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Abstract: In recent years, we have assisted with an impressive advance in augmented reality systems
and computer vision algorithms, based on image processing and artificial intelligence. Thanks to these
technologies, mainstream smartphones are able to estimate their own motion in 3D space with high
accuracy. In this paper, we exploit such technologies to support the autonomous mobility of people

check for with visual disabilities, identifying pre-defined virtual paths and providing context information,

updates reducing the distance between the digital and real worlds. In particular, we present ARIANNA+, an
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outdoor localization and navigation. While ARTANNA is based on the assumption that landmarks,
such as QR codes, and physical paths (composed of colored tapes, painted lines, or tactile pavings) are
Augmented Reality System for deployed in the environment and recognized by the camera of a common smartphone, ARTANNA+
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eliminates the need for any physical support thanks to the ARKit library, which we exploit to build a
completely virtual path. Moreover, ARTANNA+ adds the possibility for the users to have enhanced
interactions with the surrounding environment, through convolutional neural networks (CNNs)
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trained to recognize objects or buildings and enabling the possibility of accessing contents associated
with them. By using a common smartphone as a mediation instrument with the environment,
ARIANNA+ leverages augmented reality and machine learning for enhancing physical accessibility.
The proposed system allows visually impaired people to easily navigate in indoor and outdoor
scenarios simply by loading a previously recorded virtual path and providing automatic guidance

along the route, through haptic, speech, and sound feedback.
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1. Introduction

Nowadays, the determination of the position of a person or an object in space is
fundamental for many applications and services. Many positioning systems already exist
and the most well-known is the Global Positioning System (GPS). This type of system is
very common and useful for many applications, such as in aviation, naval, and terrestrial
fields. GPS technology is also integrated into most smartphones in order to provide various
services, such as outdoor pedestrian navigation. Unfortunately, for some application
scenarios like indoor environments, GPS does not work properly because it suffers in terms
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of precision or it might fail completely. This is due to signal attenuation that makes the
received power too low for detection. For this reason, the research community has focused
its attention on indoor positioning systems (IPSs), where GPS is not available.

There is a large variety of techniques to provide indoor positioning, which can be clas-
sified as (i) radio-frequency-based technologies [1,2], (ii) sensor-based technologies [3,4],
and (iii) vision-based technologies [5,6]. For example, Wi-Fi-based positioning systems
(WPSs), radio frequency identification (RFID), and ultrasound belong to the first category.
In fact, they are methods that use the triangulation of RF signals or direct sensing. Con-
versely, dead reckoning belongs to the second category. More specifically, it is based on
different inertial measurement unit (IMU) sensor readings, such as accelerometers, mag-
netometers, and gyroscopes. Finally, thanks to the pervasive availability of smartphones
and digital cameras, vision-based solutions have been developed, opening the way to
new augmented reality (AR) applications. However, many of these AR applications are
being developed using some dedicated hardware [7,8], with little attention given to the
requirements of people with special needs. Moreover, the cost of buying new dedicated
hardware may become a barrier for the widespread diffusion of such technologies.

Instead, in this paper we exploit vision-based IPS technologies to design new navi-
gation and AR services for visually impaired people, simply using common off-the-shelf
smartphones. Indeed, smartphones are portable and affordable devices that are already
in everyone’s pocket. In [6], we already presented ARIANNA, a system that uses the
computer vision capabilities of common smartphones and is able to recognize a painted
line on the floor, for guiding visually impaired users along predefined paths. Recently,
ARIANNA has been enhanced with IMU sensors and is capable of working under varying
environmental light conditions [9] as well as providing information on the surroundings,
such as in [10]. However, the weak point of the ARIANNA system is the need to adapt
the environment by installing a physical line on the floor, which might become a costly
and time consuming task. Instead, in this work we design and implement a novel solution,
called ARTANNA+, which avoids the need for the painted line. The system acts as a
mediation instrument between user and environment, accompanying the blind person
step-by-step and providing useful information on the environment upon request.

In more detail, ARTIANNA+ exploits AR as a combination of real and virtual worlds,
with real-time interaction, and accurate 3D registration of virtual and real objects to connect
two points of interest (Pols) without any physical painted line and safely guide the user
along predefined paths. Then, once in the proximity of a Pol, ARIANNA+ provides access
to content connected to that specific Pol; indeed, there is a clear distinction between the
experiences of physical access to a chosen site, and digital access to the contents available,
e.g., on a website, which represents a digital counterpart of the Pol. This distance between
physical access and digital access can be reduced by means of the emerging augmented
reality or mixed reality applications, which are becoming possible thanks to new gener-
ation smartphones and the ultra-responsive services of 5G networks. For this reason, in
ARIANNA+ we add access to the digital contents associated with specific sites of interest
through machine learning. The real-time association of digital contents to a physical space
can combine the advantages of a real experience with those of personalized navigation,
by means of digital mediation tools designed for responding to the particular needs of
the user (e.g., translation of descriptions, enlargements, or different colors for the visually
impaired, etc.) and for facilitating the access to the digital contents. This association
obviously requires a user localization function (even in indoor spaces) for identifying the
user environment and the point of view, as well as the identification of objects and persons
for potential interactions in the surroundings.

ARIANNA+ is thus a novel navigation and AR system based on computer vision and
machine learning technologies, which allows autonomous mobility of blind people in in-
door and outdoor environments. In this paper, we describe the design and implementation
of the two main components of ARIANNA+ based on AR and computer vision, which in
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our opinion can enable an innovative experience, and constitute the main contributions of

this paper:

* anew localization system based on ARKit, responsible for guiding the user along
pre-defined virtual paths;

* amachine learning identification mechanism, responsible for facilitating access to the
digital contents associated with specific sites of interest.

Although these two components can be customized for many different use cases and can
easily be generalized to other kinds of users, we specifically deal with the case of visually
impaired users, for which both digital and physical access to the sites of interest require a
special design. For this reason, we decided to implement a monument recognition use case.

The paper is organized as follows. After a brief introduction on the related work in
Section 2, Section 3 gives a review of the ARIANNA localization system. Then, Section 4
presents the theoretical and technical descriptions of our new ARIANNA + system. Section 5
presents the evaluation of the proposed system in terms of localization and tracking as well
as monument identification performance. Finally, in Section 6 we draw some conclusions
and discuss the future evolution of our work.

2. Related Work

Several approaches have been proposed to support visually impaired people moving
safely and independently in an unknown environment. In this section we will briefly
review some of the literature in the fields of both IPS technologies and of Al-assisted
recognition of images, objects, and environments.

2.1. Indoor Positioning System

A plethora of indoor navigation systems has been developed based on different
techniques or exploiting several of these simultaneously. While [11] provides a complete
overview of navigation systems specifically designed for visually impaired people, we will
provide here only a few examples of IPS technologies, separating them based on the main
technique employed.

Radio-frequency-based technologies. Concerning radio technologies, WPS approaches
are exploited in [1,12,13], while time of arrival (ToA) is presented in [2]. Moreover, a
review of ultrasound methods is investigated in [14]. These systems, however, are not
precise enough for guiding visually impaired people. For this reason, RF-PATH-ID [15]
is based on disseminating passive RFID tags and using a dedicated reader to acquire
information with the help of the user. Finally, the use of both radio and visual landmarks
have been largely investigated, e.g., in [16] where specific landmarks are deployed on the
Pol in the environment.

Sensor-based technologies. Conversely, IMU sensors such as accelerometers, magne-
tometers, and gyroscopes are accurate in the low-medium range, and can be exploited
for pedestrian dead reckoning (PDR). However, for long distances, PDR suffers from mea-
surement drifts due to noise [17]. In [3,18] an extended Kalman filter (EKF) is exploited
to compensate for the drift. A method to reset the IMU bias can be found in [4], where
knowledge of pedestrian movement is used. Despite their limitations, such dead reck-
oning solutions have been largely employed in real navigation systems [19] and in the
Navatar [20] system. Other solutions adopt reference points provided by fingerprinting
maps such as in [21,22].

Vision-based technologies. Cameras have been exploited in [23], as well as a vibrating
belt giving navigation information, while the usage of smartphones is adopted in [24] to
implement a vision-based navigation system for blind people. As discussed previously,
common smartphones are also exploited in ARIANNA [6], where computer vision (CV)
techniques are used to detect landmarks, such as colored tapes, painted lines, or tactile
pavings deployed in the environment for guiding visually impaired users along pre-defined
paths. A similar approach is adopted in [25] where two deep convolutional neural network
(DCNN) models are presented in order to assist the mobility of blind and visually impaired
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people using a robotic guide dog. Unfortunately, as described below, this solution is not
very efficient in terms of time complexity.

A further approach is presented in [26], where a novel system based on augmented
reality and vibrotactile stimulation of the smartphone is proposed. The system uses a
virtual target point that changes progressively. As feedback, smartphone vibration is used
to notify the user when the target is in the view of the camera. However, the accuracy
depends on the type of route and it is not very useful in the presence of obstacles.

Finally, optical self-tracking has been implemented in mobile AR headsets [5], but at
the cost of adding extra hardware that might become expensive. Instead, in ARIANNA+
we exploit commercial off-the-shelf smartphones to build a virtual path that accompanies
the blind person step-by-step, navigating the user towards the destination with constant
and precise feedback.

2.2. Machine Learning for Image and Object Recognition

DCNN:s are largely exploited in the context of image or object recognition and can
be successfully exploited for identification of the surrounding environment. These neural
networks are based on very interesting structures, called convolutional neural networks
(CNNSs), which are able to automatically extract the features characterizing different images
or objects. In the specific context of digital services for tourism, for example, current
research projects have mainly considered the problem of monument classification, such
as the problem of identifying a special building architecture as a church, a palace, a
bridge, or a tower. This is not a trivial task, especially because of the wide ranges of
architectural solutions that have been proposed worldwide for implementing special
classes of monuments [27]. Moreover, images of buildings in a real exploration can be
partially captured by users, under varying environmental conditions (light, background,
overlapping objects and people), which may complicate the identification process [28,29].
A project similar to ours, devised to identify a special site rather than a whole class of
monuments, is presented in [30] by still working on image analysis.

Differently from previous approaches, as presented in [10], we consider the application
of object detection algorithms to the problem of monument recognition. Object detection
allows not only localization of the precise monument position within the image by means
of a bounding box, but also recognition of small objects within a general background. This
is very suitable for our scenario of visually impaired users, whose smartphones cannot be
oriented easily towards the most relevant part of the monument. Since training an object
recognition model from scratch takes a long time, we based our training mechanism on
transfer learning, a popular method in the machine learning field, according to which a
model developed for a specific problem is reused as the starting point for a new model.

3. The ARIANNA System

In this section we review the basics of the ARIANNA system. This overview will be
useful in order to understand the operating principles and to understand the contributions
of our new ARIANNA+ system.

3.1. Navigation Service

As mentioned, ARIANNA is a system developed with the aim of assisting visually
impaired people in their autonomous navigation. ARIANNA is able to recognize a painted
line on the floor under varying light conditions thanks to an integrated computer vision
algorithm. Different computer vision functions are adopted in order to identify the painted
line, although various constraints are present. Most notably: (i) the path identification has
to be real-time for the users; (ii) the system has to have little impact on the lifetime of the
smartphone battery. Therefore, the system must have low complexity for the identification
of the line in real-time.

For the detection of the path, the geometry and the colors of the tape are exploited. In
more detail, ARIANNA identifies the painted lines in the captured image, quantifies the
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slope of the lines and converts this slope into an absolute orientation of the user. Indeed, the
map of the paths is given by a sequence of segments. To identify the slope of the line seen
by the camera, three different steps are implemented: (i) filtering the image, for reducing
the noise and the details of the image background; (ii) applying the Canny algorithm, for
detecting the edges of the objects in the image; (iii) identifying the sub-set of edges that can
be considered as lines using the Hough transform.

Along the path, the system also permits the finding of some points of interest by de-
tecting landmarks (such as QRcodes or iBeacons) and retrieving location-based information.
Finally, the system adopts tactile stimuli (vibration of the smartphone) to provide feedback.
It has been shown that the current consumption of typical vibration motors has a limited
impact on the battery life of commercial smartphones [31] and that the energy savings
coming from switching off the screen are higher than the costs introduced by vibrational
cues [32].

3.2. Tracking Service

In the ARTANNA system, the tracking service is used to compare the user position
with the known map of the environment. This service incorporates information on the
path (together with the compass and accelerometer data) and provides feedback with
the phone vibration. In order to enhance the tracking performance, optical flow and
filtering techniques are used, as described in [6]. Indeed, tracking systems generally have
two problems:

e  distance and direction estimation (DDE);
e  estimation error reduction (EER).

In order to solve the DDE problem, well known CV algorithms for corner detection
and optical flow, followed by linear affine transformation (widely available, e.g., from the
OpenCV library) are adopted. Conversely, for the EER, the extended Kalman filter (EKF)
and the weighted moving average (WMA) are used. In more depth, optical flow is used to
estimate the movement of the camera (i.e., the smartphone of the user) by analyzing the
frames flowing in front of it. Unfortunately, this method suffers from estimation errors that
can accumulate, causing an increasing deviation from the real path, as described in [33]. In
particular, together with the typical errors in the optical flow and affine transformation,
the tracking estimation is affected by (i) changes of focus and/or exposure of the camera;
(ii) low resolution, slow image capturing, etc.; (iii) image processing problems due to the
camera (compression, anti-aliasing) or the person’s movement (blurring).

For this reason, it is very important to detect and filter such measurement errors.
Therefore, two techniques are adopted: an EKF and a linear WMA filter. The EKF is used to
estimate the state vector through observation measurements and for producing an estimate
of the user position, speed, and heading. Conversely, the WMA filter reduces the error
on the raw output of the CV functions. Figure 1 summarizes the techniques used for path
estimation based on image processing.
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Figure 1. Tracking approach of ARTANNA system [6].
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4. The ARIANNA+ System

In this section we present the proposed new navigation system. Firstly, we describe the
implementation of the virtual path, which is a substitution of the physical line, and provides
the navigation and tracking services. Following this, we focus on object recognition. In
particular, we decided to apply object recognition in a cultural heritage scenario, in order
to assist visually impaired people in having a more accessible cultural experience.

4.1. Methodology: The Virtual Path
4.1.1. Navigation Service

In many scenarios it is difficult to implement a physical path dedicated to visually
impaired people, and even installing a simple line painted on the floor of cultural heritage
sites can be a problem. Indeed, any kind of path or line applied on a precious historical
pavement or in some important cultural context might not be appropriate. To overcome
these difficulties, in ARTANNA+ we exploit the potential offered by augmented reality
algorithms. Instead of a physical path, we apply a virtual path on the floor that is only
visible through the smartphone. Thus, the methodology used in ARIANNA+ is similar
to the ARIANNA system and the detection algorithm for the line is the same, as already
reported in previous papers [6,9]. The difference in ARIANNA+ is the virtualization of
the line on the floor (using augmented reality concepts), which reduces the economic cost
of the system and simplifies the deployment in some urban or cultural heritage contexts,
where it is not possible (or not allowed) to paint a real line on the floor.

In particular, in ARIANNA+ we implement a virtual line using Apple iOS tools and
XCode, the integrated development environment (IDE) for developing software for iPhones,
as well as two libraries for AR implementation, namely ARKit and SceneKit. ARKit is a
framework that provides and processes sensor data necessary for AR experiences, while
SceneKit is a 3D graphics framework that is useful for creating 3D scenes. These two
libraries are used to analyze the environment and build the virtual path, respectively.

The first key component to understand the 3D world around the user is the hitTest
method, which is able to search for real-world objects in the captured camera image. This
method is used for finding the floor, i.e., a horizontal plane, and the feature points, as
shown in Figure 2.

all TIM 2

Horizontal plane
detection

-Feature
points

Move camera around to map your surrounding space.

Figure 2. Screenshot of the feature points and horizontal plane detection through hitTest.
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The other key components for creating the virtual path are SCNScene, SCNNode,
and SCNGeometry, all included in the SceneKit library. SCNScene is a container for the
node hierarchy and attributes that together represent all the visual elements; SCNNode is
a structural object of a scene that represents a position in a 3D coordinate space to which it
is possible to attach geometry, lights, and cameras; SCNGeometry is a 3D shape that can
be displayed in a scene and can be attached to an SCNNode. Figure 3 shows a high-level
design of the interaction between these components. From a conceptual point of view, an
SCNNode with its SCNGeometry are initialized and updated at every step.

o)
SCNScene

rootNode
—

( SCNNode

— Camera

Light
Geometry—]

\{
SCNCamera J SCNLight \ SCNGeomet

Type Materials
Color Elements
Shadow

\ )

xFov, yFov
zNear, zFar
orthographic

Figure 3. High-level architecture.

Finally, the whole path within the 3D world of the scene is saved as map.

Thanks to these tools, we can create a virtual line that is able to guide visually impaired
people for autonomous and flowing navigation. Along the path, the user receives a tactile
stimulus when walking along the virtual line and is accompanied step-by-step guidance in
the right direction with precise feedback. Indeed, visually impaired people cannot see the
line on the smartphone, but they can feel the tactile vibration when the line is located at the
center of the camera.

4.1.2. Tracking Service

Regarding the tracking service, it is important to highlight the basic requirement for
any AR experience: the ability to create and track correspondence between a real-world
space and a virtual space where it is possible to add some virtual content. When virtual
content is added together with the image captured live by a camera, the user experiences
augmented reality, i.e., the illusion that the virtual content is part of the real world. In
all AR experiences, ARKit uses world and camera coordinate systems following a right-
handed convention: the y-axis points upward, the z-axis points toward the viewer and the
x-axis points right, as depicted in Figure 4. Session configurations can change the origin
and orientation of the coordinate system with respect to the real world. Each anchor in
an AR session defines its own local coordinate system, also following the right-handed,
z-towards-viewer convention. To create a correspondence between real and virtual spaces,
ARKit uses a technique called visual-inertial odometry. This process combines information
from the iOS device’s motion-sensing hardware with computer vision analysis of the
scene visible to the device’s camera. ARKit recognizes notable features in the scene image,
tracks differences in the positions of those features across video frames, and compares
that information with motion sensing data. The result is a high-precision model of the
device’s position and motion. The ARKit world tracking also provides the possibility to
analyze and understand the contents of a scene. For example, if the planeDetection setting
is enabled in the session configuration, ARKit detects flat surfaces in the camera image and
reports their positions and sizes. It is possible to use ray-cast results or detected planes
to place or interact with virtual content in the scene. Moreover, world tracking correlates
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image analysis with device motion. ARKit develops a better understanding of the scene
if the device is moving, even if the device moves only subtly. Excessive motion—too far,
too fast, or shaking too vigorously—results in a blurred image or too much distance for
tracking features between video frames, reducing tracking quality. Finally, the ARCamera
class provides tracking state information, which can be used to tell a user how to resolve
low-quality tracking situations.

+y

Figure 4. Camera coordinate system.

4.2. Environment Recognition: The Case of Cultural Heritage

We provide information on the surrounding environment by solving the object de-
tection problem. In particular, as presented in [10], we focus on the specific use case
of recognition of touristic and cultural heritage sites, such as monuments and churches.
Indeed, these buildings are important for commemorating people and/or events, and are
also common destinations for visually impaired people. In order to make the experience for
blind people more accessible, we decided to search for a solution for automatic monument
recognition. The idea is to support the access with the digital contents (voice description,
sounds/music, etc.) associated to the physical building.

The idea is that the user, following the virtual path in both indoor and outdoor spaces,
can change the orientation of the smartphone camera from the floor to the front space.
This operation could be relatively easy for low-vision people (who can identify a building,
without perceiving the details), but could also be possible for blind people, assisted by
means of vocal messages suggesting the correct orientation once in the proximity of the
Pol. Indeed, using ARIANNA+ (or ARTANNA) blind people know exactly where they are
and when they have to point the smartphone at the surrounding monuments.

In any case, for the purpose of the environment recognition, the acquired images are
in general of different qualities, with the monument located at any possible position within
the image and, in some cases, only partially captured by the image. We thus analyzed
various methods for object detection including region-based convolutional neural networks
(R-CNN), faster-RCNN [34], single shot detector (SSD) [35] and you only look once (YOLO).
R-CNN and faster R-CNN are composed of two stage detectors: the first stage identifies a
subset of regions of interest in an image that might contain an object, while the second stage
is used for object classification and bounding-box regression. The first stage in R-CNN
is a slow object detection algorithm called selective search; faster R-CNN instead uses a
very small convolutional network called a region proposal network to generate regions of
interest. Conversely, SSD and YOLO are methods that consider detection as a regression
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problem and they are composed of only one stage detector. YOLO has the best performance
in terms of training time, but not the best in terms of accuracy.

Thus, we compared the performance of different structures, based on the combination
of multi-stages; namely, faster R-CNN and SSD in combination with Inception v2 [36] and
ResNet [37]. We compared three different object detection structures (or models):

*  Model 1: faster R-CNN, Inception v2;
e Model 2: faster R-CNN, Inception v2, ResNet;
¢ Model 3: SSD, Inception v2.

As mentioned above, all the CNNs considered in our design are composed of different
feature extractors: faster R-CNN, Inception v2, ResNet, and SSD. The main layers in a CNN
are the convolution layer, the pooling layer, and the fully-connected layer. The primary
purpose of a convolution layer is to extract features from the input image through a set of
independent filters. The function of a pooling layer is to progressively reduce the spatial
size of the representation, in order to reduce the amount of parameters and computation in
the network. Finally a fully connected layer takes the end result of the convolution/pooling
process and reaches a classification. An example of the composition of a CNN is shown in
Figure 5.

10x 20x 10x
(]
Convolution
MaxPool
AvgPool
Concat
@ Dropout
@ Fully Connected
@ Softmax
Residual ' '

Figure 5. Faster R-CNN Inception ResNet v2 neural network layers.

5. Experimental Results
5.1. Navigation and Tracking

In this section, we compare the ARIANNA system performance presented in [6]
with the new navigation and tracking service implemented in ARIANNA+. In order to
understand the accuracy of our new AR tracking method, we show the results of the
different experiments carried out in a demo setting in a laboratory located in our campus.
The path goes around the working desks and, through a door, enters a second room for a
total length of 32.4 m. The rationale behind the testing environment was to create a path
with a sufficiently high number of turns, but with a particular distance between them,
to show the possible divergences of the algorithms. Moreover, the path needed to be
sufficiently long so that a real user could walk on it giving rise to a real experiment. We
created a 2D map of the environment expressed in Cartesian coordinates (X,Y), given in
millimeters. The map shows in blue solid lines the obstacles (walls, tables, desks, etc.)
and the physical path built in the laboratory. We considered three different paths and,
for each of these paths, we tested the techniques previously described based on optical
flow, and enhanced with an extended Kalman Filter (EKF) and a weighted moving average
(WMA) for ARIANNA, as well as the new ARIANNA+ algorithms based on ARKit. For
the sake of simplicity, we show here the results obtained following the most complex
path. Figure 6a shows the results obtained with ARTANNA using the raw optical flow and
the EKF and WMA methods. From the figure, it is clear that even with the application
of complex filtering, the tracking estimation performance of ARIANNA is usually quite
limited. Conversely, Figure 6b shows the tracking performance of the ARIANNA+ system
with two different initialization methods. In particular, the difference between the two
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results stands in the initial position of the smartphone with respect to the floor: vertical
initialization means that the smartphone accesses the camera when the initial position
is perpendicular to the floor. Instead, horizontal initialization means that the position
of the smartphone is parallel to the floor (flat), with a limited view of the surrounding
environment. Indeed, when the smartphone is perpendicular to the floor, the camera
can capture the environment better and compute the position more precisely relative to
the surrounding objects, while these kinds of measurement are not as accurate when the
initialization is parallel to the floor. For this reason, in the following experiments we
always initialized the system with the vertical position, even if the phone was successively
used flat to follow the virtual path. Indeed, another experiment consisted of initializing
the camera vertically with respect to the floor, and then leaving the phone in the vertical
position during the walk. Figure 7a shows the estimated tracking position obtained, which
clearly has low accuracy. Therefore, we conclude that the best performance is obtained
by first using vertical initialization and then holding the smartphone horizontally when
following the virtual path.

Finally, Figure 7b depicts the tracking performance of the system in two different
scenarios: when the user runs and when the virtual line is followed by a visually impaired
person. The Figure shows that the blind person is able to successfully and safely follow
the path even on the sharp turns, while when the user is running, even with the vertical
initialization, the tracking is lost approximately at the first turn.

161 16
14 147 L]
. af [ |
10 10
8 gl
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6 6l
4 ) Fl:
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0 ———RawdataJ 0 H
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P02 4 6 s K e
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(a) Raw CV output and results filtered with (b) Horizontal and vertical ini-
EKF or WMA in ARTANNA. tialization in the ARIANNA+.

Figure 6. Tracking performance comparison using the previous ARIANNA system (a) or the proposed
ARIANNA + system (b) using different configuration options.
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Figure 7. Tracking performance in ARTANNA+ with vertical initialization and walk, running or
walking blindly.

5.2. Monument Recognition

For the monument recognition, we evaluated the detection performance of different
models for the recognition of monuments which are part of the UNESCO Arab-Norman
itinerary in Palermo, Italy, a wonderful Mediterranean city in the island of Sicily. We
adopted a transfer learning approach for training. More specifically, our neural networks
were pre-trained by means of the Common Objects in Context (COCO) data set, a large-
scale data set containing 1.5 million object instances and more than 200,000 labeled images.
Models have been trained to recognize 10 monuments (i.e., theaters and churches) of
different sizes and/or structures. The input dataset consists of 1572 photos (more than
100 pictures per monument), which have been explicitly taken for this purpose. We chose
different poses, weather, and light conditions and with the presence of objects or people in
the background. Finally, all the pictures were down-sampled in order to satisfy the training
system requirements. For each image, we selected the exact location of the monument
within the image, through Labellmg, a graphical image annotation tool, to label images
for bounding-box object detection, and we associated the exact label. TensorFlow Object
Detection API, an open source framework developed by Google, was used for training our
three pre-trained neural networks. In particular, we used 80% of the images for training and
the remaining 20% for evaluation. The networks were fine-tuned running 7500 consecutive
iterations. During the training, we generated a log file for listing the labels and three new
different models with the final weights. We trained all the three proposed structures with a
common laptop (i.e., i7 processor, 16 GB RAM and without using any powerful GPUs) and
the training times were about 11 h for the second structure and 3 h for both the first and
the third structures.

Once the neural networks had been trained, we evaluated the results taking into
account confusion matrices for each model. Precisely, the horizontal rows represent the
ground truth, i.e., the correct monument label of the image, while the vertical columns
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represent the percentage of predictions corresponding to each possible monument in the
set. In the last row, we also specify the percentage of times in which the monument was
identified as different from any other monuments in the set. Figure 8a—c show three confu-
sion matrices corresponding to the three different structures or models considered in our
work. From the results, it is evident that the last structure, namely the one corresponding
to the usage of SSD and Inception v2 (model 3), despite its simplicity and prompt training
times, provided the best results. In most cases, the monument was correctly identified in
more than 90% of the cases.

True Class
True Class

11| 33 | 46 | 37 | 52 [ 30 | 29 | 23 | 20 | 41 25 | 6 23
1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11
Predicted Class Predicted Class
(a) Model 1. (b) Model 2.
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(c) Model 3.

Figure 8. Confusion matrix of the three models considered.

There are two other important metrics that can be evaluated: precision and recall.
Precision refers to the percentage of results that are relevant; recall refers to the percentage
of total relevant results correctly classified by an algorithm. For example, Figure 9 shows
the precision vs. recall curve for St. Maria Valverde Church. This further demonstrates the
good performance of model 3.

True Positives '
True Positives + False Positives’
True Positives
True Positives + False Negatives

Precision =

M

Recall =
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Figure 9. Precision vs. recall curve for St. Maria Valverde Church.

We can conclude that SSD Inception v2 for our points of interest in the Arab-Norman
itinerary is the best solution for the identification of the monument.

6. Conclusions

In this paper we presented ARIANNA+, a smartphone-based solution to help visually
impaired people navigate along predefined paths. Differently from the previous ARTANNA
system, the newly proposed ARIANNA+ eliminates the need for any physical support
thanks to AR technology, which we have exploited to build a completely virtual path.
Moreover, the new solution offers to the users the possibility of enhanced interactions with
the surrounding environment, through convolutional neural networks (CNNs) trained
to recognize objects or buildings, thus enabling access to digital contents associated with
them. By using a common smartphone as a mediation instrument with the environment,
ARIANNA+ leverages AR and machine learning for enhancing physical accessibility. The
proposed system allows visually impaired people to easily navigate in indoor and outdoor
scenarios simply by loading a previously recorded virtual path and providing automatic
guidance along the route, through haptic, speech, and sound feedback.

As future work, we are working on the extension of the proposed system. In particular,
we are considering the integration of wearable devices, e.g., exploiting camera (vision)
sensors and smart-watch (vibration) devices, in order to generate a more comfortable
experience for visually impaired people. Moreover, we plan to perform experiments
involving blind people, in order to better assess the usability of the proposed system. Since,
from the user point of view, ARIANNA+ works in exactly the same way as ARIANNA, we
conjecture that the results should be about the same as the ones presented in [38].
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