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Abstract: Blood is key evidence to reconstruct crime scenes in forensic sciences. Blood identification
can help to confirm a suspect, and for that reason, several chemical methods are used to reconstruct
the crime scene however, these methods can affect subsequent DNA analysis. Therefore, this study
presents a non-destructive method for bloodstain identification using Hyperspectral Imaging (HSI,
397–1000 nm range). The proposed method is based on the visualization of heme-components bands
in the 500–700 nm spectral range. For experimental and validation purposes, a total of 225 blood
(different donors) and non-blood (protein-based ketchup, rust acrylic paint, red acrylic paint, brown
acrylic paint, red nail polish, rust nail polish, fake blood, and red ink) samples (HSI cubes, each
cube is of size 1000 × 512 × 224, in which 1000 × 512 are the spatial dimensions and 224 spectral
bands) were deposited on three substrates (white cotton fabric, white tile, and PVC wall sheet). The
samples are imaged for up to three days to include aging. Savitzky Golay filtering has been used
to highlight the subtle bands of all samples, particularly the aged ones. Based on the derivative
spectrum, important spectral bands were selected to train five different classifiers (SVM, ANN, KNN,
Random Forest, and Decision Tree). The comparative analysis reveals that the proposed method
outperformed several state-of-the-art methods.

Keywords: hyperspectral imaging; bloodstains identification; weak bands; SVM; ANNs

1. Introduction

The handling of a crime scene is an important part of successful and dynamic criminal
investigations. Forensic science deals with true crime casework for the collection, detection,
and analysis of evidence material. Different traces that are found in crime casework can
be very important. A schematic search, analysis, and conclusions from these traces make
them valuable in court investigations [1–4]. One of the most important forms of forensic
shreds of evidence found at a crime scene is body fluids. Blood is a valuable and common
body fluid found at violent crime scenes [5]. The analysis of bloodstain patterns and the
age determination of bloodstains are interesting areas of forensic casework that can lead to
identifying suspects [6,7].

In the case of stain detection at a crime scene, the first challenge is to develop a
technique for the confirmation of a stain as a bloodstain. This is because a bloodstain can
be comparable to other substances in terms of color and appearance on different substrates
on visual inspection [8]. Though Deoxyribonucleic Acid (DNA) can be used to identify a
suspect, however, DNA analysis is time-consuming and expensive. The presence of false
positives like a stain of brown paint may particularly lead to a waste of resources and time.
Therefore, true blood stains should be selected for subsequent DNA analysis.
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Several presumptive tests are used for the identification of stains as bloodstains
against other confusing substances. These tests include chemical methods, for instance,
Kastle–Meyer (KM), Leucomalachite Green (LMG), Benzidine [9], and Luminol [10]. The
KM test is also known as the phenolphthalein test and it may produce false positives [11].
Although it is not sensitive, it can detect blood after a dilution ratio of 1 in 10,000. LMG is
also sensitive as KM with a 1 in 10,000 dilution ratio [12]. The luminol test is very sensitive
as compared to the KM test and produces fewer false positives. Moreover, luminol test
requires a dark environment [13,14].

As all these tests are presumptive, therefore, confirmatory tests are required to re-
duce false positives. These confirmatory tests include spectroscopic, chromatographic,
microscopic, and crystal tests. All these aforementioned methods may use chemicals or
require sample preparation that can be problematic for subsequent analysis like pattern
and DNA analysis. Moreover, a small amount of biological traces are available in some
cases. Therefore, these tests can destroy the original context [15,16].

Therefore, the forensic work is captivated by non-destructive methods for the identifi-
cation of shreds of evidence for the recent period [17]. Different non-contact techniques
have been used in the forensic area. Practitioners are using different spectroscopic tech-
niques like Raman, Reflectance, Electron Paramagnetic Resonance (EPR), Nuclear Magnetic
Resonance (NMR), and Infrared (IR) spectroscopies like Attenuated Total Reflectance
Fourier Transform IR spectroscopy (ATR-FTIR). IR and Raman-based techniques provide
promising results for bloodstain identification [18].

For instance, Bremmer et al. used reflectance spectroscopy in the visible region to
identify blood based on the correlation coefficient [19]. Edelman et al. used spectroscopy
in NIR and found difficulty in blood identification in the visible region for colored sub-
strates due to high absorbance. The authors did not include any non-blood substance
containing protein to avoid false positives. Moreover, the method was best suitable for
dried samples due to the water peak in the NIR [20]. Pereira et al. identified human
blood through the evaluation of different supervised pattern recognition techniques with
NIR spectroscopy [21]. Morillas et al. used a portable NIR spectrometer for bloodstain
identification. The authors observed good results with 81–94% accuracy with different
classification models [22].

Likewise, Raman spectroscopy was used to distinguish human and non-human species,
for gender identification and to discriminate between infant and adult blood donors. Moreover,
ATR-FTIR spectroscopy was used in different forensic applications [18,23,24], but IR tech-
nologies can be used only for IR active substances. Though Raman technology has more
promising results than IR, in forensic applications, however, its accuracy of forensic work
degrades for dried-up samples due to the degradation of blood structures with powered
laser lights. Moreover, complications are found in the case of overlaying weak bands
while dealing with Raman signals. This may require expertise and significant analysis [25].
All these spectroscopy techniques are limited to provide the spectral information of the
whole specimen instead of spatial information of the whole area under observation. Spatial
information helps to extract information of samples with different shapes on different
backgrounds. For this purpose, spectral imaging has been used widely, which combines
the benefits of both imaging and spectroscopy.

Irrespective to Raman spectroscopy, Hyperspectral Imaging (HSI) with different
substrates especially dark and patterned has been proposed in [26]. The authors of [26]
found that the bloodstains were visible only at few wavelengths in the visible and NIR
range. Edelman et al. demonstrated the visualization of bloodstains on black backgrounds
using chemo-metrical techniques with visible HSI. The authors also concluded that the
bloodstain identification task with other substances was tedious for dark substrates in
this range [27]. B. Li et al. proposed a novel approach for bloodstain identification using
Soret peak at 415 nm in visible HSI [28]. Cadd et al. used the same criteria of correlation
coefficient with the soret band for the identification of blooded fingerprints on white
tiles [29] and different colored tiles [30] in their future studies. Cadd et al. extended the
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work with a chemical enhancement of Acid Black 1 for the first time to detect blood-stained
fingerprint [31]. In all of the above, temperature and humidity must be maintained to
avoid blue spectral shift [32]. Moreover, the authors reported high accuracy with a soret
band instead of weak α and β absorption bands.

Irrespective of the works discussed above, in this work, HSI technology has been
used for non-contact identification of blood traces, thus limiting the problem of destruction
and contamination of these traces. HSI gives both spatial and spectral information of
material under observation [33]. Hence, fast data acquisition, less expected human error,
and no sample preparation lessens the load of work in labs and helps in further analysis
after quick identification. In the modern era, HSI finds its applications in food quality
assessment, medical imaging, security and defense, remote sensing [34,35] field, and
artwork authentication [36].

In a nutshell, in this work, a bloodstain is identified against eight different blood
resembling substances using the HSI system in the 397–1000 nm range. The blood samples
from three donors were imaged, using three different substrates (white cotton fabric, white
tile, and PVC wall sheet) with eight different non-blood items (ketchup, rust acrylic paint,
red acrylic paint, brown acrylic paint, red nail polish, rust nail polish, fake blood, and
red ink). Savitzky Golay derivative has been used to enhance the features of the blood
spectrum. The important wavelengths (bands) were used to train and test five different
classification models. Finally, a blind experiment has been performed with a blood sample
of the fourth blood donor and different blood resembling substances on each substrate for
further validation of the proposed methodology.

2. Materials and Methods

This section summarizes the sample preparation, hardware system, data acquisition,
data pre-processing, and identification criteria with different classification models.

2.1. HSI System

HSI system used in this study includes an FX-10 (Specim, Spectral Imaging Ltd,
Finland) Hyperspectral camera, equipped with a lens from Scheiner and a line scanner.
The setup contained three halogen lamps, a moving platform for scanning, and a camera
mounting plate with an adjustable height. A serial communication port was used to connect
the scanner directly to a laptop where data was dumped by a software Lumo Scanner.
GigE-Vision was interfaced with a camera and laptop to transfer captured data. Three
types of raw files including dark reference, white reference, and sample were obtained.
For dark and white references, 100 frames were acquired by closing the shutter and
using a white tile, respectively. The HSI system is capable of capturing a hypercube of a
size of 1000 × 512 × 224 in the visible NIR range between 397–1003 nm with an average
subsampling of 2.7 nm.

2.2. Sample Preparation

In this study, human blood is used for identification purposes against different blood
resembling substances including ketchup, rust acrylic paint, red acrylic paint, brown acrylic
paint, red nail polish, rust nail polish, fake blood, and red ink. The blood was stained on
different substrates directly from the fingertips after the informed consent of volunteers
during the whole experimentation. For this purpose, the ACCU-CHECK® safe lancing
device was used with sterilized needles. The needle was disposed of after each blood
sample deposition. Before blood sample deposition, all substrates were cleaned with
distilled water. The stain size of each blood and non-blood sample were tried to be kept
within a diameter of about 1 cm but the number of pixels within one stain could be varied.
To apply the same number of stains for each surface, a different number of pieces of each
substrate were used according to their available surface area.

The HSI cubes (blood and non-blood samples) were captured for up to three days in
order to include dehydrated (aging) samples. The samples were placed to dry for about
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one hour before imaging on the first day. Then the samples were kept at room temperature
in an airtight box. The observed averaged temperature and humidity were 39 ◦C and 40%,
respectively. The precise information about the number of samples (HSI cubes) is shown in
Table 1. The details related to number of pixel spectra of all stains and their distribution in
different sets are shown in Tables 2 and 3.

Table 1. The number of stains on each substrate: In total 81 blood and 144 non-blood stains are
collected. In total 225 samples (HSI cubes) are collected for an experimental setup in which each HSI
cube is later reduced to 100 × 100 × 224 after extracting the Region of Interest (ROI).

Substrates
Blood Stains Non-Blood Stains

Total
Day 1 Day 2 Day 3 Day 1 Day 2 Day 3

White Fabric 9 9 9 16 16 16 75

White Tile 9 9 9 16 16 16 75

Wall Sheet 9 9 9 16 16 16 75

Total 27 27 27 48 48 48 225

Table 2. Samples-based data splitting.

Substrates
Blood Stains Non-Blood Stains

Total
Training Test Training Test

White Fabric 21,841 15,216 48,722 23,393 109,172

White Tile 30,732 12,006 40,057 20,620 103,415

Wall Sheet 24,318 14,827 37,223 16,818 93,186

Table 3. Pixel-based data splitting.

Substrates
Blood Stains Non-Blood Stains

Total
Training Test Training Test

White Fabric 25,926 11,131 50,459 21,656 109,172

White Tile 29,905 12,833 42,449 18,228 103,415

Wall Sheet 27,389 11,756 37,807 16,234 93,186

The sample deposition information for three substrates (white cotton fabric, white tile,
and wall sheet) is given below:

• Three bloodstains were deposited by each of the three donors, creating a total of nine
stains on each substrate. These samples were imaged for three days so making a
dataset of 27 samples (HSI cubes) for each substrate. These blood samples together
with non-blood samples were used for model training and testing;

• For blood resembling substances, two stains of each substance (ketchup, rust acrylic
paint, red acrylic paint, brown acrylic paint, red nail polish, rust nail polish, fake
blood, and red ink) were deposited on each substrate and imaged for up to three days
as similar to the blood samples. A total of 48 samples (HSI cubes) of 8 different blood
resembling substances along with 27 bloodstains were used for training and testing of
the models for each substrate;

• Blind Trial: For the final evaluation and validation of trained/tested models, a blind
experiment was also conducted on entirely unseen blood samples (HSI cubes). These
samples were collected as; each substrate was stained with two blood samples of
different aging, from another donor along with four non-blood samples (6 HSI cubes).
These HSI cubes are of size 410 × 512 × 224 as compared to the previous experiments
which were conducted on 100 × 100 × 224.
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2.3. Spectral Reflectance

The samples (blood, non-blood stains) were placed on the moving platform of the HSI
system. A white tile of 99.9% reflectance placed on a moving platform was used as a white
reference. The speed of the platform was set to 11.72 mm/s. The frame rate was 50 Hz
and the exposure time was 16 ms. The camera was adjusted at a height of 15 cm. These
settings were kept constant for the entire data collection. As the size of each substrate was
different, therefore, the number of frames of hypercube was set according to the size of
different substrates.

The hyperspectral camera records the radiance of the specimen. The recorded radiance
suffers from different factors like a spectrum of the illumination source, incident angle with
a specimen, atmospheric effects, shadowing, and sensor effects. Therefore, it is necessary
to convert radiance into spectral reflectance with the removal of different factors. For this
purpose, two calibration targets, white reference and dark reference, with a wide brightness
difference, were used to calculate reflectance from encoded sample radiance by using the
Empirical Line Method [37]. Path radiance and shadowing effects are also eliminated with
Empirical Line Method. The linear equation is used to calculate spectral reflectance from
encoded radiance for each spectral band of a hypercube.

Re f lectance =
Rspecimen − Dre f

Wre f − Dre f
(1)

where Rspecimen is encoded radiance of sample while Dre f and Wre f are captured dark and
white reference frames.

2.4. Pre-Processing

The pre-processing was divided into two parts, i.e., spatial and spectral pre-processing.
Image pre-processing techniques have been applied in order to extract a Region of Interest
(ROI) from an image. For ROI, a Hyperspectral reflectance image of a data cube of 100× 100
pixels for each blood and non-blood sample was cropped. Then, thresholding was done at
540 nm. After extracting the mask, it was multiplied with the whole hypercube to extract
the spectral information of pixels related to ROI as shown in Figure 1. To remove the noise,
Standard Normal Variate (SNV), Multiplicative Scatter Correction (MSC), Smoothing with
Savitzky Golay method, and averaging filter were used [21,38–40].

(a) True Color (b) 100th spectral band image (c) Ground Truth

Figure 1. Blood sample deposited on a wall sheet.

Based on visual inspection, the Savitzky Golay smoothing filter performed well for
noise removal. To deal with pixel information in an HSI cube, a derivative is a helpful
technique to detect pixel variations, subtle characteristics, and weak absorption bands.
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First-order derivatives can be used to remove spectral shifts. However, in this work, higher-
order derivatives are used to extract overlapping spectral features and for background
elimination [41]. Higher-order derivatives cause a reduction in signal-to-noise ratio (SNR).
Savitzky Golay filter is one of the mathematical derivative methods that are better than
others due to its soothing property [42–45]. The Savitzky Golay filter is based on polynomial
fitting on data points depending upon window size. The solution of a polynomial is
found by the least square minimization. The polynomial order is fixed depending on
the derivative order to be calculated [46]. In this study, Savitzky Golay’s second order
derivative with a 13-point window and third-order polynomial was used to remove spectral
shifts due to aging, irrelevant noise, different donor samples, and pixel variations. The
derivative of aged samples also highlighted the subtle dips to make the blood spectrum
homogeneous.

2.5. Identification Criteria of Blood from other Red Substances

Hemoglobin is an important component of blood. Dried-up bloodstains contain about
97% of hemoglobin components. Oxyhemoglobin, meta-hemoglobin, and hemi-chrome
are important hemoglobin derivatives in vitro reactions [47]. The spectral properties of
hemoglobin derivatives are used in this study to develop identification criteria. The mean
reflectance spectra and their derivatives of blood samples are observed against different
red-colored substances that could be confused with blood. In the visible region, two peaks
α and β are found due to oxyhemoglobin at wavelengths 577 nm and 540 nm respectively
as shown in Figure 2. With aging, the dips become less prominent on visual inspection in a
spectral signature.

300 400 500 600 700 800 900 1000 1100
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0.5
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Figure 2. Blood spectrum.

Moreover, pixel-wise reflectance suffered from spectral noises may cause spectral
shifts. The steepness in the curve of blood is observed from 600–650 nm, which is due to the
formation of hemi-chrome and meta-hemoglobin, moreover, with aging, this steepness also
decreases [48]. As mentioned earlier, the Savitzky Golay derivative is used to make dips
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and peaks of aged blood samples and non-blood samples more prominent. Moreover, it
also highlighted a prominent change in the blood derivative spectrum against a non-blood
derivative spectrum between 470–770 nm. In the derivative spectrum, redundant infor-
mation is ignored, therefore, appropriate spectral bands are selected based on derivative
spectra for classification models.

3. Spectral Analysis
3.1. Pixel Level Spectral Analysis

Illumination source effects, shadowing, atmospheric effects, and uncontrolled stain
deposition of samples on substrates may cause variation in pixel values and baseline shifts
as shown in Figure 3a. The spectral signature noise has been eliminated by Savitzky Golay
smoothing filter as shown in Figure 3b.
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(a) Noisy Spectra
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(b) Smooth Spectra

Figure 3. Spectral signature of few pixels: (a) Reflectance spectra with noise. (b) Reflectance spectra after smoothing.

3.2. Spectral Analysis of Different Blood Donors

The mean reflectance spectra of three different donors have been observed that indicate
variations in reflectance values. Oxyhemoglobin α and β dips have been observed at 577 nm
and 540 nm respectively in the mean reflectance spectra of all samples with little baseline
shifts as shown in Figure 4a–c. Moreover, Figure 4a–c show baseline spectral shifts from
700 nm onwards and change in the steepness of slope between 600–650 nm due to different
fractions of hemi-chrome and meta-hemoglobin in different samples depending upon
environmental conditions.

Moreover, the reflectance spectrum values on cotton fabric are quite different as
compared to other substrates. This is due to the absorbing property of the cotton fabric.
Savitzky Golay’s second-order derivative has been used to highlight overlapping regions
and removes spectral shifts as shown in Figure 4d–f. The derivative spectrum overlaps in
most regions and shows peaks and dips in terms of negative and positive values.
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(a) Reflectance Spectra: Fabric
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(b) Reflectance Spectra: Tile
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(c) Reflectance Spectra: Sheet
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(d) Savitzky Golay: Fabric
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(f) Savitzky Golay: Sheet

Figure 4. Mean reflectance spectra of different blood donor samples and Savitzky Golay second-order derivative spectra
comparison over White Fabric, Whtile Tile, and Wall Sheet.

3.3. Spectral Analysis of Aged Blood Samples

With the aging of samples, α and β dips in reflectance spectra become smaller and
steepness of slope within 600–650 nm decreases as shown in Figure 5a–c. In the case
of white tile and wall sheets, the dips have become less prominent. These α and β dips
and changes have been observed more clearly with the second-order Savitzky Golay
derivative spectrum. Figure 5d–f show that second-order derivative has a homogenized
spectrum while enhancing the subtle spectral features with a change in spectrum pattern
in a wavelength range of 600–650 nm due to dehydrated samples.
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Figure 5. Mean reflectance spectra of aged blood samples of donor 1 and Savitzky Golay second order derivative spectra
comparison over white fabric, white tile, and wall sheet.
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3.4. Spectral Analysis of Blood Samples Against Non-Blood Samples

It has been observed in Figure 6 that the spectral signature of most of the samples
overlaps at starting spectral lines. For instance, around 450 nm, small changes can be
visualized in the derivative spectrum in 6b,c. From 500 nm onwards, it can be observed
that the blood spectrum and rust paint spectrum both have a hump at about 510 nm.
Moreover, some non-blood spectra have a light trough around 920–930 nm like blood
spectra. All similarities and changes can be visualized clearly in derivative spectra as
shown in Figure 6d–f. Each spectral signature shows a steep curve between 580–680 nm,
the derivative shows different curvature values for all spectra in this region.
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(c) Reflectance Spectra: Sheet
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(d) Savitzky Golay: Fabric
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(e) Savitzky Golay: Tile
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(f) Savitzky Golay: Sheet

Figure 6. Mean reflectance spectra and Savitzky Golay second order derivative spectra of blood and non-blood samples
comparison on white fabric, white tile, and wall sheet.

In the case of aged samples, as α and β dips become less prominent, therefore blood
spectrum becomes flattened like the non-blood spectrum in this region. This can be
observed particularly between 500–580 nm for aged samples of day three in Figure 7.
The subtle bands of all samples get highlighted in their derivative spectrum. Redundant
information has been observed from 800 nm onwards due to the small values of spectra.
As blood derivative spectra have a prominent difference between 470–770 nm, therefore,
these spectral lines have been selected for model training.
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Figure 7. Comparison of spectra of aged blood and different non-blood samples on wall sheet.

4. Data Splitting

In this study, the individual pixels of each stain has been treated as observations. The
acquired data has been split into training, validation, and test sets in two following ways
while using the holdout cross-validation technique:

• In the first case, 70% of bloodstains have been used as a training data set while 30% for
the external validation data set. It has been noticed that the stains of each aging have
been included in training and test sets. From training samples, 80% samples have
been used for model training and 20% for internal validation. A similar procedure has
been done with non-blood samples. The shuffling has been done for sample division.
In all these samples, the number of pixels varies due to small variations in ROI size.
The breakdown of all data sets has been shown in terms of total observations in
Table 2;

• In the second case, 70% of pixels of each blood and non-blood stain have been included
in the training data set while 30% of pixels being in the external validation data set.
Then 20% of training pixels of each stain, have been used for internal validation. The
shuffling of pixels within each stain has been done before concatenation. The division
of observations is shown in Table 3.

5. Experimental Settings and Results

For experimental evaluation, several statistical tests have been conducted including
but not limited to Kappa (κ), overall accuracy, sensitivity, specificity, F1-score, precision,
and recall rate. All these evaluation metrics are calculated using the following mathematical
formulations.

OA =
1
C

C

∑
i=1

TPi (2)

κ =
Po − Pe

1 − Pe
(3)
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where

Po =
TP + TN

TP + FN + FP + TN
(4)

Pe = PY + PN (5)

PY =
TP + FN

TP + FN + FP + TN
× TP + FN

TP + FN + FP + TN
(6)

PN =
FP + TN

TP + FN + FP + TN
× FN + TN

TP + FN + FP + TN
(7)

where TP and FP are true and false positive, and TN and FN are true and false negative
computed from the confusion matrix.

Precision =
1
C

C

∑
i=1

TPi
TPi + FPi

(8)

Sensitivity = Recall =
1
C

C

∑
i=1

TPi
TPi + FNi

(9)

F1 − Score =
2 × (Recall × Precision)
(Recall + Precision)

(10)

speci f icity =
1
C

C

∑
i=1

TNi
TNi + FPi

. (11)

Experiments have been conducted using five different types of classifiers, i.e., Support
Vector Machine (SVM) [49], K Nearest Neighbors (KNN) [49], Artificial Neural Network
(ANN) [50], Decision Trees (DT) [51], and Random Forest (RF) [51]. The tuning parameters
for all the aforementioned classifiers are as follows: In the case of ANNs, a dense network
with three hidden layers, each containing 30 neurons, was used. The number of layers
and nodes were selected by the hit and trial method. In order to increase sensitivity and
specificity, the number of epochs was increased up to 50. SVM is trained using Linear and
RBF kernel functions and rest of the parameters are left default. KNN was tuned between
[1, 20] nearest neighbors iteratively. DT was trained using entropy criterion with 10 times
depth and finally, and RF was trained using 500 estimators.

The tuning parameters of all the above-said classifiers were explored very carefully
in the first few experiments (as listed above) and those that provided the best accuracy
were chosen. To avoid bias, all the listed experiments are carried out in the same settings
on the same machine. Before the experiments, we performed the necessary normalization
between [0, 1], and all the experiments are carried out using Matlab 2021a installed on an
Intel inside Core i3-4030U CPU 1.90 GHz with 12 GB RAM.

As discussed in Section 4, classification was performed with two separate data sets.
For feature reduction, Principle Component Analysis (PCA) was performed on each sample
data with a selection of all wavelengths which significantly reduces the performance of
SVM even with different kernels functions. Then, the results were observed with a second-
order derivative spectrum with two spectral ranges i.e., 397–770 nm and 470–770 nm.
Similar results have been drawn with both spectral ranges, therefore, a 470–770 nm spectral
range was selected to train models with a fewer number of features which improves the
generalization performance. It has been observed that all the classifiers performed with
100% accuracy and statistical significance for all blood samples as given in Tables 4 and 5.

Similarly, blood vs. blood (donor A, B, and C as a separate class) vs. 8 other non-blood
samples (protein-based ketchup, rust acrylic paint, red acrylic paint, brown acrylic paint,
red nail polish, rust nail polish, fake blood, and red ink) on three different substrates (white
cotton fabric, white tile, and PVC wall sheet) as multi-class classification results have also
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been carried to show the performance of our proposed pipeline. Moreover, the ageing of
all these results have also been discussed in Tables 6–8, respectively.

Table 4. Blood (donor 1) vs. non-blood experimental results over sample-based data splitting. Similar results have observed
for other donors.

Classifier
Spectral Lines Sensitivity Specificity F1-Score Precision OA Kappa (κ)

Substrate: White Fabric

SVM linear 110 100% 100% 100% 100% 100% 100%
SVM rbf 110 100% 100% 100% 100% 100% 100%

SVM cubic 110 100% 100% 100% 100% 100% 100%
ANNs 110 100% 100% 100% 100% 100% 100%

DT 110 100% 100% 100% 100% 100% 100%
RF 110 100% 100% 100% 100% 100% 100%

KNN 110 100% 100% 100% 100% 100% 100%

Substrate: White Tile

SVM linear 110 100% 100% 100% 100% 100% 100%
SVM rbf 110 100% 100% 100% 100% 100% 100%

SVM cubic 110 100% 100% 100% 100% 100% 100%
ANNs 110 100% 100% 100% 100% 100% 100%

DT 110 100% 100% 100% 100% 100% 100%
RF 110 100% 100% 100% 100% 100% 100%

KNN 110 100% 100% 100% 100% 100% 100%

Substrate: Wall Sheet

SVM linear 110 100% 100% 100% 100% 100% 100%
SVM rbf 110 100% 100% 100% 100% 100% 100%

SVM cubic 110 100% 100% 100% 100% 100% 100%
ANNs 110 100% 100% 100% 100% 100% 100%

DT 110 100% 100% 100% 100% 100% 100%
RF 110 100% 100% 100% 100% 100% 100%

KNN 110 100% 100% 100% 100% 100% 100%

Table 5. Blood (donor 1) vs. non-blood experimental results over pixel based data splitting. Similar results are observed for
other donors.

Classifier Spectral Lines Sensitivity Specificity F1-Score Precision OA Kappa (κ)

Substrate: White Fabric

SVM linear 110 100% 100% 100% 100% 100% 100%
SVM rbf 110 100% 100% 100% 100% 100% 100%

SVM cubic 110 100% 100% 100% 100% 100% 100%
ANNs 110 100% 100% 100% 100% 100% 100%

DT 110 100% 100% 100% 100% 100% 100%
RF 110 100% 100% 100% 100% 100% 100%

KNN 110 100% 100% 100% 100% 100% 100%

Substrate: White Tile

SVM linear 110 100% 100% 100% 100% 100% 100%
SVM rbf 110 100% 100% 100% 100% 100% 100%

SVM cubic 110 100% 100% 100% 100% 100% 100%
ANNs 110 100% 100% 100% 100% 100% 100%

DT 110 100% 100% 100% 100% 100% 100%
RF 110 100% 100% 100% 100% 100% 100%
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Table 5. Cont.

Classifier Spectral Lines Sensitivity Specificity F1-Score Precision OA Kappa (κ)

Substrate: Wall Sheet

2-8 SVM linear 110 100% 100% 100% 100% 100% 100%
SVM rbf 110 100% 100% 100% 100% 100% 100%

SVM cubic 110 100% 100% 100% 100% 100% 100%
ANNs 110 100% 100% 100% 100% 100% 100%

DT 110 100% 100% 100% 100% 100% 100%
RF 110 100% 100% 100% 100% 100% 100%

KNN 110 100% 100% 100% 100% 100% 100%

Table 6. Day-1: Blood vs. blood samples experimental results with full wavelengths. The best accuracies are emphasized.

Classifier
Spectral Lines Train Time Test Time Kappa (κ) OA AA

Substrate: White Fabric

SVM linear 224 26.962 23.110 91.13 92.09 93.37
SVM rbf 224 37.445 33.582 89.50 90.63 91.99
ANNs 224 110.033 0.073 92.02 92.88 93.99

DT 224 27.614 0.016 87.65 88.98 90.45
RF 224 279.00 2.20 87.72 89.04 90.86

KNN 224 4.256 16.17 88.93 90.12 91.71

Substrate: White Tile

SVM linear 224 46.275 21.99 91.88 92.77 94.67
SVM rbf 224 57.631 42.710 86.72 88.18 91.07
ANNs 224 52.129 0.080 94.88 95.45 96.51

DT 224 24.156 0.037 80.31 82.46 86.84
RF 224 275.992 2.088 89.84 90.96 93.11

KNN 224 3.038 7.559 84.15 85.90 89.28

Substrate: Wall Sheet

SVM linear 224 46.184 22.780 87.97 89.32 92.89
SVM rbf 224 55.783 39.515 82.76 84.71 88.87
ANNs 224 70.783 0.047 90.90 91.93 94.54

DT 224 24.02 0.008 78.27 80.72 86.20
RF 224 281.383 2.482 84.21 86.00 90.56

KNN 224 2.906 8.991 79.61 81.91 87.56

Table 7. Day-2: Blood vs. blood samples experimental results with full wavelengths. The best accuracies are emphasized.

Classifier
Spectral Lines Train Time Test Time Kappa (κ) OA AA

Substrate: White Fabric

SVM linear 224 31.798 24.953 91.65 92.55 93.55
SVM rbf 224 39.953 42.652 87.86 89.17 90.50
ANNs 224 79.619 0.075 92.09 92.94 93.97

DT 224 26.072 0.016 86.35 87.83 89.19
RF 224 263.760 2.194 87.11 88.49 90.38

KNN 224 3.792 17.20 86.75 88.17 90.04

Substrate: White Tile

SVM linear 224 34.55 18.076 94.49 95.10 96.19
SVM rbf 224 58.816 44.363 89.42 90.58 92.83
ANNs 224 50.577 0.061 93.88 94.55 95.85

DT 224 26.655 0.016 81.61 83.63 87.40
RF 224 291.066 2.597 91.11 92.09 93.84

KNN 224 3.476 7.411 86.05 87.59 90.54
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Table 7. Cont.

Classifier
Spectral Lines Train Time Test Time Kappa (κ) OA AA

Substrate: Wall Sheet

SVM linear 224 47.341 26.604 85.91 87.46 91.16
SVM rbf 224 65.917 48.977 79.24 81.57 85.98
ANNs 224 68.264 0.064 89.80 90.93 93.74

DT 224 22.737 0.024 77.25 79.80 84.83
RF 224 275.39 2.26 82.27 84.25 88.79

KNN 224 2.858 7.308 78.38 80.78 86.27

Table 8. Day-3: Blood vs. blood samples experimental results with full wavelengths. The best accuracies are emphasized.

Classifier
Spectral Lines Train Time Test Time Kappa (κ) OA AA

Substrate—White Fabric

SVM linear 224 28.074 22.686 91.85 92.73 93.84
SVM rbf 224 36.985 39.590 88.18 89.46 91.00
ANNs 224 69.574 0.079 91.15 92.10 93.38

DT 224 24.212 0.014 86.99 88.39 90.10
RF 224 283.086 2.227 87.63 88.96 90.84

KNN 224 3.994 17.963 86.93 88.33 90.32

Substrate—White Tile

SVM linear 224 39.045 23.161 93.58 94.27 95.44
SVM rbf 224 65.709 47.316 83.43 85.20 88.18
ANNs 224 53.424 0.062 93.78 94.45 95.38

DT 224 24.513 0.010 77.38 79.76 83.92
RF 224 270.871 2.074 89.69 90.79 92.40

KNN 224 2.990 6.073 85.70 87.24 89.65

Substrate—Wall Sheet

SVM linear 224 50.423 26.396 86.00 87.57 91.53
SVM rbf 224 62.824 40.817 80.00 82.27 87.09
ANNs 224 71.753 0.093 89.53 90.70 93.69

DT 224 24.612 0.011 75.48 78.29 84.06
RF 224 256.58 1.924 82.39 84.38 89.23

KNN 224 2.660 8.359 77.41 79.95 86.06

6. Blind Testing

Further validation of the proposed work is performed with the application of new
samples (HSI cubes) on all substrates. To this aim, two bloodstains of the fourth donor with
different aging have been deposited in the top row of each substrate and also 4 non-blood
samples have been deposited on each substrate as mentioned in Section 4. The location of
the blood samples was not mentioned before testing. The ground truths of these samples
are shown in Figures 8–10. These show prediction results with different classification
models. The blood extraction rate is found to be 100% with the purposed methodology.
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(a) SVM (b) DT

(c) KNN (d) ANN

Figure 8. Prediction results of test samples on white fabric: (1) True color image, (2) pre-processed image, (3) labeling, and
(4) classifier results: (a) SVM, (b) DT, (c) KNN, and (d) ANN.

(a) SVM (b) DT

(c) KNN (d) ANN

Figure 9. Prediction results of test samples on white tile: (1) True color image, (2) pre-processed image, (3) labeling, and
(4) classifier results: (a) SVM, (b) DT (c) KNN, and (d) ANN.

(a) SVM (b) DT

(c) KNN (d) ANN

Figure 10. Prediction results of test samples on wall sheet: (1) True color image, (2) pre-processed image, (3) labeling,
(4) classifier results: (a) SVM, (b) DT, (c) KNN, and (d) ANN.
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7. Comparison with State-of-the-Art Methodologies

In the literature, PCA is a commonly used method for feature reduction. PCA is used
to map high-dimensional data to lower dimensions while taking a linear combination of
original data with orthogonal vectors known as Principal Components (PCs) [52]. The top
PCs of transformed data carry as much variation as possible. To strengthen our proposed
pipeline, feature reduction has been performed with PCA instead of derivatives. We have
trained our models with the first three PCs for comparison.

Moreover, study [21] evaluated different supervised pattern recognition methods
for blood identification. This study followed Standard Normal Variate (SNV) and Nor-
malization in the pre-processing step. We have followed their two pipelines with Soft
Independent Modeling of Class Analogy (SIMCA) and Partial-Least Squares Discriminant
Analysis (PLS-DA) models to compare with our results. The number of PCs selected for
both models is 3 and 2, respectively. Table 9 presents the results of these methodologies
against our proposed pre-processing method and derivative-based feature selection. These
results have been drawn with the same data set used in this study.

The results have been presented for the identification of blood against eight different
blood resembling substances using HSI technology in the visible region. These blood and
non-blood samples were deposited on different substrates that are commonly discussed in
forensic applications. These substrate materials included white cotton fabric, white tile,
and a PVC wall sheet.

In order to reconstruct old crime scenes, a criterion of aging for three days was set.
Therefore, the images were captured for up to three days. The reflectance spectra of all
blood and non-blood samples were analyzed visually and the identification criteria are
set based on blood heme-components. First, PCA was used for feature reduction from the
reflectance spectrum and classification results were observed. To observe reduced perfor-
mance with PCA, the distribution of transformed data with aged samples is also analyzed.
The distribution is randomly scattered due to the change in the chemical composition of
different substances. Then Savitzky Golay derivative filter is used in the pre-treatment step
to enhance features of aged samples. Therefore, derivative-based important spectral lines
are selected while discarding redundant information. The performance of different models
used in this study increased to 100% with derivative-based features. The proposed method-
ology provided the considerable potential to identify blood with Hyperspectral imaging.
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Table 9. Comparison of a proposed pipeline with state-of-the-art methodologies in which SNV stands for Standard Normal Variate, SIMCA stands for Soft Independent Modeling of Class
Analogy, and PLS-DA stands for Partial-Least Squares Discriminant Analysis.

Methodology Accuracy Sensitivity Specificity F1-Score Precision Kappa (κ)

Substrate—White Fabric

SNV + Normalization + SIMCA 99.5% 98.9% 99.9% 99.9% 99.4% 99.1%
SNV + Normalization + PLS-DA 97.1% 100% 95.2% 93.1% 96.4% 94%

Smoothing + PCA + SVM 83.3% 66.1% 94.5% 88.8% 75.7% 63.5%

Smoothing + Derivative-based feature selection + SVM 100% 100% 100% 100% 100% 100%
Smoothing + Derivative-based feature selection + ANN 100% 100% 100% 100% 100% 100%
Smoothing + Derivative-based feature selection + KNN 100% 100% 100% 100% 100% 100%

Smoothing + Derivative-based feature selection + DT 100% 100% 100% 100% 100% 100%
Smoothing + Derivative-based feature selection + RF 100% 100% 100% 100% 100% 100%

Substrate—White Tile

SNV + Normalization + SIMCA 99.7% 99.9% 99.7% 99.4% 99.6% 99.4%
SNV + Normalization + PLS-DA 95.3% 99.7% 92.8% 88.9% 93.9% 90.2%

Smoothing + PCA + SVM 87.4% 100% 80% 74.4% 85.3% 74.6%

Smoothing + Derivative-based feature selection + SVM 100% 100% 100% 100% 100% 100%
Smoothing + Derivative-based feature selection + ANN 100% 100% 100% 100% 100% 100%
Smoothing + Derivative-based feature selection + KNN 100% 100% 100% 100% 100% 100%

Smoothing + Derivative-based feature selection + DT 100% 100% 100% 100% 100% 100%
Smoothing + Derivative-based feature selection + RF 100% 100% 100% 100% 100% 100%

Substrate—Wall Sheet

SNV + Normalization + SIMCA 99.5% 99.9% 99.1% 99% 99.4% 99%
SNV + Normalization + PLS-DA 95.2% 92.8% 97.2% 96.6% 94.7% 90.2%

Smoothing + PCA + SVM 92.8% 97.3% 88.8% 88.4% 92.6% 85.6%

Smoothing + Derivative-based feature selection + SVM 100% 100% 100% 100% 100% 100%
Smoothing + Derivative-based feature selection + ANN 100% 100% 100% 100% 100% 100%
Smoothing + Derivative-based feature selection + KNN 100% 100% 100% 100% 100% 100%

Smoothing + Derivative-based feature selection + DT 100% 100% 100% 100% 100% 100%
Smoothing + Derivative-based feature selection + RF 100% 100% 100% 100% 100% 100%
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8. Conclusions

This work presented a bloodstain identification method on different substrates. The
proposed method could identify blood samples with aging up to 3 days. The non-blood
samples included protein-based ketchup, rust acrylic paint, red acrylic paint, brown acrylic
paint, red nail polish, rust nail polish, fake blood, and red ink. The proposed method
is based on the enhancement of weak bands in the visible region to discriminate blood
from different red-colored substances. Important spectral bands were selected from the
derivative spectrum. Machine learning models were used for classification and 100%
statistical significance was achieved.

This research work is limited to human blood and could be extended with animal
blood samples and more blood resembling substances with a wide range of substrates. To
reconstruct old crime scenes, the aging criteria could also be extended. Moreover, several
active/self/interactive-learning frameworks could also be tested while considering the
limited availability of labeled training samples. Moreover, several 3D [53] and hybrid
models [54] could also be included to reduce the efforts of handcrafted features.
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