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Abstract: This paper introduces an automatic non-contact monitoring method based on the syn-
chronous evaluation of a 3D time-of-flight (ToF) camera and a microwave interferometric radar sensor
for measuring the respiratory rate of neonates. The current monitoring on the Neonatal Intensive
Care Unit (NICU) has several issues which can cause pressure marks, skin irritations and eczema. To
minimize these risks, a non-contact system made up of a 3D time-of-flight camera and a microwave
interferometric radar sensor is presented. The 3D time-of-flight camera delivers 3D point clouds
which can be used to calculate the change in distance of the moving chest and from it the respiratory
rate. The disadvantage of the ToF camera is that the heartbeat cannot be determined. The microwave
interferometric radar sensor determines the change in displacement caused by the respiration and
is even capable of measuring the small superimposed movements due to the heartbeat. The radar
sensor is very sensitive towards movement artifacts due to, e.g., the baby moving its arms. To allow
a robust vital parameter detection the data of both sensors was evaluated synchronously. In this
publication, we focus on the first step: determining the respiratory rate. After all processing steps,
the respiratory rate determined by the radar sensor was compared to the value received from the
3D time-of-flight camera. The method was validated against our gold standard: a self-developed
neonatal simulation system which can simulate different breathing patterns. In this paper, we show
that we are the first to determine the respiratory rate by evaluating the data of an interferometric
microwave radar sensor and a ToF camera synchronously. Our system delivers very precise breaths
per minute (BPM) values within the norm range of 20–60 BPM with a maximum difference of 3 BPM
(for the ToF camera itself at 30 BPM in normal mode). Especially in lower respiratory rate regions,
i.e., 5 and 10 BPM, the synchronous evaluation is required to compensate the drawbacks of the ToF
camera. In the norm range, the ToF camera performs slightly better than the radar sensor.

Keywords: non-contact monitoring; neonates; synchronous evaluation; respiratory rate

1. Introduction
1.1. Current Monitoring on the NICU

Preterm neonates on the Neonatal Intensive Care Unit (NICU) require continuous mon-
itoring of their vital parameters such as heart and respiratory rate and the core temperature
in order to allow an accurate assessment of their health status. When monitoring the respi-
ratory rate, measurements are taken via electrocardiogram (ECG) electrodes (impedance
pneumography), pulse oximeter, transcapnodes or even the ventilator itself. All of these

Sensors 2021, 21, 2959. https://doi.org/10.3390/s21092959 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2702-1077
https://orcid.org/0000-0002-0507-6923
https://orcid.org/0000-0002-9071-5661
https://doi.org/10.3390/s21092959
https://doi.org/10.3390/s21092959
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21092959
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21092959?type=check_update&version=1


Sensors 2021, 21, 2959 2 of 26

methods involve direct contact with the baby’s skin and are cable-based. As preterm
neonates are very underdeveloped and sensitive, those measurements can lead to risks
such as pressure marks, eczema and skin irritations. Furthermore, the measurements can
be imprecise if the baby sweats. The cable connection makes the handling of the baby more
difficult, i.e., when weighing, changing the diapers and during cleaning. To increase the
comfort of the baby, minimize the current risks and make the handling of the baby easier, a
non-contact respiratory monitoring approach is developed.

1.2. State of the Art

Different approaches for monitoring the respiratory rate without contact using 2D
imaging methods, optical depth measurements and radar are mentioned in the literature
and are introduced.

1.2.1. 2D Imaging Methods

There are several non-contact monitoring methods based on visual detection which
have been tested on babies, such as thermal imaging [1–5] and Red Green Blue (RGB)
cameras [6–9]. The main drawback of these methods is that the face needs to be visible and
that RGB imaging is not independent of lighting conditions.

1.2.2. Optical Depth Measurements

Optical depth measurements such as Red, Green, Blue-Depth (RGB-D) [10–14] and
structured light plethysmography [15–17] have only been tested on adults and children
older than two years. There is one publication by Hesse et al. which uses an RGB-D camera
to track the body shape of moving infants [18]. The aim is to detect neurodevelopmental
disorders such as cerebral palsy. This method could possibly be used for the respiratory
rate detection if adapted.

Structured light and time-of-flight (ToF) cameras can be called 3D-cameras as they
deliver 3D point clouds. The difference lies within the measurement principles. The struc-
tured light camera projects an infrared light pattern. The reflection is measured by the
inbuilt infrared camera from a different perspective. The measured distortion can be used
to calculate the depth points. A ToF camera sends out modulated light signals [19]. If an
object lies in front of it, there will be a phase difference within the reflected signal which
allows the calculation of the distance to that object. Both principles have the advantage that
they are light-independent and do not require markers or the face to be visible as would be
necessary for an RGB or thermal camera. Nonetheless, most of the proposed approaches
using structured light [12,20] or ToF [21,22] have only been tested on adults. There are two
approaches which use structured light cameras that have already been tested on babies.
The first method requires two cameras and calculates the tidal volume [23,24]. In the next
step, the respiratory rate is determined. Calculating the tidal volume is a complex approach
and is not necessary if only the respiratory rate needs to be detected. For this, one camera
would be enough. The other approach is only used with open incubators and requires the
manual selection of measurement points to be used [25]. This means that the thorax is not
automatically detected. This approach has only been tested on preterm neonates and is
probably specialized only on the respiratory frequency range of neonates. Gleichauf et al.
developed a non-contact respiratory monitoring approach based on structured light which
is completely automatic and was tested and verified with a neonatal simulator [26]. Thus
far, there is no approach for preterm neonates using a ToF camera.

It should be possible to carry out further developments with one of the optical depth
measurements to allow an automated respiratory rate detection for neonates. Nonetheless,
we are looking for a method which is also capable of detecting the heartbeat for an extended
vital parameter monitoring system in the future.
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1.2.3. Radar

Another non-contact measurement method to detect the respiratory rate is radar.
There are different types of radar signals: Continuous Wave (CW), Frequency Modulated
Continuous Wave (FMCW) and Ultra-Wideband (UWB) [27]. CW continuously sends a
high-frequency signal. FMCW is similar in the way that the signal is sent continuously, but
its frequency is modulated periodically within a predefined frequency range. This allows
the detection of distances. UWB sends short radar signal pulses or broadband sweep and
receives the reflected signal in the interim. A special variant of CW radar sensors is the
microwave interferometric radar sensor.

There are several approaches for measuring the respiratory rate which have been tested
with toddlers and neonates using UWB radar. Kim et al. used an Impulse-Radio Ultra-
Wideband (IR-UWB) radar device with a center frequency of 7.29 GHz and a bandwidth of
1.5 GHz for monitoring the respiration of six neonates [28]. Schleicher et al. tested their
method based on IR-UWB with a frequency band between 3.1 and 10.6 GHz with male
adults and one seven-week-old baby and showed that it is possible to record the breathing
cycle [29]. In a patent by Tupin, an UWB monitor for neonates to detect respiratory and
cardiopulmonary distress is presented [30]. The disadvantage of this method is that
impedance converter pads have to be used to prevent the loss of UWB energy. The baby
needs to be placed on top of these pads.

Several tests were made using FMCW radar for the vital sign detection with adults.
Wang et al. used a FMCW radar with a center frequency of 80 GHz and bandwidth of
10 GHz with sawtooth modulation (which only allows measurement of distances) [31].
For the detection of the respiratory rate, the best results were achieved when the sensor
was placed on the left side of the patient’s body. In the publication by Mathews et al.,
another non-contact monitoring system is presented which is based on a 35 GHz FMCW
radar sensor [32]. The suggested areas of application include the military, the NICU and
traumatic injuries and burn injuries, but it has not yet been tested on babies. The difficulty
is the removal of artifacts caused by patient movements. One disadvantage using FMCW
radar is that the patient has to stay still. This cannot be ensured for preterm neonates even
though they generally do not move too much. Marnach et al. used a 24 GHz FMCW radar
sensor to take measurements of a reflector placed on top of a speaker acting as simulator of
a baby’s respiration [33,34].

Unmodulated CW radar can be used for the detection of vital signs, too. Li et al.
developed a Doppler radar sensor (unmodulated, CW) with a frequency of 5.8 GHz which
can also be used for monitoring babies and infants at home for preventing sudden infant
death syndrome [35]. The application for preterm neonates is not explicitly mentioned.
This system is used within an infant monitoring prototype. The radar sensor is positioned
at the side of the baby’s bed. The remaining problem with this system is that, if the child
moves and the detected movement due to respiration and heartbeat is superimposed by
motion artifacts, it is difficult to receive correct and precise vital parameters. Thus, there
is potential for improvement and further developments. In a next step, their system was
verified using an infant simulator (high fidelity infant simulator METI, 3–6 months) [36].
In this case, the radar sensor was placed underneath the baby. Unmodulated CW radar is
sensitive to considerable background noise caused by walking or talking subjects near the
measurement environment. These movements can superimpose the vital signs and make
the detection harder.

In a comparative study on UWB and CW radar for respiratory monitoring, it was
shown that a CW radar module developed by the Sapienza—Università di Roma could
detect a movement of 1 mm from a distance of 2 m. The used FMCW radar (IVS-148 of
company InnoSent) could detect movements of 2 mm from a distance of 3 m. In comparison,
the UWB module NVA-R640, which is used by the university of Oslo, could only detect
a movement of 10 mm from a distance of 3 m [37]. This shows that CW radar can detect
smaller movements from greater distances than UWB radar.
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A so-called six-port-based CW radar sensor is even capable of measuring movement
within the micrometer range [38]. The six ports include two input and four output ports
and have the characteristic that two input signals are superimposed under four relative
and static phase shifts which results in four sum signals as output [39]. From these phase
shifts, the relative distance can be calculated.

Another reason for using CW radar based sensors for a monitoring system is that it
allows the use of the Industrial, Scientific and Medical (ISM) frequency band which has
been explicitly approved for scientific and medical applications. Working within the ISM
band, a low-radiation power should be used. By law, a maximum radiation power of
100 mW is allowed.

In comparison, CW is easier to apply and allows an easier circuit technology than
UWB but can lead to problems with multiple reflections when other moving objects are
present in front of or behind the patient. This has to be removed by filtering and signal
processing. Another advantage of a microwave interferometric radar sensor is that distance
changes can be measured with micrometer precision by phase evaluation. Due to these
advantages, a CW radar sensor based on microwave interferometric radar should be used.
Similar radar sensors (six ports) have already been used for monitoring vital signs of adults,
e.g., within the automotive sector [40]. They have also been tested within the clinical field
and delivered good results [41].

1.2.4. Laser Doppler Vibrometer

Marchionni et al. used a laser Doppler vibrometer to detect respiratory events of
babies such as apnoea, irregular respiration and hiccups [42].

1.2.5. Combination of Time-of-Flight and Radar

Nguyen et al. combined a Kinect2 (ToF) and a 2.4 GHz CW radar sensor based on
the WARP kit v3 [43]. This WikiSpiro system was applied during sleep to determine the
breathing volume of adults. The ToF camera did not calculate the breathing volume as it
was only used to track the patient’s position, and these data were used to make sure that
the radar sensor remained orthogonal to the patient’s thorax.

To sum up, we found that ToF cameras and microwave interferometric radar sensors
based on CW show many advantages. ToF cameras do not require markers and are
independent of lighting conditions. Microwave interferometric radar sensors can use the
ISM frequency band and are also capable of measuring the heartbeat [44,45], which we
want to do in the future. The radar sensor has the drawback that it is sensitive to motion
artifacts due to, e.g., the baby moving its arms. If this movement has a similar frequency
to the frequency of the thorax movement resulting from respiration, it can lead to issues.
There are approaches for example by Tang et al. using a self- and mutually injection-locked
(SMIL) radar system which allows random body movement cancellation, but this was only
tested on adults [46]. Using SMIL radar requires a completely different hardware setup.
As ToF cameras deliver 3D point clouds which allow tracking of the baby’s movement, the
combination of a microwave interferometric radar sensor and a ToF camera could help to
eliminate those motion artifacts. Furthermore, there is no system so far which combines
and evaluates the data of a ToF camera and a microwave interferometric radar sensor
synchronously for determining the respiratory rate and which has been tested on neonates.

1.2.6. Neonatal Simulation System

In the following, existing neonatal simulation systems are presented, which can be
used as a test system for non-contact respiratory rate monitoring.

The preterm infant simulator “Paul” was developed by SIMCharacters and is accord-
ing to the manufacturer the most detailed simulation of a preterm neonate on the market at
this point in time [47]. The simulator has the size of a 27 + 3-gestational-week-old preterm
baby and is used for training doctors, nurses and midwives. Physiological parameters
such as weight, size and inner organs are close to reality. One feature is the simulation
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of the respiration. This includes normal respiration between 0 and 100 BPM as well as
pathological breathing such as caused by a pneumothorax, etc. The respiratory system of
the simulator is made up of two test lungs which are connected to a ventilation system
and can be parameterized. Furthermore, the coronary system can be parameterized and
pathological conditions can be simulated. The pulse can only be measured using electrodes.
This makes it impossible for a radar sensor to detect the heartbeat.

Similarly, “Premature Anne” by Leardal is a simulator system of the size of a 25-week-
old premature neonate [48]. This simulator is also used for training. Unlike Simulator
“Paul”, the respiration of the baby is not simulated. Only if mechanical ventilation takes
place will the chest rise and fall.

The “3–6 months old infant simulator” by METI was used for testing a 5.8 GHz CW
Doppler radar sensor [36]. The respiratory rate is simulated so the rise of the chest can
be seen [49]. As the size and age of this simulator does not correspond to a newborn or
preterm baby, this simulator does not fulfill our requirements.

The Norwegian company Novelda presents another approach with its “XeThru
Bot” [50]. The robot is made up of LEGO® MINDSTORMS® components and is used for
simulating the thorax movement of a baby. The motor moves a metal ball and is controlled
by a LEGO® MINDSTORMS® microcontroller. For imitating the chest of the baby, a metal
ball with a diameter of 2 cm is used. The ball is moved by a distance of 4 mm and its
movement is evaluated by software. The “XeThru Bot” is capable of producing precise
and reproducible movements. As in our case we needed a simulation system which can
simulate the heartbeat as well as the respiration and both signals simultaneously, this
concept is not sufficient for our requirements.

Marnach et al. and Schmiech et al. presented two simulator dummies used within the
research project SINOPE-NEO [51]. As they were using radar sensors for the detection of
vital signs, a speaker with a reflector on top was used with a fixed frequency of 50 BPM
for the simulation of the respiratory rate [33]. The reflector allows a good radar reflection
signal but does not represent the actual skin characteristics of a baby in terms of absorption.
It is mentioned that a superimposition of two sine signals is possible, but the usage and
application is not presented [34]. Additionally, a pneumatic doll with a balloon inside was
used for first tests [33].

Within our research project NeoWatch (Funding reference: 13FH546IX6), we worked
on a concept which simulates the movement of the thorax and the heartbeat using a
hydraulic pump and a vibrating motor. A plastic container was covered by an elastic
membrane and an air pump was connected. The membrane expands and contracts due to
air being pumped into the container. This simulates the chest movement. On the membrane,
a vibrating motor (piezo element) was attached to simulate the heartbeat. However, this
concept was also not applicable as the vital parameters are not precise enough and could
not be adjusted adequately.

Before testing on real babies, we needed to have a stable and robust sensor system for
monitoring the respiratory rate. The functionality of the sensor system has to be verified by
a neonatal simulator which is capable of simulating the respiration with different breathing
patterns, the heartbeat and both signals at the same time. As the above-mentioned neonatal
simulation systems do not fulfill our requirements or are too expensive, we decided to
develop our own simulator. The development of our simulator is described in Section 2.

2. Materials and Methods

We now describe all components which are part of our ToF-radar system. First, the
concept is presented, and then the hardware and software are described in
more detail.

2.1. Concept and Theoretical Approach

In this section, the concept of our measurement system for non-contact respiratory
monitoring is proposed. Our system is made up of a ToF camera, a microwave interferomet-
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ric radar sensor and a neonatal simulator as gold standard. The measurement principles
of a 3D time-of-flight camera and a microwave interferometric radar sensor are described.
The theoretical concept of our neonatal simulator is presented.

2.1.1. 3D Time-of-Flight Camera

There are two principles which can be used within time-of-flight (ToF) cameras: the
impulse time-of-flight method and the phase difference method. The impulse time-of-flight
principle calculates the distance d to the object from the time t of the impulse emitted
until received:

d =
t · c
2

(1)

with c as the speed of light.
The phase difference method is based on the phase shift caused by the reflected

modulated signal. The distance to the object can be calculated using the phase shift φ and
the wavelength λ of the modulated signal:

d =
φ

2 · π ·
λ

2
(2)

The principle used in our ToF camera is the phase difference method [52]. The
modulated infrared light reflection is detected by the 3D imager. The 3D imager then
measures the phase shift for calculating the distance to the target. The data result in
a 3D point cloud. ToF point clouds are very sensitive to noise and can produce errors
and artifacts caused by the characteristics of the camera or the surrounding area. Those
errors can be grouped into systematic and non-systematic errors [53]. Non-systematic
errors can be photocharge conversion noise, quantization noise or electronic shot noise [54].
Furthermore, multiple way reflection, i.e., at edges and light scattering, which can occur if
a light object is positioned in front of a dark object, can lead to errors. Systematic errors
such as circular distance errors, fixed pattern noise and amplitude related errors due to
inhomogeneous lighting can be removed by calibration [53]. This means that filtering is
needed to minimize the non-systematic errors and allow further point cloud processing.
Typical filters used are the Median filter for noise reduction and a Statistical Outlier
Removal filter [55] to remove outliers caused by reflections.

2.1.2. Microwave Interferometric Radar Sensor

A special variant of CW radar sensors is the microwave interferometric radar sensor.
Only the phase shift between the reference and the reflected microwave has to be measured
and no Fourier transform is required. The relative distance can be calculated using the
following formula:

∆x =
∆σ

2 · π ·
λ

2
(3)

with ∆x as relative distance, ∆σ as relative phase shift and λ as wavelength.

2.1.3. Neonatal Simulator

As mentioned above, our neonatal simulator needs to fulfill the following require-
ments:

• Size of preterm neonate: thorax area with a diameter of 70–100 mm
• Mean stroke of 2.0 mm for the respiration and a mean stroke of 0.13 mm for

the heartbeat
• Frequencies between 0.083 and 4.17 Hz (5–250 BPM)
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• Variable stroke size
• Displacement due to respiration and heartbeat
• Superimposition of both signals needs to be possible
• Different respiratory patterns such as deep and normal breathing

We considered two possible approaches: a mechanical approach (oval disk) and an
electro-mechanical approach (speaker). Both concepts are presented in brief.

Mechanical Approach

The mechanical approach simulates the respiratory motion by moving a plate up and
down using the rotation of oval disks underneath. The size of the oval disks has to vary so
that different amplitudes can be simulated. The shaft is moved by a mounted motor on
the right. The system control is provided by an Arduino microcontroller. The oval disks
are fixed onto the shaft using clamping screws. The amplitude can be adjusted by moving
the disks. The frequency of the simulated sine can be adapted by changing the speed of
rotation. The coronary simulation is provided by a vibrating motor which is built into
the plate.

Electro-Mechanical Approach

This concept (see Figure 1) uses a speaker, an amplifier circuit, a computer and a laser
micrometer. The respiration and heartbeat signals are generated by a software program on
the computer. The idea is to use the superimposition of two sine waves—one for simulating
the respiration and a decaying sine for the heartbeat. In Figure 2, the heartbeat signal (blue)
and the respiratory signal superimposed by the heartbeat (red) can be seen.

It is assumed that the amplitude of the respiratory rate of a preterm neonate has a
stroke of around 2 mm and the displacement caused by the heartbeat is around 0.13 mm.
As there are no medical reference values available for the movement of the chest wall due
to the heartbeat for neonates, we made an approximation. It is known that the chest wall
displacement of adults ranges from 0.2–0.5 mm [56]. The dimensions of an adult heart
are of around 12 cm × 8 cm × 6 cm [57]. A newborn heart has the size of a walnut with
dimensions of around 3.5 cm × 2.5 cm × 2.5 cm [58]. As we are considering the chest wall
movement in the z-direction, we assume that for a newborn baby it is multiplied by a factor
of 2.5 cm

6 cm . This leads to an approximated chest wall movement of 0.0834–0.2085 mm with a
mean of 0.146 mm. We use a value of 0.13 mm as this is the smallest possible movement
the speaker can provide lying within the approximated chest wall displacement range.

Figure 1. Electro-mechanical approach for the neonatal simulator. Whenever the membrane of the speaker moves and
penetrates the light carpet the change can be detected.
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Figure 2. Heartbeat signal (blue) with a heart rate of 160 beats per minute and respiratory signal of 50 breaths per minute
superimposed by the heartbeat signal (red).

The superimposed signal can then be transferred from the AUX output of the computer
to the speaker. Due to the small output power of the computer the signal needs to be
amplified before being sent to the speaker. The speaker transforms the electrical signal into
the displacement of the speaker membrane.

This approach has the advantage that different respiratory and heart rates can be simu-
lated as well as the superimposition of the respiratory and heartbeat signal without having
to make any mechanical changes. Additionally, different breathing patterns can be easily
simulated. For these reasons, we decided to implement the electro-mechanical approach.

To allow our neonatal simulator to be used as gold standard, a precise reference
measurement has to be included. This reference sensor needs to be capable of detecting
small movements within the submillimeter range so that thorax movements due to the
heartbeat can also be detected. An excellent choice is a laser micrometer which uses
the principle of shadowing [59,60]. Whenever an object penetrates the light carpet, the
change can be detected. The laser micrometer is ideal for our test setup but cannot be
used as a measurement device within the incubator on the NICU as it has a laser class
1 M, which means that the laser becomes dangerous if optical instruments magnify the
laser. In addition, the baby would have to lie on the metal bar connecting the receiver
and transmitter of the laser micrometer, which would be uncomfortable. Furthermore,
erroneous measurements would occur if the baby sleeps on its side. For our neonatal
simulator under ideal conditions, these points are negligible.
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2.1.4. Synchronous Evaluation for the Detection of the Respiratory Rate

The idea is to combine and evaluate the calculated BPM values from the radar sensor
and the ToF camera synchronously and compare them with the gold standard. The distance
signals over time will be compared to see how precise each measurement is. We expect
that the combination of the radar sensor and the ToF camera increases the robustness of the
respiratory rate detection and that the system will be more stable as the drawbacks of each
sensor can be compensated for by the other.

2.2. Hardware Setup

Figure 3 shows the complete hardware setup made up of the radar sensor, the ToF
camera and the baby simulator. The baby simulator is placed between the emitter and
receiver of the laser micrometer. As can be seen, it is covered with paper in order to reduce
reflections within the ToF point cloud arising from any dark object in front of a light surface.
The radar sensor is positioned at a distance of 36.5 cm from the table and the ToF camera at
a distance of 23.5 cm. Those dimensions correspond to the distances within our incubator.
All different sensors are now described in detail.

Figure 3. Hardware setup for the ToF-radar system. The baby simulator can be seen in the middle,
and the laser micrometer serves as reference measurement.

2.2.1. 3D Time-of-Flight Camera

The 3D time-of-flight (ToF) camera used is the CamBoard pico flexx by the company
pmd (see Figure 4). The camera has a measurement range of 0.1–4 m, a field of view (FoV)
of 62° × 45° and a resolution of 224 × 171 (38 k) pixels. A frame rate of up to 45 fps (3D
frames) is given. The camera is connected via USB to an Ubuntu 16.04 computer with Robot
Operating System (ROS) Kinetic installed. The used driver is the Royale SDK provided
by the manufacturer as well as the ROS package pico_flexx_driver [61]. For our purpose, a
frame rate of 35 fps is set.
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Figure 4. Pico flexx 3D time-of-flight camera by pmd [62] (left) and radar sensor by InnoSenT (right).

2.2.2. Microwave Interferometric Radar Sensor

The microwave interferometric radar sensor used is the iSYS-4001 sensor by the
company InnoSenT (see Figure 4). This sensor was specifically manufactured for the
research project GUARDIAN [63], which uses radar for the monitoring of vital signs of
patients in the palliative care unit. The radar sensor has a frequency of 24.2 GHz and
delivers a power of 100 mW (20 dBm) which lies within the legally approved norm range.
The signals from the radar sensor are received and transferred using an Infineon XMC4500
microcontroller and digitized by an analog-to-digital converter (ADC), ADS1298 by Texas
Instruments, as it has a better performance than the inbuilt ADC of the Infineon XMC4500
microcontroller. This is done with a sampling rate of 2 kHz. The digitized values are then
sent via Ethernet.

For integrating the radar sensor into the measurement system, a new ROS node was
implemented. It provides all necessary functions for communication with the radar sensor
via User Datagram Protocol (UDP). The sensor has two main modes of operation, sampling
for an infinite and predetermined time. Before sampling, the ADC gain and the sensor’s
sampling rate can be set. After every 50 samples, the sensor sends a new UDP message,
containing four pairs of 24 Bit in-phase (I) and quadrature (Q) signals with 50 samples each.
These are then converted to the receiving machine’s specific 32-Bit integer representation.
For every UDP message, a new ROS message is then published containing the respective
50 samples.

2.2.3. Neonatal Simulator

The neonatal simulator is made up of several components (see Figure 5): a computer
with an Ubuntu 16.04 operating system with the software to control the simulator installed,
an amplifier circuit, a speaker and a laser micrometer. All components are now described
in detail.

The amplifier circuit used has an output power of 2 × 35 W and a maximum current
of 7.5 A [64]. A cooling body is used so that the produced heat will not interfere with the
amplifier circuit.

The speaker used is by Visaton and has a frequency range of 80–20,000 Hz [65]. This
low frequency range is important so that slow movements such as the respiration can be
simulated. The speaker has a diameter of 10.16 cm, which corresponds to the size of a
preterm neonate’s chest. On top of the speaker membrane, a construction made up of a
table tennis ball cut in half and a circular cardboard cutout is positioned. The cardboard is
covered with a disposable glove which has similar absorption characteristics to the skin
of a baby.

The neonatal simulator is controlled by a Python script running on the computer which
sends the respiratory and/or heartbeat signal. It can be either started from a graphical user
interface (GUI) or via the terminal. The heart and respiratory rate to be simulated can be
chosen from a drop down menu. Furthermore, deep respiration can be simulated which has
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a stroke of around twice the magnitude of the normal respiration mode. Additionally, the
heart and respiratory signals can be superimposed by adding the two sine signals.

Figure 5. Neonatal simulator made up of an amplifier circuit with cooling body, a speaker and the
laser micrometer.

The laser micrometer used for reference measurement is the optoCONTROL 2520 by
MICRO-EPSILON [66]. It has a measurement range of 46 mm and a maximum resolution
of 1 µm. The laser is of laser class 1M, which means that there is no harm to the user if the
laser beams are not magnified by any optical instrument. The receiver and transmitter of
the laser micrometer are connected via a CE2520-1 cable. Furthermore, a 24 V power supply
is needed. The optoCONTROL is connected to a Microsoft Windows 10 laptop via Ethernet.
MICRO-EPSILON provides the measurement tool ODC2520 DAQ tool, which was installed
on the laptop. The tool automatically searches for a laser micrometer and connects to it.
The measurement program needs to be configured via a web browser by simply entering
the IP. For measuring movement with the sensor, the mode “Edge light-dark” needs to be
selected. Once all settings are made, the ODC2520 tool can be started.

2.3. Software Algorithms

This section describes the developed signal processing software to determine the
respiratory rate using a ToF camera and a radar sensor. The time synchronization with the
gold standard reference is described.

2.3.1. Time-of-Flight Camera for the Detection of the Respiratory Rate

In previous work, we described a method which determines the respiratory rate of
neonates using a structured light camera [26]. As this camera was not suitable for the
distances present within an incubator, the pico flexx time-of-flight camera by pmd was
introduced which is capable of detecting objects up to 10 cm close. Both cameras deliver a
point cloud which can be processed in order to calculate the respiratory rate.

As the ToF camera has different properties and a higher sensitivity towards noise
and reflections, the original algorithm had to be extended by further filtering. Another
difference to the structured light setup is that the dimensions of our neonatal simulator are
smaller than the SimBaby by Laerdal which was used before.

The signal processing flow chart for the respiratory rate detection using the ToF camera
can be seen in Figure 6. The ToF camera delivers a 3D point cloud. First, a distance filter
is applied to remove all points which are further than 20 cm away from the camera as
these points would correspond to the table plane and are not of interest. In the next step,
a plane segmentation from the Point Cloud Library (PCL) based on the Least Median of
Squares (LMEDS) is applied [67,68]. The chosen model type is called SACMODEL_PLANE.
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The distance threshold is set to 2 cm and specifies that points with a maximal distance of
2 cm from each other belong to the same plane. To remove outliers caused by reflections
at the edges, a Statistical Outlier Removal filter [69] with a standard deviation multiplier
of α = 1 and k = 30 neighbors is used. For noise reduction, a Median filter [70] is applied
with a maximum_allowed_movement of 3 mm (distance that a depth pixel is allowed to move
when the filter is applied). In Figure 7, the effect of the Statistical Outlier Removal filter
and the Median filter can be seen.

Figure 6. Signal processing for the respiratory rate detection using the ToF camera.

Figure 7. Plane without filtering (left) and with applied Statistical Outlier Removal Filter (middle). It can be seen that
outliers at the edges are removed. When applying the Median filter, further smoothing of the point cloud occurs (right).

The distance point with the minimal distance to the camera is determined and a
subplane with all points lying 4 mm away (into the z-direction) from the minimal distance is
calculated. The centroid of this subplane is then plotted over time. This is the displacement
caused by the respiratory movement. Packages of 33 centroid values over time are collected.
For the first three packages, the number of breaths per minute (BPM) is determined using
a peak detection [71] (taken after the synchronization signal). The respiratory rate (RR) in
BPM is calculated by dividing the number of peaks by the time in seconds and multiplying
by 60 s:

RR =
breaths

time
· 60 (4)

The mean of the BPM values of the three packages is used to parameterize the Savitzky–
Golay filter based on Gram polynomials [72,73] in order to remove artifacts. Depending on
the first BPM value, the window size and polynomial order varies (see Table 1). The grade of
filtering depends on the frequency as there is more noise within the lower frequency region
which means that a greater measure of filtering is needed. The ideal filter parameters were
determined empirically. In Figure 8, a section of the unfiltered and the filtered respiration
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signal at 20 BPM in deep mode is displayed. From then on as before, a peak detection is used
for the filtered values to determine the number of peaks within one data package over time.
Once there are 18 packages (of 33 values each) with the Savitzky–Golay filter applied, a
moving average window is used which moves by one data package of 33 values.

Figure 8. Unfiltered (blue) and filtered (magenta) section of the respiratory signal at 20 BPM in deep mode. The Savitzky–
Golay filter has a window size 3 and polynomial order 2.

Table 1. Parameters for Savitzky–Golay filter.

BPM Window Size Polynomial Order

≤ 19 11 10

19–32 3 2

>32 None None

2.3.2. Radar Sensor for the Detection of the Respiratory Rate

In Figure 9, the signal processing for the respiratory rate detection using the radar
sensor is visualized. The radar sensor delivers an in-phase and quadrature (IQ) signal
which can be displayed in the following form:

I = r · cos(σ) = <(Z) (5)

Q = r · sin(σ) = =(Z) (6)

Using the in-phase and quadrature method for demodulation, the relative phase shift
∆σ of the two signals can be calculated:
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∆σ = arctan(
<(Z)
=(Z)

) = arctan(
I
Q
) (7)

In the first step, the relative distance is determined as follows:

∆x =
∆σ

2 · π ·
λ

2
(8)

with ∆x as relative distance, ∆σ as relative phase shift and λ as wavelength.

Figure 9. Signal processing for the respiratory rate detection using the radar sensor based on the Power Spectral Density
(PSD) calculated from FFT.

The distance values are filtered using a low-pass filter with a cut-off frequency of
7 Hz which is then down sampled to 20 Hz. Then, a Fast Fourier Transform (FFT) is used
to receive the frequency spectrum of the signal. The implementation is based on the
fftw3 library [74]. The FFT uses the last 5 s which corresponds to 100 values at 20 Hz.
Zero padding onto 2000 values takes place which means that the FFT is calculated with
2000 values with 1900 being set to zero. This allows a spectral resolution of 0.01 Hz.
The FFT algorithm delivers 1000 complex values of which the Power Spectral Density
(PSD) is calculated ((<)2 + (=)2). To receive the frequency with the highest peak, a
peak detection based on a quadratic Savitzky–Golay [72] with window size 1 is applied.
This delivers the first and second derivatives, which can be used to find out if a local
maximum has been reached. The highest peak within the spectrum equals the respiratory
frequency in Hz. All peaks below 10 % of the highest peak and below 0.08 Hz are ignored.
The last step is the conversion from Hz to BPM.

2.3.3. Time Synchronization of the Different Sensors

The ToF camera and the radar sensor are started by the same launch file and automati-
cally get ROS timestamps (Unix time). The camera and radar sensor, the neonatal simulator
and the ROS bagfile recording is started using a bash script. Furthermore, a synchroniza-
tion signal is included in the form of a sine of 180 BPM that lasts for 1 s at the beginning
before the respiratory simulation starts. This signal is needed for synchronization with
the laser micrometer. Between the synchronization signal and the actual measurement,
a short fixed time sleep phase ensures that the synchronization does not influence the
measurement data.

The measurements taken by the laser micrometer (time interval from start time and
distance in mm) sampled at a rate of 2500 can be saved as a csv-file. For synchronizing the
laser micrometer with the other sensors, the start time of the measurement is first converted
to Unix time using a bash script and all timestamps are calculated by adding the time
interval from the csv-file. The data are read by a ROS node which converts the csv-file to a
ROS topic that can then be published together with the other data.

When calculating the distance signal from the ToF camera and the radar sensor, each
distance point gets the correct bagfile timestamp set. It is then possible to display the
synchronized laser micrometer, ToF and radar distance signal within rqt_plot.

2.4. Measurement Series

We recorded radar, ToF camera and laser micrometer data with our neonatal simulator.
Different modes were used, deep and normal mode, with the stroke size in deep mode being
approximately twice as large as in normal mode. Recordings of 15 min were taken of the
following respiratory rates: 5, 10, 20, 30, 40, 45, 50, 55, 60 and 80 BPM. The norm range
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for respiratory rates in infants and neonates is between 20 and 60 BPM. The values above
and below were tested to make sure the system also works in those ranges. To make sure
that the reference laser micrometer delivers correct values, the number of peaks within a
minute were counted manually. This showed that the set respiratory rate of the simulator
corresponded accurately to the measured reference value. Furthermore the stroke size
at each respiratory frequency was measured with the laser micrometer. The results can
be found in Table 2. As can be seen, the stroke size is dependent on the set frequency.
This behavior occurs as the stroke is proportional to the set voltage.

Table 2. Measured strokes with the laser micrometer in deep and normal mode.

BPM Stroke in mm Deep Mode Stroke in mm Normal Mode

5 0.305 0.136

10 0.644 0.273

20 1.344 0.589

30 1.965 0.928

40 2.591 1.285

45 2.797 1.394

50 3.047 1.66

55 3.285 1.72

60 3.472 1.917

80 4.068 2.481

3. Results

In this section, the results from our ToF-radar system for detecting the respiratory rate
is presented. Firstly, our algorithms were tested with all recorded bagfiles, and the BPM
determined with the ToF camera approach and the radar approach were compared. In the
second step, the distance signals of all measurement types were evaluated synchronously.

3.1. BPM Comparison

A new respiratory rate value is required at least every 5 s (this is what current NICU
equipment delivers). The ideal is a new value every 3 s. The radar algorithm delivers
a new BPM value every 50 ms. The ToF camera algorithm calculates a new BPM value
around every 7.5 s. This value is low compared to our original approach with the structured
light camera where we received a new value every 3 s [26]. This can be explained by the
extension with the Median and Statistical Outlier Removal filters which take up more
processing time. Furthermore, we now calculate a new subplane, which we did not before.
As we are talking about the synchronous evaluation of radar and ToF in combination, we
receive new values at the required rate.

The box-whisker plots of the BPM values in deep mode in Figures 10 and 11 and in
normal mode in Figures 12 and 13 display the median, minimum, maximum, upper and
lower quartiles and outliers (marked as circles). The red crosses mark the position of the
reference BPM. We compare the values from the ToF and the radar algorithm.
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Figure 10. Box plot comparing the BPM values of the ToF and the radar algorithm for respiratory rates between 5 and
40 BPM in deep mode.

Figure 11. Box plot comparing the BPM values of the ToF and the radar algorithm for respiratory rates between 45 and
80 BPM in deep mode.
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Figure 12. Box plot comparing the BPM values of the ToF and the radar algorithm for respiratory rates between 5 and
40 BPM in normal mode.

Figure 13. Box plot comparing the BPM values of the ToF and the radar algorithm for respiratory rates between 45 and
80 BPM in normal mode.
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As can be seen for low respiratory rates (5 and 10 BPM), the ToF camera shows large
differences to the reference BPM. In deep mode, there is a difference of 27 and 31 BPM to the
set rates, respectively. In normal mode, there are differences of 11 and 21 BPM, respectively.
The result depends on the first BPM value which determines the parameterization of the
Savitzky–Golay filter. For 5 and 10 BPM in deep and 10 in normal mode, the starting values
are larger than 32 BPM, which means that no filter is applied at all. For 5 BPM in normal
mode, the starting BPM value lies at 24.0245 BPM, which means that the Savitzky–Golay
filter with window size 3 and polynomial order 2 applies. This represents a stronger filter.
Due to the strong noise of the distance signal at lower frequencies, the peak detection
registers too many peaks. Another aspect influencing the start BPM value is the time over
which the peak detection is applied. When testing on two different computers, we realized
that the times for the same amount of data points differed. This is due to the ROS processes
which run in the background and can lead to time variations. Unfortunately, ROS does not
work in real-time. Even when working just on one computer, the time taken to process one
batch of 33 data points can differ slightly.

Between 20 and 80 BPM, the results with the ToF approach are slightly better than
the radar results. For small frequencies, radar performs better and shows a maximum
difference of 3 BPM compared to the reference but with great outliers. The comparison is
made to the median values.

3.2. Distance Signal Comparison

In this section, we compare the distance signals generated by the laser micrometer,
the ToF and radar algorithms. Figure 14 displays a section of the respiratory signal at
10 BPM in deep mode. At the beginning, the synchronization signal is visible. The signals
are unfiltered which means in the context of the ToF camera that the Savitzky–Golay filter
has not been applied yet. This first section after the synchronization signal is used for
determining the BPM for the parameterization of the Savitzky–Golay filter based on a peak
detection. As the signal is very noisy, the detected BPM value will be very high (see BPM
box plots). The radar signal is also slightly noisy, but, with the FFT approach, it is easier to
detect the underlying main frequency. To receive the plotted radar amplitude, an Ellipse
fitting was applied to the data twice afterwards. Ellipse fitting means that the IQ-values
from the radar sensor are fitted onto an ellipse in order to calculate the transformation to
the IQ unit circle. It serves as calibration. Our implementation is based on a MATLAB
implementation by Gal [75].

In Figure 15, the respiratory signal at 45 BPM in deep mode is plotted. The ToF signal
looks very similar to the laser micrometer signal and is in phase. The radar amplitude
seems to be asymmetrical but this does not have any effect on the FFT and the calculation
of the BPM. In this case Ellipse fitting was also applied to the data afterwards. We found
that the size of the radar amplitude depends on whether Ellipse fitting had been applied
or not.
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Figure 14. Unfiltered section of the respiratory signal at 10 BPM in deep mode measured by the ToF camera, the radar sensor
and the laser micrometer. In the context of the ToF camera, unfiltered means that the Savitzky–Golay filter has not been
applied yet. At the beginning, the synchronization signal can be seen. The ToF camera signal is very noisy and has high
amplitude jumps. In comparison, the radar and laser micrometer signals are very close.
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Figure 15. Unfiltered section of the respiratory signal at 45 BPM deep measured by the ToF camera, the radar sensor and the
laser micrometer. In the context of the ToF camera, unfiltered means that the Savitzky–Golay filter has not been applied yet.
At the beginning, the synchronization signal can be seen. At the beginning of the ToF signal, the noise is clearly visible.
Later on, the stroke of the simulator thorax is higher compared with the noise. The amplitude is very similar to the laser
micrometer. The amplitude of the radar sensor is slightly shifted and uneven. This might be due to the effects of the applied
Ellipse fitting.

We tested at 40 BPM deep showing the dependency of the amplitude size with respect
to Ellipse fitting, an applied mean, moving average and windowed average. All of these
measures were applied to the IQ-data of the radar sensor. The results can be seen in
Figure 16. We wanted to receive the highest amplitude possible. As the moving average
and the windowed average had negative effects when applied to lower respiratory rates
and the FFT delivered worse BPM values, Ellipse fitting was applied. Thus far, it is not
possible to generate a stable and well fitting ellipse in real-time. This meant that an ellipse
was calculated out of the whole radar data of one bagfile, and this ellipse was applied to
the data afterwards.
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Figure 16. Radar amplitude variation depending on whether Ellipse fitting, the mean, moving average or the windowed
average is used. Here, a respiratory rate of 40 BPM deep is used.

4. Discussion

In this section, we discuss our results and compare them to our theoretical approach
and the requirements we had. A comparison to the state of the art is also given.

4.1. Comparison with the Theoretical Approach

Even though several drawbacks of our sensors were known in theory, these effects
had a greater impact in practice than expected. This led to several unexpected limits of our
algorithms, which are now described.

We did not expect that the ToF camera would be as sensitive to noise and reflections
compared with the structured light camera we used in previous work. Even though
measures were taken such as covering dark surfaces of the simulator with paper to reduce
reflection due to high contrasts and additional filtering, the distance signal for small
respiratory rates is very noisy. For low respiratory rates, the stroke of the simulator
is very small (as the stroke is proportional to the set voltage applied to the speaker).
This means that the signal-to-noise ratio (SNR) is low. The peak detection applied cannot
handle these signals well and delivers inappropriately high values which cause an incorrect
parameterization of the Savitzky–Golay filter. As the Savitzky–Golay filter has fixed limits
which also need to work for higher frequencies, the limits cannot be further shifted because
then the filtering for higher rates would be too strong. It would have been expected that
the results for small respiratory rates were better in deep mode than in normal mode due to
a greater stroke.

We also did not expect that the publishing rate of a new BPM value of the ToF camera
would only deliver a new value around every 7.5 s and that the internal ROS timing would
have an effect on the calculation of the BPM value.

For radar, we did not expect that the application of the Ellipse fitting would influence
the amplitude of the distance signal to this extent. It was also unexpected that the ToF
sensor would perform slightly better within the norm BPM range.
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We showed that each sensor has its strengths and weaknesses which complement
each other well when determining the estimates of the BPM. Our results are a good basis
on which can be built to receive a greater robustness by combining both sensors.

We require a new BPM value at least every 5 s. Our system delivers a new value
every 50 ms which is sufficient. We realized that, when the set respiratory rate is very
low, the calculated BPM values with the ToF algorithm are too high. However, the lower
value of both sensors must be taken into account as these values may represent deranged
physiological responses that may indicate a risk to the life of the baby, who should be
checked by a doctor.

4.2. Comparison with the State of the Art

With this publication, we prove that we are the first to evaluate the data of a mi-
crowave interferometric radar sensor and a ToF camera synchronously for determining the
respiratory rate. As mentioned in the state of the art, WikiSpiro does not evaluate the data
of both sensors synchronously to determine the respiratory rate [43]. The ToF camera is
only used for tracking the position of the patient to allow proper positioning of the radar
sensor. Furthermore, their system has only been applied to and tested in adults.

Our system delivers very precise BPM values within the norm range of 20–60 BPM
with a maximal difference of 3 BPM for the ToF camera at 30 BPM normal. In addition, we
showed that ToF performs slightly better in the norm range than the radar sensor.

5. Conclusions

We showed that it is possible to evaluate the data of a radar sensor and a ToF camera
synchronously and that the respiratory rate detection is very precise compared to our gold
standard. We also showed that both sensors complement each other well and that a greater
robustness can be expected when the drawbacks of each method are compensated for.
Radar is better for low respiratory rates than ToF and also delivers a higher publishing
rate of the BPM values. However, there are known issues in the literature when the baby
moves (motion artifacts). Radar is also capable of detecting heartbeat, which we would like
to address in the future. A further improvement for the radar algorithm would be a real
time Ellipse fitting for the radar sensor. ToF delivers slightly better BPM values within the
norm range than the radar sensor, but it has issues with low respiratory rates. This could
be improved by also using a FFT instead of a peak detection, which would also mean that
the ROS time variation could be neglected. The ToF camera additionally delivers a full 3D
point cloud which can be used to reconstruct the baby’s position. Tracking the movement
could be used to reduce motion artifacts to allow more robust radar sensor data.

It is planned to test our approach in the future on real babies within the NICU and to
see how fast our system responds to changing respiratory rates.
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Abbreviations
The following abbreviations are used in this manuscript:

ADC analog-to-digital converter
BPM breaths per minute
CW Continuous Wave
FFT Fast Fourier Transform
FMCW Frequency Modulated Continuous Wave
FoV field of view
GUI Graphical user interface
IQ in-phase and quadrature
ISM Industrial, Scientific and Medical
IR-UWB Impulse-Radio Ultra-Wideband
NICU Neonatal Intensive Care Unit
PCL Point Cloud Library
PSD Power Spectral Density
RGB Red Green Blue
RGB-D Red, Green, Blue -Depth
ROS Robot Operating System
SMIL self- and mutually injection-locked
SNR Signal-to-noise ratio
ToF time-of-flight
UDP User Datagram Protocol
UWB Ultra-Wideband
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