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Abstract: There are many small objects in traffic scenes, but due to their low resolution and limited
information, their detection is still a challenge. Small object detection is very important for the
understanding of traffic scene environments. To improve the detection accuracy of small objects in
traffic scenes, we propose a small object detection method in traffic scenes based on attention feature
fusion. First, a multi-scale channel attention block (MS-CAB) is designed, which uses local and global
scales to aggregate the effective information of the feature maps. Based on this block, an attention
feature fusion block (AFFB) is proposed, which can better integrate contextual information from
different layers. Finally, the AFFB is used to replace the linear fusion module in the object detection
network and obtain the final network structure. The experimental results show that, compared to the
benchmark model YOLOv5s, this method has achieved a higher mean Average Precison (mAP) under
the premise of ensuring real-time performance. It increases the mAP of all objects by 0.9 percentage
points on the validation set of the traffic scene dataset BDD100K, and at the same time, increases the
mAP of small objects by 3.5%.

Keywords: traffic scenes; object detection; multi-scale channel attention; attention feature fusion

1. Introduction

In traffic scenes, the visual perception technology of intelligent vehicles can help
automatic driving systems to perceive complex environments accurately and in time, which
is a requirement for avoiding collisions and for safe driving. With the rapid development
of computer vision technology, vehicle visual perception is increasingly being adopted in
the field of automatic driving. For example, object detection based on deep learning has
played a very important role in the field of automatic driving.

Object detection involves the delineation of the bounding box of an object to be
detected in the given image, and then the determination of the class that the object in the
box belongs to. Due to their large amount of calculations, redundant marker boxes, and
poor robustness of manual features, traditional object detection algorithms are currently
being replaced by their deep learning counterparts. Lightweight real-time object detection
models, such as the “you only look once” (YOLO) algorithm [1–3], the single shot multibox
detector (SSD) algorithm [4], Light-Head R-CNN [5], and ThunderNet [6], have already
demonstrated good detection effects in actual application scenarios.

At present, the prevailing deep learning-based object detection algorithms, such as
YOLOv5 [7], treat each region of the whole feature map equally by default, that is, each
region has the same contribution to the final detection result. This means that they do
not weigh the convolution features extracted from the network according to their position
and importance. However, compared with simple ordinary scenes, there are usually more
complex and rich semantic features around the object to be detected in actual traffic scenes.
If the features of the object area are weighted according to their importance, the objects to
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be detected can be better positioned in the feature map and the detection accuracy and
generalization ability of the model can be improved.

Furthermore, in traffic scenes, there are many small objects in the distance. These
objects offer limited feature information due to their relatively small size, which makes
detection more difficult. Research on small object detection includes a deconvolutional
single shot detector (DSSD) [8], scale normalization for image pyramids (SNIP) [9], high-
resolution detection network (HRDNet) [10], etc. The DSSD algorithm mainly improves
the detection performance of the object detector for small objects by using a better feature
extraction network and adding context information. The SNIP algorithm uses a novel
training scheme, called scale normalization for image pyramids (SNIP), which selectively
back-propagates the gradients of object instances of different sizes as a function of the
image scale to better detect small objects. The HRDNet algorithm feeds high-resolution
input into a shallow network to reserve more positional information while feeding low-
resolution input into a deep network to extract more semantics. By extracting various
features from high to low resolutions, the algorithm improves the detection performance
of small objects as well as maintaining the detection performance of medium and large
objects. These algorithms each have their own advantages and limitations. Improving the
detection of small objects in traffic scenes as much as possible is also one of the current
research hotspots in the field of visual perception for autonomous vehicles. The YOLOv5
model is a milestone object detection method, which achieves a good balance between
accuracy and speed, but it still has the possibility for improvement in small object detection
problems in traffic scenes.

In response to the above problems, in this paper, we first propose an MS-CAB to
alleviate the problems caused by scale changes to small object detection. This block
effectively improves the feature inconsistency between objects at different scales, and at
the same time, focuses attention on the objects in the area that need to be focused on,
which reduces the unnecessary shallow feature information of the background. In other
studies [11,12], the attention mechanism also considers the scale, such as by aggregating
contextual information through convolution kernels of different sizes or from the feature
pyramid inside the attention module. The MS-CAB proposed here aggregates contextual
information along the channel dimensions of the feature map. It can not only focus on large
objects that are distributed globally, but also deal with small objects that are distributed
more locally. This block helps the model to detect and identify objects with extreme size
differences.

Second, based on MS-CAB, an AFFB is proposed that is different from linear fusion
schemes such as addition and concatenation, which are completely context-independent.
The block is non-linear and can better capture the contextual information from different
network layers by fusing features that are inconsistent semantically and in terms of scale.
By replacing the simple addition or concatenation operation with the AFFB, a network
model with fewer parameters and higher detection accuracy can be obtained, and the
detection effect of small objects is improved greatly.

The remainder of this paper is organized as follows: Section 2 introduces the related
works and existing problems of the three topics of object detection, attention mechanisms,
and feature fusion. Section 3 briefly introduces the benchmark model, YOLOv5s, and
then elaborates on the principle and structure of the proposed MS-CAB and the AFFB.
Section 4 presents the experiments and an analysis of the results. The paper ends with our
conclusions and suggestions for future work.

2. Related Works
2.1. Object Detection

Object detection algorithms are mainly divided into one-stage and two-stage methods.
Relatively speaking, one-stage object detection algorithms have better real-time perfor-
mance, but lower accuracy, while two-stage algorithms have better accuracy, but weaker
real-time performance. He et al. proposed a two-stage spatial pyramid pooling network
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(SPPNet) in 2014 [13]. By introducing a spatial pyramid pooling layer, the convolutional
neural network (CNN) can receive inputs of non-fixed size without considering the size of
the region of interest. The SPPNet method was ultimately 20 times faster than R-CNN [14],
with comparable accuracy. Ren et al. proposed Faster R-CNN [15], and the region proposal
network (RPN) candidate box generation algorithm based on Fast R-CNN [16], which
greatly improved the speed of object detection. Besides, Lin et al. proposed feature pyramid
networks (FPN) [17], which solved the multi-scale problem in object detection. Through
a relatively simple network connection change, the detection effect of small objects is
greatly improved while maintaining the original model’s computational load. The YOLO
algorithm [1], which divides the image into multiple regions, formulates the bounding box,
and predicts the probability of an object belonging to a class at the same time, was pro-
posed by Redmon et al. It was the first one-stage object detection algorithm based on deep
learning and started a new approach towards object detection. The author subsequently
proposed the improved versions of YOLOv2 [2] and YOLOv3 [3], which further improved
the detection accuracy while maintaining a relatively high detection speed. Then, Liu et al.
proposed the SSD algorithm [4], which greatly improved the accuracy of object detection
by introducing multi-reference and multi-resolution detection technology, especially for
small objects.

To solve the problem of imbalance between positive and negative categories, Lin et al.
proposed the RetinaNet algorithm [18], in which the focal loss is derived so that the
algorithm can maintain a relatively fast detection speed, while the detection accuracy
can be equivalent to that of two-stage object detection algorithms. Zhu et al. proposed
the feature selective anchor-free (FSAF) module [19], which can be inserted into a one-
stage detector with a feature pyramid structure to enhance the decision feature layer to
which each input instance belongs to make full use of the performance of FPN, and this
method has a high mAP value and little additional computation. Zhou et al. proposed
CenterNet [20], which uses the object center point predicted by the heatmap instead of
the anchor mechanism to predict the object and uses a higher-resolution output feature
map. This network has strong scalability and simple model design, and thus achieves good
results in detection speed and accuracy. Tan et al. proposed EfficientDet [21], which is a
weighted bi-directional feature pyramid network (BiFPN) and a composite scale expansion
method to refresh the mAP of the MS COCO dataset. In the above works, the detection
accuracy of the object detection algorithms was improved to varying degrees. However,
it is more important to make full use of the effective information of the input features to
improve the detection performance of the model, especially the detection accuracy of small
objects in traffic scenes while keeping the number of model parameters and the real-time
performance of the model basically unchanged.

2.2. Attention Mechanism

When facing the external environment, the human visual system can quickly iden-
tify useful information and ignore irrelevant information. This characteristic is gradually
being considered by computer vision researchers. Deep learning’s attention mechanism
first appeared as an imitation of the human visual attention mechanism [22]. Non-local
neural networks were proposed by Wang et al. in one of the important works on attention
mechanisms in the field of computer vision [23]. Non-local operations calculate the re-
sponse at a position as a weighted sum of the features at all positions and establish remote
dependencies through self-attention, and they can also be used as general modules for
various tasks, which can lead to improvements in the model accuracy. The squeeze-and-
excitation network (SENet) [24] proposed by Hu et al. was the first attention mechanism
that focused on the channel level dependencies of the model, and could adaptively adjust
the characteristic response value of each channel. This network won the ImageNet 2017
classification competition and has been recognized as an important advancement in the
field. Woo et al. proposed the convolutional block attention module (CBAM) [25], which
contains two modules of channel attention and spatial attention so that the model has
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better performance and interpretability and pays more attention to foreground objects. The
selective kernel network (SKNet) was proposed by Li et al. [26], which utilizes a building
block called a selection kernel unit that allows each neuron to adaptively adjust the size of
the receptive field, depending on the scale of the input information. Experiments showed
that SKNet achieved better detection accuracy through its relatively low model complexity.

Roy et al. proposed spatial and channel squeeze-and-excitation (scSE) [27] for semantic
segmentation. They proposed three variants of the squeeze-and-excitation (SE) module,
channel squeeze-and-excitation (cSE), spatial squeeze-and-excitation (sSE), and scSE, as
improvements of the SE module. Experiments have shown that these modules can enhance
useful features and suppress useless ones. Combining the advantages of non-local neural
networks and SENet, Cao et al. proposed the global context network (GCNet) [28], which
uses a relatively small amount of calculations to optimize the global context modeling
capabilities. Huang et al. proposed the criss-cross network (CCNet) [29], which was also
based on Non-local Neural Networks. Its special feature is the novel criss-cross attention
module, which can obtain contextual information from remote dependencies in a more
effective way. The dual attention network (DANet) was proposed by Fu et al. [30], which
adds two attention modules to a dilated fully convolutional network to model semantic
dependencies in the spatial and the channel dimensions. This model achieved excellent
results on the semantic segmentation dataset, Cityscapes.

Most of the above-mentioned attention mechanisms use global channel attention
mechanisms, which are more suitable for the detection of large objects with a more global
distribution. However, the scale range of objects is very large in actual traffic scenes. If
only the contextual information is extracted from the global range, the detection effect of
the model is better for large objects with more distribution in the global range, but will be
weaker for small objects with more distribution in the local range. Therefore, a simplified
multi-scale channel attention block composed of local channel attention and global channel
attention is needed to adaptively extract contextual object information to improve the
detection effect of small objects.

2.3. Feature Fusion

In many object detection tasks, the fusion of features at multiple scales is an important
way to improve detection performance. Low-level object features have high resolution
and usually contain more location and detail information, but they lack semantic infor-
mation and have more noise. High-level features have richer semantic information after
the convolution operation, but their resolution is reduced, and the location and detail
information are lacking. Efficient integration of low-level and high-level features is key to
improving a model’s detection performance. Depending on the sequence of feature fusion
and prediction, feature fusion can be divided into early fusion and late fusion methods.
Early fusion fuses features of different layers first and then trains predictors on the fused
features, such as the addition operation in ResNet [31] and the concatenation operation in
U-Net [32]. Late fusion improves the detection performance by combining the detection
results of different layers, and can be mainly divided into two types. The first separately
predicts the features of multiple scales before fusion, and then the obtained prediction
results are processed comprehensively, such as in SSD [4], multi-scale CNN [33], etc. The
second approach uses the idea of feature pyramid networks for reference, and then predicts
after fusing the features, such as in YOLOv3 [3], feature fusion single shot multibox detector
(FSSD) [34], etc.

The feature fusion problem is currently a research hotspot in the field of object detec-
tion. Chaib et al. improved the effect of feature fusion using a discriminant correlation
analysis-based feature fusion strategy [35], which incurred only a small computational
cost. The FSSD was proposed by Li et al. [34], which includes a feature fusion module.
The module first fuses the features of different layers through concatenation operations
to obtain a larger-scale feature, and then a feature pyramid is constructed on this feature
map. This significantly improves the detection accuracy of the SSD model, with only a
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slight speed reduction. Lim et al. proposed the SSD with feature fusion and attention
(FA-SSD) [36], which includes a feature fusion module and an attention module. The
results showed that the network improved the accuracy of object detection, especially the
detection performance of small objects.

Pang et al. proposed Libra R-CNN [37], which integrates features from different
layers to obtain more balanced semantic feature information. Compared with [15] and [18],
the detection effect on the MS COCO dataset was significantly improved. Ghaisi et al.
proposed the neural architecture search feature pyramid network (NAS-FPN) [38], which
uses a neural architecture search algorithm to customize a feature pyramid network that
merges features across a range. This approach produced significant improvements in many
object detection networks. An adaptive spatial feature fusion (ASFF) strategy was proposed
by Liu et al. [39], which combines features of different layers by learning weight parameters.
Experimental results showed that this method was superior to concatenation and element-
wise methods. In addition to the feature fusion using deep learning technology, Gao et al.
analyzed the limitations of only using deep learning methods, and proposed a new fusion
logic that can effectively combine the advantages of known knowledge used by a traditional
method with the self-extracted features learned by a deep learning method [40]. A better
detection performance can be achieved by properly designing traditional and deep learning
detectors. However, the above methods of feature fusion are biased towards constructing
complex paths to combine the features of different network layers or groups. They are
all too complicated. Therefore, we propose an AFFB with a simple structure to improve
the integration of various object context features in traffic scenes using fewer parameters
and smaller models to ultimately improve the network’s object detection performance,
especially the detection accuracy of small objects.

3. Benchmark Model and Proposed Methods

In this section, we briefly introduce the benchmark model YOLOv5s, then elaborate
on the principle and structure of the proposed MS-CAB, and finally present the AFFB based
on MS-CAB.

3.1. The YOLOv5s Benchmark Model

The development of the YOLO series ushered in a change in object detection tech-
nology through the adoption of deep learning. At present, the YOLO series includes
YOLOv1 [1], YOLOv2 [2], YOLOv3 [3], YOLOv4 [41], and YOLOv5 [7]. The YOLOv5
model is the latest iteration of the model, and constitutes an improvement over YOLOv4.
The model is faster, more accurate, has fewer model parameters, and can be more easily
adapted to various devices embedded in vehicles. The YOLOv5 model refers to four
models of different sizes, namely, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, where
smaller models have fewer parameters, lower accuracy, and are faster. To better meet
the real-time requirements of object detection in traffic scenes, in this study, we chose the
YOLOv5s model as the benchmark model for improvement.

3.2. Multi-Scale Channel Attention Block

Based on the idea of combining local and global features in the convolutional neural
networks adopted in ParseNet [42] and multi-scale channel attention [43], we propose
MS-CAB, with the main difference being that we use 1× 1 convolution rather than kernels
of different sizes to control the channel attention scale. Similar to spatial attention, channel
attention also has a scale, and the variable that controls that scale is the size of the pooling.
Figure 1 shows a diagram of the MS-CAB structure, which is divided into two scales, the
local scale and the global scale, where context features are aggregated through both scales.
The branch that uses global average pooling is the global scale, while the other is the local
scale. This block gathers contextual information along the channel dimension of the feature
map, and can simultaneously focus on large objects that are more distributed in the global
range and small objects that are distributed more in the local range, which helps the model
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to detect and identify objects with extreme scale changes in traffic scenes. In the following,
we introduce the details of the implementation of the proposed MS-CAB.
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Figure 1. The MS-CAB structure. The global average pooling branch is the global channel attention,
while the other is the local channel attention.

Suppose that the output of a certain layer in the middle of the network is X and
X ∈ RC×H×W , where C is the channel number of the feature map, and H and W are the
height and width of the feature map, respectively. Then, X is used as the input of MS-CAB.
The global and local channel attention can be obtained by changing the pooling size, and
1× 1 convolution is used as the local channel context aggregator to extract the channel
interaction at each spatial location. The local channel context L(X) ∈ RC×H×W can be
expressed as

L(X) = BN(Conv2(Hs(BN(Conv1(X))))), (1)

where the convolution kernel parameters of Conv1 and Conv2 are C
r × C × 1 × 1 and

C× C
r × 1× 1, r is the channel reduction ratio, BN stands for batch normalization [44], and

Hs stands for the Hardswish activation function [45]. The local channel context L(X) has
the same shape as the input feature map X, and retains and highlights the richly detailed
information of the low-level features. It focuses more on the small object information
present in the local range.

The global channel context G(X) ∈ RC×1×1 can be expressed as

G(X) = BN(Conv2(Hs(BN(Conv1(Hs(g(X))))))), (2)

g(X) =
1

H ×W ∑ H
i=1∑ W

j=1X[:,i,j] (3)

where g(X) ∈ RC stands for global average pooling. Here, G(X) has the same number of
channels as the input feature map X and pays more attention to large object information
that is distributed more globally.

Combining the local channel context L(X) and the global channel context G(X), the
output Y ∈ RC×H×W of the MS-CAB can be expressed as follows:

Y = X⊗MSCAB(X) = X⊗ σ(L(X)⊕ G(X)) (4)

where MSCAB(X) ∈ RC×H×W represents the output weight of the MS-CAB, σ represents
the sigmoid function, ⊗ represents element-wise multiplication, and ⊕ represents the
addition of the broadcast mechanism.

The proposed MS-CAB was embedded in the four Concat operation branches of the
YOLOv5s model, and a new network model, MS-CAB_YOLOv5s, was obtained. The
network structure diagram is shown in Figure 2. In the diagram, “Input” refers to the
network input, and “Prediction” is the prediction result made by the network on the feature
map on three scales. “Upsample” represents an upsampling operation, “Concat” denotes a
concatenation operation, and “Conv” denotes a convolution operation. The composition



Sensors 2021, 21, 3031 7 of 16

of the “Focus” block is shown in Figure 3. It performs a slicing operation on the input
red/green/blue (RGB) image, ultimately integrating the width and height information
into the channel dimension. Its main function is to reduce floating point operations and
improve the running speed of the model. The CBL block is composed of a convolution layer,
batch normalization, and the Hardswish activation function, and its composition is shown
in Figure 4. The YOLOv5s model contains two cross stage partial (CSP) structures [46], of
which the CSP1 structure is used in the backbone of the network, while the CSP2 structure
is used in the neck of the network. The composition of CSP1_X is shown in Figure 5.
Here, CSP1_X indicates that it contains X residual units; for example, CSP1_1 contains one
residual unit, and CSP1_3 contains three residual units. The composition of each residual
unit is shown in Figure 6. The composition of CSP2_X is shown in Figure 7. Here, CSP2_X
means that, in addition to the first CBL component, there are 2× X CBL components in the
middle. The size of the convolution kernel in the first CBL component is 1× 1, while in the
second CBL component it is 3× 3. For example, in addition to the first CBL component in
CSP2_1, there are 2× 1 = 2 CBL components in the middle, and the convolution kernel
sizes in the two CBL components are 1× 1 and 3× 3, respectively. The SPP block uses the
maximum pooling method to perform “Concat” operations on feature maps of different
scales, and its composition is shown in Figure 8.
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3.3. Attention Feature Fusion Block

In combination with the multi-scale channel attention block proposed above, we
propose AFFB, which can better capture contextual information from different network
layers by fusing semantic and scale-inconsistent features and thus achieve better object
detection. Figure 9 is a structure diagram of the AFFB. Due to the presence of the multi-scale
channel attention block, the output Z ∈ RC×H×W of the AFFB can be expressed as

Z = MSCAB(X1 ⊕ X2)⊗ X1 + (1−MSCAB(X1 ⊕ X2))⊗ X2 (5)

where X1 ∈ RC×H×W and X2 ∈ RC×H×W are two input feature maps, with X1 being a
low-level semantic feature map and X2 a high-level semantic feature map. The values of
the fusion weights MSCAB(X1⊕X2) and 1−MSCAB(X1⊕X2) are both between 0 and 1,
which corresponds to a weighted averaging operation between X1 and X2.
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In YOLOv5s, linear feature fusion is performed through concatenation, which only
yields a fixed linear aggregation of feature maps, and is not adaptable to the object to be
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detected. The AFFB has fewer parameters, is non-linear, and can capture the contextual
information from different network layers better through the fusion of features that are
inconsistent semantically and in terms of scale. The four “Concat” operations are then
replaced in the YOLOv5s model with the proposed AFFB to obtain a new network model
AFFB_YOLOv5s, as shown in Figure 10.
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4. Experiments and Result Analysis
4.1. Datasets and Experimental Settings
4.1.1. Datasets

In this paper, the object detection task is oriented towards traffic scenes, and thus
the experimental part mainly used the BDD100K dataset [47], while the PASCAL VOC
dataset [48] was used as an auxiliary validation dataset.

The BDD100K dataset is the largest open autonomous driving dataset, and includes
ten categories of traffic scene objects: car, bus, person, bike, truck, motor, train, rider, traffic
sign, and traffic light. It has a very rich diversity of geography, environments, and weather
to enable models to recognize a variety of complex traffic scenes and make the models’
generalization ability stronger at the same time. The dataset has a total of 100,000 images
with a resolution of 1280 × 720 pixels. The official usage guidelines recommend splitting
the dataset into a training set, a validation set, and a test set at a 7:1:2 ratio. As the labels
of the test set are not disclosed, we used the validation set to test the model and evaluate
the model’s detection performance of the model. The final training set consisted of 70,000
images, and the test set consisted of 10,000 images. (The BDD100K dataset is available at
https://bdd-data.berkeley.edu, accessed on 25 November 2020).

The PASCAL VOC dataset is a commonly used object detection dataset, and it includes
two parts, VOC2007 and VOC2012, with a total of 20 categories: airplane, bicycle, bird,
boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike, person, potted
plant, sheep, sofa, train, and TV monitor. In this paper, 22,136 images of the VOC2007
and VOC2012 training and validation sets were used for model training. The test set of
VOC2007 has a total of 4952 images and was used to evaluate the detection performance of
the model. (The PASCAL VOC dataset is available at http://host.robots.ox.ac.uk/pascal/
VOC/, accessed on 30 November 2020).

https://bdd-data.berkeley.edu
https://bdd-data.berkeley.edu
http://host.robots.ox.ac.uk/pascal/VOC/
http://host.robots.ox.ac.uk/pascal/VOC/
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4.1.2. Experimental Settings

(a) Network loss function

The loss function of the network designed in this paper is divided into three parts:
bounding box regression loss Lbox, confidence loss Lobj, and classification loss Lcls. The
total loss of the network is the sum of the three functions. The bounding box regression loss
uses the complete intersection over union (CIoU) loss [49], and both the confidence loss and
classification loss use the binary cross-entropy (BCE) with logits loss (BCEWithLogitsLoss).
The CIoU loss considers three important geometric factors of the bounding box regression
loss: the overlap area between the prediction and the ground truth boxes; the center
point distance of the prediction and the ground truth boxes; and the aspect ratio between
the prediction and the ground truth boxes, which improves the speed and accuracy of
bounding box regression. The bounding box regression loss Lbox can be expressed as
follows:

Lbox = 1− CIoU = 1− (IoU − ρ2

c2 − αv) (6)

where intersection-over-union (IoU) is the ratio of the intersection area to the union area
of the prediction box and the ground truth box, ρ is the Euclidean distance between the
center points of the prediction and the ground truth boxes, and c is the diagonal length
of the smallest enclosing box covering both the prediction box and the ground truth box.
Besides, α is the trade-off parameter, which is defined as

α =
v

(1− IoU) + v
(7)

here, v is a parameter that measures the consistency of the aspect ratio between the ground
truth box and the prediction box, and it is expressed as follows:

v =
4

π2 (arctan
wgt

hgt − arctan
wp

hp )
2

(8)

where wgt and hgt are the width and height of the ground truth box, while wp and hp are
the corresponding values of the prediction box.

The BCEWithLogitsLoss mainly measures the binary cross-entropy between the target
value and the output value of the model. It can be expressed as

Ln = −wn[ynlogσ(xn) + (1− yn)log(1− σ(xn))] (9)

where wn is the loss weight of each category, yn is the target value, xn is the output value
of the model, and σ is the sigmoid function.

(b) Training parameter settings

In this study, we used the stochastic gradient descent algorithm [50] to optimize
the loss function. The momentum was set to 0.937, the weight decay coefficient was set
to 0.0005, and the initial learning rate was set to 0.01. We used warmup training [51],
cosine annealing [52], gradient accumulation, exponential moving average, and other
optimization strategies. In terms of data augmentation, in addition to the most advanced
mosaic data augmentation method [41], common data augmentation methods, such as
random hue, saturation, value transformation, image horizontal and vertical translation,
image scaling, and image left and right flip, were also used. The batch size was set to 32, the
epochs were set to 300, and the resolution size of the input image was set to 640× 640. The
channel reduction ratio r was set to 4. The k-means clustering algorithm was used to obtain
new anchor boxes. Other parameter settings were consistent with the default settings of
YOLOv5. The computer configuration used in the experiment is shown in Table 1.
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Table 1. Computer configuration.

Project Content

CPU Intel Xeon E5-2620 v4
RAM 32GB
GPU NVIDIA TITAN Xp
Operating System Ubuntu 18.04.5 LTS
Cuda Cuda 10.1 with Cudnn 7.5.1
Data Processing Python 3.8, OpenCV
Deep Learning Framework Pytorch 1.7.0

(c) Testing parameter settings

The batch size was set to 1, the resolution size of the input image was set to 640× 640,
the confidence threshold for the filtering prediction box was set to 0.001, and the IoU
threshold for non-maximum suppression was set to 0.6. Other parameter settings were
consistent with the default YOLOv5 settings.

4.2. Quantitative Result Analysis

The three models, YOLOv5s, MS-CAB_YOLOv5s, and AFFB_YOLOv5s, were trained
on the BDD100K dataset to test the effectiveness of the proposed MS-CAB and AFFB blocks.
Five indicators commonly used in the field of object detection, namely, precision, recall,
mAP, frames per second (FPS), and the number of parameters, were used to quantitatively
evaluate the accuracy of the model [7]. To quantitatively study the impact of the proposed
improvements on the detection of small objects, we examined small objects of the size
defined by the COCO dataset [53], that is, those with a pixel area smaller than 32× 32 pixels.
Moreover, to verify the generalization ability of the model on other datasets, we used the
same parameter settings as above on the public dataset PASCAL VOC for network training,
and then tested to complete the auxiliary validation.

The accuracy evaluation results of the three models on the BDD100K validation
set are shown in Table 2. It is evident that under the premise of ensuring the real-time
requirements of a vehicle’s environment perception, compared with the original YOLOv5s
model, the precision, recall, and mAP of the MS-CAB_YOLOv5s and AFFB_YOLOv5s
models proposed in this paper were improved to varying degrees. Among them, the mAP
of the AFFB_YOLOv5s model increased by 0.9 percentage points, which is a significant
improvement given the complexity of the BDD100K traffic scene dataset. The 63 FPS
achieved by both improved networks can fully meet the real-time requirements of vehicles’
environment perception systems. Furthermore, the parameters of the model were reduced
to a certain extent. The size of the model is only 14.7 MB, which makes it quite suitable for
embedded vehicle platforms.

Table 2. Model performance comparison on the BDD100K validation set.

Model Precision (%) Recall (%) mAP (%) FPS Parameters (M)

YOLOv5s 32.5 57.7 50.6 77 7.28
MS-CAB_YOLOv5s 32.5 58.1 51.0 63 7.45

AFFB_YOLOv5s 33.0 58.3 51.5 63 7.20

The BDD100K dataset is a traffic scene dataset, and thus contains many cars and
traffic signs at a distance with a pixel area less than 32 × 32 pixels. These objects are
defined as small objects that need to be detected. Table 3 shows the comparison results
of the three models for small object detection performance. Compared with the original
YOLOv5s model, the MS-CAB_YOLOv5s and AFFB_YOLOv5s models proposed in this
paper had a significantly improved precision of small object detection, while the recall
decreased slightly, and the mAP, respectively, improved by 1.6 and 3.5 percentage points.
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This shows that the MS-CAB and AFFB significantly improved the model’s detection effect
on small objects.

Table 3. Comparison of models on small object detection performance.

Model Precision (%) Recall (%) mAP (%)

YOLOv5s 11.7 51.9 21.5
MS-CAB_YOLOv5s 16.4 49.8 23.1

AFFB_YOLOv5s 23.1 48.6 25.0

To verify the generalization ability of the model, the three models were trained and
tested on the PASCAL VOC dataset. The performance comparison for each model is
shown in Table 4. Under the premise of ensuring real-time performance, the two models,
MS-CAB_YOLOv5s and AFFB_YOLOv5s, had improved precision, recall, and mAP. This
again verifies the effectiveness of the MS-CAB and AFFB to improve the performance of
object detection. At the same time, it shows that our improved model can adapt to different
datasets or scenes and has good generalization ability.

Table 4. Performance comparison of models on PASCAL VOC test set.

Model Precision (%) Recall (%) mAP (%) FPS Parameters (M)

YOLOv5s 60.3 82.3 79.4 76 7.31
MS-CAB_YOLOv5s 62.0 82.7 80.2 61 7.48

AFFB_YOLOv5s 63.4 82.9 80.8 61 7.23

4.3. Comparative Analysis of Detection Results

Figure 11 shows a visual comparison of the detection results of the YOLOv5s model,
the MS-CAB_YOLOv5s model, and the AFFB_YOLOv5s model. To see the differences
between the three models more easily, the yellow rectangles in the detection result of
column (a) in Figure 11 indicate the objects that were not detected by YOLOv5s. Similarly,
the yellow rectangles in the detection result of column (b) indicate the objects that were not
detected by MS-CAB_YOLOv5s. The AFFB_YOLOv5s model could detect small objects
with small pixel areas, such as cars, people, and traffic signs, at long distances that were
not detected by the YOLOv5s model. At the same time, the detection effect was also
excellent under dark night conditions. Moreover, compared with the benchmark model
YOLOv5s, the detection effect of the MS-CAB_YOLOv5s model was better. It could detect
some objects that the YOLOv5s model did not detect, but its effect was not as good as that
of AFFB_YOLOv5s. For example, in column (b) of Figure 11, the person on the left side
of the figure on the second row and the traffic sign on the right side of the figure on the
third row were not detected by the MS-CAB_YOLOv5s model, but they were all accurately
detected by the AFFB_YOLOv5s model. Based on these detection results in Figure 11,
both the MS-CAB_YOLOv5s model and the AFFB_YOLOv5s model could improve the
effect of object detection in traffic scenes, and the AFFB_YOLOv5s model had the best
detection effect, especially for small objects that are away from the vehicle, which is of
great significance for improving the stability and efficiency of automatic driving systems
and preventing traffic accidents.
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5. Conclusions and Future Work

The high accuracy and fast real-time performance of object detection algorithms are
very important for the safety and real-time control of autonomous vehicles. In this paper,
we presented a small object detection method for traffic scenes based on attention feature
fusion for autonomous driving systems as an improvement to the YOLOv5s architecture.
To aggregate the effective information at the local and global scales, MS-CAB simultane-
ously focuses on small objects that are more distributed within a local range and large
objects that are more distributed on the global range. Using AFFB to fuse contextual
information from different network layers, we obtain a model with fewer parameters and
higher accuracy. Under the condition of meeting the real-time requirements of vehicles’
environment perception systems, compared with the benchmark model YOLOv5s, the
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model proposed in this paper increased the mAP of all objects on the validation set of the
traffic scene dataset BDD100K by 0.9 percentage points. Specifically, small objects’ mAP
was increased by 3.5%. Therefore, the model achieves a better balance between object
detection accuracy and speed in traffic scenes, and can effectively improve the performance
of vision-based object detection systems for autonomous vehicles.

Since our proposed method is essentially based on deep learning, there are some
general limitations. First, the interpretability of deep learning is poor. It learns the implicit
relationship between input and output features, but not the causal relationship. Secondly,
the neural network has many parameters, and network training requires a large amount of
time and relatively large computing power. Therefore, the deep learning method requires
stronger computer hardware equipment. Finally, the accuracy of the model based on the
deep learning method greatly relies on the collected data, and the accuracy of the dataset
label directly determines the accuracy of the model detection. A traditional method based
on manual feature extraction is a beneficial supplement to the deep learning method. In
future research, we will try to combine the two methods to further improve object detection
performance. We plan to deploy the model proposed in this paper to embedded vehicle
devices to develop more convenient portable applications. Moreover, we will explore the
extent to which the proposed blocks improve the performance of larger YOLOv5 models.
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