearly, the measured content fell within
or very close to the range of predicted content ± one standard deviation, which indicated
good prediction accuracy. Thus, with such an error plot, it was easy to analyze the accuracy
and uncertainty in the estimation. In remote-sensing images, the errors can be calculated
for each pixel. Then, a retrieval error image, such as for the leaf area index [27,38], can be
produced in an area. This image can serve as a vivid visualization tool for the retrieval
result analysis.

4.4. Applicability of this Study on the Canopy Scale and in Other Relevant Fields

This study built simple and accurate retrieval models for anthocyanins with PLSR and
GPR at the leaf scale. However, to date, retrieval at the canopy scale has not been reported
yet. For the next step, using an unmanned aerial vehicle equipped with a hyperspectral
camera, field experiments can be undertaken on a vegetation canopy that has abundant
anthocyanins (e.g., maple woods in autumn). Then, the proposed methods should be
further examined at the canopy scale. In addition, our method may also help relevant
researchers to build and refine retrieval models for other applications, such as in the canopy
chlorophyll content [36] and leaf area index [47] estimation.
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5. Conclusions

Leaf anthocyanins are of great significance for plants. However, studies on antho-
cyanin content retrieval are quite rare, and the application of advanced techniques, such
as machine learning, has not been reported. In this paper, various methods were used
to retrieve the leaf anthocyanin content. The partial least squares and Gaussian process
regression were specifically focused to build models as simple as possible while maintain-
ing accuracy.

The results showed that, based on log(1/R), using 564 and 705 nm, GPR obtained the
best accuracy (R2/RMSE: 0.93/2.18 nmol/cm2 in the calibration, and 0.93/2.20 nmol/cm2

in the validation) of all the investigated methods. Selected wavelengths around the
green peak and the red edge region (one from each) were promising to build accu-
rate two-wavelength GPR models with R2 > 0.90. PLSR did not perform as well as
GPR. The final PLSR model involved four wavelengths, and the results (R2/RMSE) were
0.87/2.88 nmol/cm2 in the calibration, and 0.88/2.89 nmol/cm2 in the validation. GPR
apparently surpassed PLSR in the retrieval. The reason was likely that the relationship for
the absorbance vs. content of anthocyanins does not maintain a linear relationship as the
content grows higher. The linear PLSR model deviated from this relationship, while the
non-linear GPR model can characterize this relationship well.

Our study provides an effective method to build simple PLSR and GPR models to
retrieve the leaf anthocyanin content while maintaining the accuracy. This broadens the
possible methods for the remote sensing of leaf anthocyanin content and sets a precedent
for machine learning algorithms. It may be also helpful for researchers in developing and
refining models for other retrieval problems.
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Abbreviations and Symbols

PLSR Partial least squares regression
GPR Gaussian process regression
R2 Coefficient of determination
RMSE Root mean square error
ARI Anthocyanin reflectance index
mARI Modified anthocyanin reflectance index
VARI Visible atmospherically resistant vegetation index
ACI Anthocyanin content index
PROSPECT Leaf optical properties spectra
ANN Artificial neural network
PRESS Predictive residual sum of squares
SS Sum of squares
GP Gaussian process
ARD Automatic relevance determination
r Pearson correlation coefficient
P Significance level for correlation
SBBR Sequential backward band removal
σm Characteristic length scale for a variable in GPR
|β| Absolute value of the regression coefficient β in PLSR
R Reflectance
log(1/R) Logarithmic transformation to R
NDVI Normalized difference vegetation index
Mathematical symbols and notation in Section 2.3
Matrixes are capitalized and vectors are in the lowercase bold type. The subscript asterisk (e.g., X*)

indicates the test set quantity.
′ The transpose of a matrix or vector
D Data set: D = {(xi, yi,)|i = 1, 2, . . . , n}
Rb b-dimensional real numbers
∼ Distributed according to (e.g., Gaussian distribution)
GP Gaussian process
N Gaussian (normal) distribution
σ2

n Noise variance
0 Vector of all 0′s
k(x,y) Covariance (or kernel) function evaluated at x and y
K(X,Y) Covariance (or Gram) matrix evaluated with X and Y
y|x and p(y|x) Conditional random variable y given x and the corresponding probability
θ Vector of hyperparameters
f Gaussian process latent function values

https://www.researchgate.net/publication/319213426_Foliar_reflectance_and_biochemistry_5_data_sets
https://www.researchgate.net/publication/319213426_Foliar_reflectance_and_biochemistry_5_data_sets
http://www.gaussianprocess.org/#code


Sensors 2021, 21, 3078 17 of 18

References
1. Landi, M.; Tattini, M.; Gould, K.S. Multiple functional roles of anthocyanins in plant-environment interactions. Environ. Exp. Bot.

2015, 119, 4–17. [CrossRef]
2. Chalker-Scott, L. Environmental significance of anthocyanins in plant stress responses. Photochem. Photobiol. 1999, 70, 1–9.

[CrossRef]
3. Gould, K.S. Nature’s Swiss army knife: The diverse protective roles of anthocyanins in leaves. J. Biomed. Biotechnol. 2004, 314–320.

[CrossRef] [PubMed]
4. Hamilton, W.D.; Brown, S.P. Autumn tree colours as a handicap signal. Proc. R. Soc. B Biol. Sci. 2001, 268, 1489–1493. [CrossRef]
5. Manetas, Y.; Drinia, A.; Petropoulou, Y. High contents of anthocyanins in young leaves are correlated with low pools of

xanthophyll cycle components and low risk of photoinhibition. Photosynthetica 2002, 40, 349–354. [CrossRef]
6. Christie, P.J.; Alfenito, M.R.; Walbot, V. Impact of low-temperature stress on general phenylpropanoid and anthocyanin

pathways—Enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 1994, 194, 541–549.
[CrossRef]

7. Amr, A.; Al-Tamimi, E. Stability of the crude extracts of Ranunculus asiaticus anthocyanins and their use as food colourants. Int.
J. Food Sci. Technol. 2007, 42, 985–991. [CrossRef]

8. Gamon, J.A.; Surfus, J.S. Assessing leaf pigment content and activity with a reflectometer. New Phytol. 1999, 143, 105–117.
[CrossRef]

9. Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf
structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [CrossRef]

10. Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical properties and nondestructive estimation of anthocyanin content in
plant leaves. Photochem. Photobiol. 2001, 74, 38–45. [CrossRef]

11. Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and
anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33. [CrossRef]

12. Vina, A.; Gitelson, A.A. Sensitivity to Foliar Anthocyanin Content of Vegetation Indices Using Green Reflectance. IEEE Geosci.
Remote Sens. Lett. 2011, 8, 464–468. [CrossRef]

13. Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens.
Environ. 2002, 80, 76–87. [CrossRef]

14. Van den Berg, A.K.; Perkins, T.D. Nondestructive estimation of anthocyanin content in autumn sugar maple leaves. HortScience
2005, 40, 685–686. [CrossRef]

15. Steele, M.R.; Gitelson, A.A.; Rundquist, D.C.; Merzlyak, M.N. Nondestructive Estimation of Anthocyanin Content in Grapevine
Leaves. Am. J. Enol. Vitic. 2009, 60, 87–92.

16. Féret, J.B.; Gitelson, A.A.; Noble, S.D.; Jacquemoud, S. PROSPECT-D: Towards modeling leaf optical properties through a
complete lifecycle. Remote Sens. Environ. 2017, 193, 204–215. [CrossRef]

17. Gitelson, A.; Solovchenko, A. Non-invasive quantification of foliar pigments: Possibilities and limitations of reflectance- and
absorbance-based approaches. J. Photochem. Photobiol. B Biol. 2018, 178, 537–544. [CrossRef]

18. Jacquemoud, S.; Verdebout, J.; Schmuck, G.; Andreoli, G.; Hosgood, B. Investigation of leaf biochemistry by statistics. Remote
Sens. Environ. 1995, 54, 180–188. [CrossRef]

19. Kira, O.; Linker, R.; Gitelson, A. Non-destructive estimation of foliar chlorophyll and carotenoid contents: Focus on informative
spectral bands. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 251–260. [CrossRef]

20. Yi, Q.; Jiapaer, G.; Chen, J.; Bao, A.; Wang, F. Different units of measurement of carotenoids estimation in cotton using hyperspectral
indices and partial least square regression. ISPRS J. Photogramm. Remote Sens. 2014, 91, 72–84. [CrossRef]

21. Li, Y.; Huang, J. Remote Sensing of Pigment Content at a Leaf Scale: Comparison among Some Specular Removal and Specular
Resistance Methods. Remote Sens. 2019, 11, 983. [CrossRef]

22. Chen, L.; Huang, J.F.; Wang, F.M.; Tang, Y.L. Comparison between back propagation neural network and regression models for
the estimation of pigment content in rice leaves and panicles using hyperspectral data. Int. J. Remote Sens. 2007, 28, 3457–3478.
[CrossRef]

23. Camps-Valls, G.; Verrelst, J.; Munoz-Mari, J.; Laparra, V.; Mateo-Jimenez, F.; Gomez-Dan, J. A Survey on Gaussian Processes for
Earth-Observation Data Analysis A comprehensive investigation. IEEE Geosci. Remote Sens. Mag. 2016, 4, 58–78. [CrossRef]

24. Lazaro-Gredilla, M.; Titsias, M.K.; Verrelst, J.; Camps-Valls, G. Retrieval of Biophysical Parameters With Heteroscedastic Gaussian
Processes. IEEE Geosci. Remote Sens. Lett. 2014, 11, 838–842. [CrossRef]

25. Geladi, P.; Kowalski, B.R. PARTIAL LEAST-SQUARES REGRESSION - A TUTORIAL. Anal. Chim. Acta 1986, 185, 1–17. [CrossRef]
26. Wold, S.; Sjostrom, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130.

[CrossRef]
27. Campos-Taberner, M.; Garcia-Haro, F.J.; Moreno, A.; Gilabert, M.A.; Sanchez-Ruiz, S.; Martinez, B.; Camps-Valls, G. Mapping

Leaf Area Index With a Smartphone and Gaussian Processes. IEEE Geosc. Remote Sens. Lett. 2015, 12, 2501–2505. [CrossRef]
28. Blix, K.; Camps-Valls, G.; Jenssen, R. Gaussian Process Sensitivity Analysis for Oceanic Chlorophyll Estimation. IEEE J. Sel. Top.

Appl. Earth Obs. Remote Sens. 2017, 10, 1265–1277. [CrossRef]

http://doi.org/10.1016/j.envexpbot.2015.05.012
http://doi.org/10.1111/j.1751-1097.1999.tb01944.x
http://doi.org/10.1155/S1110724304406147
http://www.ncbi.nlm.nih.gov/pubmed/15577195
http://doi.org/10.1098/rspb.2001.1672
http://doi.org/10.1023/A:1022614722629
http://doi.org/10.1007/BF00714468
http://doi.org/10.1111/j.1365-2621.2006.01334.x
http://doi.org/10.1046/j.1469-8137.1999.00424.x
http://doi.org/10.1016/S0034-4257(02)00010-X
http://doi.org/10.1562/0031-8655(2001)074&lt;0038:OPANEO&gt;2.0.CO;2
http://doi.org/10.1029/2006GL026457
http://doi.org/10.1109/LGRS.2010.2086430
http://doi.org/10.1016/S0034-4257(01)00289-9
http://doi.org/10.21273/HORTSCI.40.3.685
http://doi.org/10.1016/j.rse.2017.03.004
http://doi.org/10.1016/j.jphotobiol.2017.11.023
http://doi.org/10.1016/0034-4257(95)00170-0
http://doi.org/10.1016/j.jag.2015.01.003
http://doi.org/10.1016/j.isprsjprs.2014.01.004
http://doi.org/10.3390/rs11080983
http://doi.org/10.1080/01431160601024242
http://doi.org/10.1109/MGRS.2015.2510084
http://doi.org/10.1109/LGRS.2013.2279695
http://doi.org/10.1016/0003-2670(86)80028-9
http://doi.org/10.1016/S0169-7439(01)00155-1
http://doi.org/10.1109/LGRS.2015.2488682
http://doi.org/10.1109/JSTARS.2016.2641583


Sensors 2021, 21, 3078 18 of 18

29. Stamenkovic, J.; Guerriero, L.; Ferrazzoli, P.; Notarnicola, C.; Greifeneder, F.; Thiran, J.-P. Soil Moisture Estimation by SAR in
Alpine Fields Using Gaussian Process Regressor Trained by Model Simulations. IEEE Trans. Geosci. Remote 2017, 55, 4899–4912.
[CrossRef]

30. Verrelst, J.; Alonso, L.; Rivera Caicedo, J.P.; Moreno, J.; Camps-Valls, G. Gaussian Process Retrieval of Chlorophyll Content from
Imaging Spectroscopy Data. IEEE J. Selected Top. Appl. Earth Obs. Remote Sens. 2013, 6, 867–874. [CrossRef]

31. Gitelson, A.A.; Chivkunova, O.B.; Merzlyak, M.N. Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic
leaves. Am. J. Bot. 2009, 96, 1861–1868. [CrossRef]

32. Rosipal, R.; Kraemer, N. Overview and recent advances in partial least squares. In Subspace, Latent Structure and Feature Selection;
Saunders, G., Grobelnik, M., Gunn, S., ShaweTaylor, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 3940, pp. 34–51.

33. Viniz, V.E.; Chin, W.W.; Henseler, J.; Wang, H. (Eds.) Handbook of Partial Least Squares: Concepts, Methods and Applications; Springer:
Berlin/Heidelberg, Germany, 2010. [CrossRef]

34. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; The MIT Press: Cambridge, MA, USA, 2006.
35. Neal, R.M. Bayesian Learning for Neural Networks; University of Toronto: Toronto, ON, Canada, 1995.
36. Verrelst, J.; Munoz, J.; Alonso, L.; Delegido, J.; Pablo Rivera, J.; Camps-Valls, G.; Moreno, J. Machine learning regression algorithms

for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3. Remote Sens. Environ. 2012, 118, 127–139. [CrossRef]
37. Mehmood, T.; Liland, K.H.; Snipen, L.; Saebo, S. A review of variable selection methods in Partial Least Squares Regression.

Chemom. Intell. Lab. Syst. 2012, 118, 62–69. [CrossRef]
38. Verrelst, J.; Juan, P.R.; Gitelson, A.; Delegido, J.; Moreno, J.; Camps-Valls, G. Spectral band selection for vegetation properties

retrieval using Gaussian processes regression. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 554–567. [CrossRef]
39. Merzlyak, M.N.; Chivkunova, O.B.; Solovchenko, A.E.; Naqvi, K.R. Light absorption by anthocyanins in juvenile, stressed, and

senescing leaves. J. Exp. Bot. 2008, 59, 3903–3911. [CrossRef] [PubMed]
40. Danson, F.M.; Rowland, C.S.; Baret, F. Training a neural network with a canopy reflectance model to estimate crop leaf area index.

Int. J. Remote Sens. 2003, 24, 4891–4905. [CrossRef]
41. Shah, S.H.; Angel, Y.; Houborg, R.; Ali, S.; McCabe, M.F. A Random Forest Machine Learning Approach for the Retrieval of Leaf

Chlorophyll Content in Wheat. Remote Sens. 2019, 11, 920. [CrossRef]
42. Verrelst, J.; Pablo Rivera, J.; Veroustraete, F.; Munoz-Mari, J.; Clevers, J.G.P.W.; Camps-Valls, G.; Moreno, J. Experimental Sentinel-2

LAI estimation using parametric, non-parametric and physical retrieval methods - A comparison. ISPRS J. Photogramm. Remote
Sens. 2015, 108, 260–272. [CrossRef]

43. Zhai, Y.; Cui, L.; Zhou, X.; Gao, Y.; Fei, T.; Gao, W. Estimation of nitrogen, phosphorus, and potassium contents in the leaves of
different plants using laboratory-based visible and near-infrared reflectance spectroscopy: Comparison of partial least-square
regression and support vector machine regression methods. Int. J. Remote Sens. 2013, 34, 2502–2518. [CrossRef]

44. Ustin, S.L.; Gitelson, A.A.; Jacquemoud, S.; Schaepman, M.; Asner, G.P.; Gamon, J.A.; Zarco-Tejada, P. Retrieval of foliar
information about plant pigment systems from high resolution spectroscopy. Remote Sens. Environ. 2009, 113, S67–S77. [CrossRef]

45. Peters, R.D.; Noble, S.D. Spectrographic measurement of plant pigments from 300 to 800 nm. Remote Sens. Environ. 2014, 148,
119–123. [CrossRef]

46. Andersen, C.M.; Bro, R. Variable selection in regression-a tutorial. J. Chemom. 2010, 24, 728–737. [CrossRef]
47. Wang, F.-M.; Huang, J.-F.; Lou, Z.-H. A comparison of three methods for estimating leaf area index of paddy rice from optimal

hyperspectral bands. Precis. Agric. 2011, 12, 439–447. [CrossRef]

http://doi.org/10.1109/TGRS.2017.2687421
http://doi.org/10.1109/JSTARS.2012.2222356
http://doi.org/10.3732/ajb.0800395
http://doi.org/10.1007/978-3-540-32827-8
http://doi.org/10.1016/j.rse.2011.11.002
http://doi.org/10.1016/j.chemolab.2012.07.010
http://doi.org/10.1016/j.jag.2016.07.016
http://doi.org/10.1093/jxb/ern230
http://www.ncbi.nlm.nih.gov/pubmed/18796701
http://doi.org/10.1080/0143116031000070319
http://doi.org/10.3390/rs11080920
http://doi.org/10.1016/j.isprsjprs.2015.04.013
http://doi.org/10.1080/01431161.2012.746484
http://doi.org/10.1016/j.rse.2008.10.019
http://doi.org/10.1016/j.rse.2014.03.020
http://doi.org/10.1002/cem.1360
http://doi.org/10.1007/s11119-010-9185-2

	Introduction 
	Materials and Methods 
	The Overall Process of This Study 
	The Datasets 
	The Basic Thought and Theory on PLSR and GPR 
	Partial Least Squares Regression 
	Gaussian Process Regression 

	Wavelength Selection, Model Building for PLSR and GPR 
	Other Retrieval Methods 
	Model Calibration, Validation, and Evaluation 

	Results 
	Statistics for the Leaf Pigment Content 
	Retrieval with GPR 
	Retrieval with PLSR 
	Retrieval with Other Methods 

	Discussion 
	Comparison among the Retrieval Methods 
	The Most Important Wavelengths Selected and Performance of the Obtained Models 
	Performance of the Linear PLSR vs. the Non-Linear GPR Methods 
	Applicability of this Study on the Canopy Scale and in Other Relevant Fields 

	Conclusions 
	References

