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Abstract: The feasibility and usefulness of frequency domain fusion of data from multiple vibration
sensors installed on typical industrial rotating machines, based on coherent composite spectrum
(CCS) as well as poly-coherent composite spectrum (pCCS) techniques, have been well-iterated by
earlier studies. However, all previous endeavours have been limited to rotor faults, thereby raising
questions about the proficiency of the approach for classifying faults related to other critical rotating
machine components such as gearboxes. Besides the restriction in scope of the founding CCS and
pCCS studies on rotor-related faults, their diagnosis approach was manually implemented, which
could be unrealistic when faced with routine condition monitoring of multi-component industrial
rotating machines, which often entails high-frequency sampling at multiple locations. In order to
alleviate these challenges, this paper introduced an automated framework that encompassed feature
generation through CCS, data dimensionality reduction through principal component analysis (PCA),
and faults classification using artificial neural network (ANN). The outcomes of the automated
approach are a set of visualised decision maps representing individually simulated scenarios, which
simplifies and illustrates the decision rules of the faults characterisation framework. Additionally,
the proposed approach minimises diagnosis-related downtime by allowing asset operators to easily
identify anomalies at their incipient stages without necessarily possessing vibration monitoring
expertise. Building upon the encouraging results obtained from the preceding part of this approach
that was limited to well-known rotor-related faults, the proposed framework was significantly
extended to include experimental and open-source gear fault data. The results show that in addition
to early established rotor-related faults classification, the approach described here can also effectively
and automatically classify gearbox faults, thereby improving the robustness.

Keywords: spectrum energy; artificial neural network; data fusion; composite spectrum; vibration-
based condition monitoring; rotating machines

1. Introduction

Since the rise of machines and consequent industrial revolutions, rotating machines
have become an integral and inevitable asset within virtually all industrial setups, irre-
spective of the sector. This is mainly due to their versatility and ability to adapt to the
incredibly harsh operating environments that prevail in most industries. Components
such as electric motors [1–4] and gearboxes are integral to the functioning of numerous
industrial rotating systems and are often envisaged to be robust enough to withstand
highly dynamic operations.

However, despite their often-resilient designs and configurations, gearboxes still
experience failures, some of which have direct devastating consequences on income, envi-
ronment, and human safety. Although the value of gearboxes has never been undermined,
their criticality (especially due to their contributions to failure rates) to alternative energy
systems, however, has further increased the intensity of the scrutiny they have received in
recent times. For instance, the study by Spinato et al. [5] highlighted that wind turbine (WT)
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gearboxes account for the highest mean-time-to-repair among all onshore sub-assemblies.
Similarly, Gray and Watson [6] also highlighted that as much as 33% of total operational
downtime of energy generation systems can be attributable to their gearboxes. The findings
from these studies [5,6] have also been corroborated by regional surveys and other technical
reports. For instance, 3-year WT operational data from offshore wind farms in Netherlands
stated that gearbox failures can account for more than 55% of total annual downtime,
which sometimes corresponds to over 52% of energy not served [7]. Feng et al. [8] also
conducted a similar survey for selected wind farms in the United Kingdom and reported
nearly identical findings.

In general, incessant failure of the gearboxes of industrial systems are often attributed
to inaccurate estimation of actual operating loads, unforeseen changes to loading con-
ditions during operations, faulty component design, and/or inaccurate repair/replace
decisions [9]. Traditionally, maintenance interventions (mainly repair and replace) have
served as remedies to such failures since the amount of consideration allotted to downtime
was insignificant in the past. In contrast to such times, modern-day operations are very
lean and mainly customer-oriented, owing to fierce global competitions. This is perhaps
the reason for the surge in the popularity of predictive and condition-based maintenance
(CBM) strategies [10–12], whereby industrial assets dictate the frequency of maintenance
interventions. Just as gearboxes have earned themselves the status of inevitability within
most industrial operations, vibration monitoring (VM) [13–15] is arguably one of the most
widely applied CBM techniques owing to the established fact that all structures (static or
rotating) exhibit their own peculiar individual dynamic characteristics. The fundamental
premise of VM is to adequately understand, track, and determine the trend of these char-
acteristics for individual critical assets, so as to determine deviations at incipient stages
before the occurrence of catastrophic failures. Despite the huge successes recorded with
well-established VM techniques in time [16,17], frequency [18], and time–frequency [19]
domains, the rigour often associated with individualised synthesis of large volumes of
data acquired from each measurement location on a typical rotating machine can pro-
long decision-making, which may lead to fatal consequences when dealing with critical
safety systems. To further compound this problem, most modern-day industrial rotating
machines are multi-component (e.g., gears, bearings, drive belts, rotors, electric motors,
couplings, etc.) and multi-state (e.g., speed and load variations), thereby requiring a holistic
approach to VM.

In order to alleviate this limitation and better optimise conventional rotating machine
VM approaches, research endeavours over the past few decades have been exploring mech-
anisms through which VM information can be harmonised into single but representative
frameworks. Such approaches are generally referred to as data fusion, information fusion,
or hybridisation. In general, data fusion involves the combination of data and information
from different sources to obtain enhanced accuracy that may not be achievable from a
single source. This approach has the potential to overcome some of the real-life problems
that have plagued the use of VM for incipient fault detection and diagnosis. Data fusion can
occur at different stages of a typical faults classification process, with sensor, feature, and
decision levels being the most common stages. At the sensor or data acquisition level, data
from various commensurate sensors are directly fused, after which the most representative
features are used to take decisions [20–24]. At the feature level, individual sensors are
used to acquire data separately, and the required feature vectors extracted. The feature
vectors are eventually fused together and form the basis for decision-making of operational
state classification [25–27]. Finally, the decision-level fusion approach harmonises the
estimated decisions that have been separately drawn from the feature vectors of individual
sensors [28,29].

Generally, machinery fault diagnosis approaches that embed machine learning tech-
niques within them usually entail two key phases, namely feature extraction and fault
identification. The feature vectors generated during the feature extraction phase are usually
applied as inputs in the chosen machine learning technique(s) for the fault identification
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phase [30]. The fundamental essence of fault identification is to distinguish healthy from
faulty machine conditions, based on the extracted features, which is also equivalent to
the mapping of information from the feature space to the fault space [30]. Classifiers and
statistical learning methods, such as k-nearest neighbour (k-NN) algorithms, Bayesian
classifier, support vector machine (SVM), and artificial neural network (ANN) have been
widely utilised in structural health monitoring systems of rotating machinery [30].

Kalman filtering [31], weighted average [32], algebraic functions [33], Bayesian es-
timators, nonlinear system fusion, and adaptive observers [34] are some of the earlier
and well-established traditional sensor fusion approaches. Despite the usefulness of the
academic research advancements achieved through these techniques, their mathematical
intrusiveness could be a reason for their limited application for real-life rotating machine
faults classification. For instance, Bayesian estimators are popular; the processing frame-
works for dynamic models that are nonlinear often entail some multi-dimensional integrals
that are often analytically intractable, thereby leading to estimate difficulties. In addi-
tion, the generated outputs are sometimes generic and associated with multimodality,
asymmetries, and discontinuities [35]. With regards to Kalman filtering, linearised trans-
formations are only proficient when error propagations can be estimated using a linear
function; otherwise, the generated linearised outputs are negatively impacted and lead
to complete divergence [36]. Adaptive observers can be very power and accurate when
dealing with continuous time domain signals, but their effectiveness dwindles under low
control and switching frequency, which is often an attribute of nonlinearities of several
rotating machine components, especially gear systems [37]. Moreover, each of these classes
of techniques [31–34] are often focussed on a single stage fusion as well as applied to a
single machine component, thereby increasing computational complexity and, in turn,
further complicating an already tedious faults classification process. On the contrary, the
recently developed composite coherent spectrum (CCS) [38] and poly-coherent composite
spectrum (pCCS) [38–41] significantly reduce computational stages associated with data
fusion since it embeds both sensor-level and feature-level fusion into a single framework.

While previous studies on CCS [38] and pCCS [38–41] have yielded encouraging
outcomes, they have only been applied to rotor-related machine faults (mainly misalign-
ment, rub, crack, and bow), which does not adequately represent the multi-component
configuration of most modern-day rotating machines. Besides the restriction of scope of
the founding CCS and pCCS studies with respect to rotor-related faults, their diagnosis
approach is manually implemented, which could be unrealistic when faced with routine
condition monitoring of multi-component industrial rotating machines, which often entails
high-frequency sampling at multiple locations. The automated framework applied here
was recently presented by Yunusa-Kaltungo and Cao [42] to help address the laborious
nature of manual faults classification of CCS. Although the framework encompassed initial
feature generation through CCS data fusion, data dimensionality reduction via princi-
pal component analysis (PCA) and subsequent faults classification was achieved using
several machine learning techniques, including ANN, SVM, k-NN, etc. The outcomes
of the automated approach are usually a set of visualised decision maps representing
individually simulated scenarios, which simplifies as well as minimises diagnosis-related
downtime by allowing asset operators to easily identify anomalies at their incipient stages
without necessarily possessing vibration monitoring expertise. Additionally, comparisons
between other VM techniques indicated that CCS has significant advantages as a feature
extraction method, owing to its ability to greatly reduce potential complexities that are
sometimes associated with the machine learning input datasets. The results obtained from
the study [42] were encouraging and showed that ANN was most compatible with CCS.
However, the study was also limited by its application to only rotor-related faults.

This study adequately extends previous works on CCS and pCCS based on two main
premises. Firstly, it establishes a framework by which the diagnosis of multiple classes
of rotating machine faults can be automated through machine learning algorithms. The
second major contribution of this study is that it significantly builds upon the encouraging
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results obtained from the preceding part of this approach that was limited to well-known
rotor-related faults [42] by incorporating gearbox fault detection into a single framework.
Hence, the extension provided here now considers an entirely different and unique class
of rotating machine components—the gearbox, so as to complement earlier findings and
ascertain robustness. Additionally, the proposed approach is primarily based on tools
and features that are universally established across academia and industry (especially
amplitude spectrum), thereby easing the transfer of theoretical knowledge into practice.

To accomplish this, the paper initially compares the proficiency of its approach to
that of earlier related approaches in Section 2, after which a brief theoretical overview of
the proposed framework is provided in Section 3 such that the current paper can be fully
comprehended without the need to consult earlier articles. Section 4 provides full details of
the experimental designs, with particular emphasis on the experimental rig configuration,
types of machine operating conditions simulated, technical specifications of instruments,
and signal processing parameters. Previous studies [42] have already recommended several
rotor fault detection features, but it is uncertain that all of such features will adequately
support the computational effectiveness of the current study. Therefore, in Section 5, the
performance of relevant features is initially examined, after which the most influential
features are then identified. In Section 6, the results of faults classification based on the
proposed approach are presented as well as explanations of the implications of the findings
for VM of rotating machines (in this case, gearbox faults). Section 7 provides the validation
of the applied method with independent public datasets. Finally, Section 8 concludes the
study and highlights possible future directions.

2. Comparison with Closely Related Works

The study of fault diagnosis in rotating machines is well-established and continues to
generate spates of useful but sometimes closely related outputs in some cases, which makes it
imperative to compare and contrast to identify niche areas. Therefore, this section is based
on a comparative analysis between closely related approaches in fault diagnosis of rotating
machines and the current study, so as to clearly highlight areas of potential interface, overlap,
variation, limitation, and superiority. In order to better show the advantages of the proposed
method and point out future research directions, Table 1 provides comparisons with other
recent studies in a similar area. The main criteria used for comparison are the data types,
classification algorithm(s), application of data fusion, and fault classes considered.

Yunusa-Kaltungo et al. developed CCS [38] and pCCS [38–41], which significantly
rationalised computational stages associated with fault diagnosis through data fusion by
embedding both sensor- and feature-level fusion into a single framework. However, their
application has been limited to rotor-related machine faults and entail manual classification,
which will increase the downtime related to fault diagnosis. This limitation led to the pro-
posal of an automated framework [42] that still used features generated via CCS but further
involved data dimensionality reduction by PCA and eventual machine learning-based
faults classification. The outcomes were very encouraging especially that the study [42]
exposed the compatibility of ANN with CCS but study was again confined to rotor-related
faults thereby not all encompassing.

Cao et al. [43] developed a deep transfer learning approach based on a convolutional
neural network (CNN) algorithm, and their study advocated the suitability of the approach
for deep feature extraction and gear fault diagnosis. Similarly, Shao et al. [44] developed a
CNN-based deep transfer learning framework for mechanical fault diagnosis and classifica-
tion, while Soualhi et al. [45] proposed a health indicator fed into an adaptive neuro-fuzzy
inference system (ANFIS) to detect the state of health of a typical system and then diag-
nose sources of anomalies. The data collected through this method are electrical signals,
mainly current signals as opposed to mechanical signals such as vibrations for non-invasive
benefits, since the current, voltage, or power sensors that are already integrated into the
control systems of electrical machines can be used. Azamfar et al. [46] developed a novel
multi-sensor data fusion methodology based on 2-D CNN for gearboxes fault diagnosis
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using motor current signature analysis. Zhang et al. [47] proposed a novel unsupervised
learning algorithm named fast intrinsic component filtering (FICF) for the fault diagnosis
of rotating machinery. These studies have no doubt enhanced the knowledge around the
fault diagnosis of rotating machines. However, they are limited by either focus on the class
of singular faults (e.g., rotor faults or gear faults or bearing faults alone) which implies that
alternative approaches will need to be considered for other fault classes, thereby increasing
rigour and downtime or computational intensiveness of CNN-based approaches. Table 1
provides more targeted merits, demerits, and coverage of individual study classes.

Table 1. Comparison between the proposed framework and the related state-of-the-art works.

Reference Data Type Classification
Algorithm

Use of Data
Fusion

Fault Classes
Considered Limitation

[38–41] Vibration data
PCA and

spectrum-based liner
classification

Yes Rotor faults

Classification approach used does not involve
machine learning, thereby making the

approach unable to self-learned from historical
data. Additionally, all the simulated cases are

rotor-related.

[42] Vibration data ANN, SVM, k-NN,
naïve Bayes Yes Rotor faults All the simulated cases are rotor-related.

[43] Vibration data CNN No Gears

Computational intensiveness due to the
application of deep learning approach. This

study only considered a single fault class.
Hence, there might be need to further

investigate the applicability on other faults.

[44] Vibration data CNN No Motor, gears and
bearing faults

Although this study considered multiple fault
classes, the approach is also computationally

intensive and would lead to costlier solutions.

[45] Current data ANFIS No Gears

This study will benefit from the
implementation of multi-sensor data fusion

(such as electrical and mechanical data), so as
to enhance the reliability of fault diagnosis.

[46] Current data CNN Yes Gears

Computational intensiveness due to the
application of deep learning approach. This

study only considered a single fault class.
Hence, there might be a need to further

investigate the applicability for other faults.

[47] Vibration data FICF No Gears and bearing
faults

FICF is suitable for multi-sample training but
the convolution activation limits its

performance during single sample operations.
Additionally, FICF is often considered a

high-efficiency technique, but the poor noise
adaptability sometimes undermines

its proficiency.

Present
study Vibration data ANN Yes Rotor and gear faults

The only limitation envisaged with the current
approach is its initial requirement for training

data for different fault types, which is also
common to most of the

aforementioned techniques.

3. Theoretical Overview of the Approach
3.1. Mathematical Representation

It is vital to highlight that full details of the automated faults classification framework
applied here have been provided in the preceding article that focussed on rotor-related
faults [42]. However, the provision of high-level description, here and again, was adjudged
useful, so as to allow this second part to be comprehensible as a standalone section. The
process commences with the use of the CCS approach [38] to fuse amplitude spectra
computed from the time domain datasets acquired by individual VM sensors installed on
the rotating machine. The mathematical representation of the CCS process is iterated in
Equations (1)–(3) [38–41]. The fundamental rationale behind the CCS is that it eliminates
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downtime associated with routine VM processes, especially when such monitoring returns
a no-fault result from the studied machine. During such VM processes, technicians are
required to analyse data from all measurement locations on the machine, but this process
is minimised by the CCS as only one spectrum needs to be routinely observed. The only
instance that would warrant analysis of individual spectra is when a deviation from the
single CCS is observed. This stage of the fusion is referred to as Stage 1 in Figure 1 and
further explained thus:
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If the number of measurement points on a particular rotating machine is b, each of
which is furnished with a VM sensor, then the vibration signals acquired from individual
sensor can be divided into ns equal-length segments. The coherent cross-power spectral
density of the signals from the pth and (p + 1)th measurement points at a frequency fh can
be defined as:

Sr
xpγ2

p(p+1)xp+1
( fh) = [Xr

p( fh)γ
2
p(p+1)( fh)Xr∗

p+1( fh)] (1)

where Xr
p( fh) is the discrete Fourier transform (FT) of the rth segment of the signal xp, and

Xr∗
p ( fh) is its complex conjugate, for p = 1, 2, . . . , b− 1. γ2

p(p+1)( fh) is the coherence of the
signals xp and xp+1 for background noise suppression.

Hence, each of the rth segments from each signal can be fused into a single component,
Xr

CCS( fh), thus:

Xr
CCS( fh) =

√√√√√√
 Sr

x1γ2
12x2

( fh)Sr
x2γ2

23x3
( fh)

. . . Sr
x(b−1)γ

2
(b−1)bxb

( fh)

 1
(b−1)

(2)

The CCS for the entire machine can then be calculated as:

SCCS( fh) =
∑ns

r=1 Xr
CCS( fh)Xr∗

CCS( fh)

ns
(3)

The SCCS( fh) is a sequence of complex numbers that enables the estimation of the
amplitude spectrum of the CCS according to Equation (4):

ACCS( fh) =

∣∣∣∣ 2
N

SCCS( fh)

∣∣∣∣ (h = 1, 2, . . . , N/2) (4)

In addition to the earlier CCS harmonic amplitudes that only offer a single-point value
of differentiation that could be similar for several harmonics, here, we also consider the
spectral energy that can be estimated according to Equation (5).
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For a typical ACCS( fh) computed as per Equation (4) at a frequency fh, where fh =
(h− 1)d f , h = 1, 2, . . . , N/2, N is the number of data points and d f is the frequency
resolution, the SE between the selected harmonics at intervals of d f can be defined as:

ASE( fh) =
h+10

∑
i=h−10

ACCS( fi)× d f (h = 11, 12, · · · , N/2− 10) (5)

In order to analyse the gear fault, in addition to considering the harmonics of rotating
speeds of gears and shafts, the harmonics of the gear mesh frequency (GMF) should also be
included in CCS calculation because sidebands around the GMF and its harmonics contain
information on gearbox faults [48]. The GMF can be calculated by:

fGMF = zt × nR (6)

where zt is the number of teeth on pinion, and nR is the rotating speed of the pinion.
Once the CCS harmonic amplitudes and their corresponding SEs of interest (depend-

ing on the fault types considered, e.g., low frequency for rotor-related and higher frequency
for gear faults) have been obtained, Stage 2 of fusion involves their standardisation, di-
mensionality reduction, and harmonisation based on PCA [49–51] and ANN [52–54]. The
computational steps required for Stage 2 are described by Equations (7)–(11).

Owing to the variations in the amplitude ranges that may be associated with the
diagnosis of a complex multi-component system such as that considered here (e.g., shaft
and gear mesh frequency harmonic amplitudes), dimensionality reduction through PCA
would require some prior standardisation of the input data A. In the matrix A ∈ Rm×n,
m is the number of samples and n is the number of features (dimensions), aij represents
typical elements of the matrix, while xij is a corresponding element of the standardised
matrix X.

The element xij of the standardised matrix X is defined as:

xij =
(aij − Aj)

Sj
(7)

where Aj is the sample mean of the elements of the jth column of matrix A, and Sj is the
sample standard deviation of the jth column of A, which is mathematically represented as:

Sj =

√
∑m

i=1 (aij − Aj)
2

m− 1
(8)

The computation of PCs of X reduces to the solution of an eigenvalue–eigenvector
problem:

CXV = VΛ (9)

where CX is the covariance matrix of X, and V is the orthogonal matrix whose jth column
is the jth eigenvector of CX, corresponding to the jth largest eigenvalue of CX which is the
jth diagonal element of the diagonal matrix Λ.

The columns of the matrix V ∈ Rn×n are orthogonal unit vectors and are referred to as
the right singular vectors of X.

The calculation of the score matrix (result) T ∈ Rm×n for a PCA can be mathematically
represented as:

T = XV (10)
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After dimensionality reduction and selection of the PCs combination that offers the
highest representation, ANN is then used to classify the different experimentally simulated
machine conditions as per Equation (11) [42]:

y = f (WTx) = f

(
N

∑
i=1

Wixi + b

)
(11)

where f is the activation function, W are the weights and b is the scalar bias term.

3.2. Operational Description of The Approach

In this section, we provide a step-by-step description of the individual operational
stages of the applied approach, so as to foster better understanding.

3.2.1. Training Steps

• Feature extraction Obtain the CCS harmonic amplitudes and/or GMF harmonic
amplitudes as well as their corresponding SEs for numbers of segment averages
from a dataset with known health conditions. This provides the input data matrix
A ∈ Rm×n, where m is the number of samples (averages) and n is the number of
features (dimensions).

• PCA application Compute Aj, Sj, T, V as stipulated by Equations (7)–(10).
• Dimensionality reduction Here, we consider the L largest singular values to obtain

the truncated score matrix TL ∈ Rm×L, where PC1 is the first column of TL, PC2 is the
second column of TL, and so on.

• Training Use TL as the input of the ANN model. Train the model with labels (individual
health conditions) so as to obtain the classifier as depicted by Equation (12):

z = f (x1, x2, . . . , xn) (12)

In Equation (12), PC1 is equivalent to x1, PC2 is equivalent to x2, and PCn is equivalent
to xn. Additionally, z denotes the resultant class of machine health condition.

3.2.2. Automatic Classification Steps

• Feature extraction Obtain the CCS harmonic amplitudes and/or GMF harmonic
amplitudes and their corresponding SEs for a new dataset that does not possess any
labels so as to obtain the input data matrix B ∈ R1×n, where n is the number of features
(dimensions) and bij represents a typical element of the matrix B.

• Linear transform Project the data matrix B into the same linear space as the PCA
obtained from the training steps. The element yij of the transformed matrix Y ∈ R1×n

is defined as:

yij =
(bij − Aj)

Sj
(13)

Similarly, the transformed score matrix S ∈ R1×n is defined as:

S = YV (14)

• Dimensionality reduction By considering only the L largest singular values, we obtain
the transformed truncated score matrix SL ∈ R1×L, where PC1 is s11, PC2 is s12, and
so on.

• Classification With SL as the input to the trained classifier z = f (x1, x2, · · · , x3), we
can obtain the health condition classification result z = f (s11, s12, · · · , s1n).

After training, by computing just 3 equations, we can determine the health condition
from the CCS of a new vibration dataset. This operation will be automatically performed
for all steps.
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4. Experimental Design and Data Acquisition

Various operation conditions (mainly faults and speed variability) usually associated
with typical industrial rotating machines were experimentally simulated on a laboratory
scale rig, after which vibration datasets were acquired. This section offers full details of the
experiments used to generate the VM datasets used in this study.

4.1. Rig Characteristics

The rig used for this experiment is a multi-component rotating machine with two
main rotors coupled together by two helical-geared gearboxes. Rotational force to the
entire rig is provided by a 2HP electric motor that runs at a maximum speed of 3600 RPM.
The electric motor shaft is coupled to the drive end (DE) gearbox through a belt pulley
system. The driven pulley is directly connected to the drive shaft of the intermediate
gearbox through a stepped shaft, which then transmits motion to its driven shaft via a pair
of helical gears. Finally, the driven shaft of the intermediate gearbox then serves as the
drive shaft for the DE gearbox through another set of helical gears. The main structure of
the rig is supported by five bearings (2 bearings for each shaft and an additional bearing
for the driven pulley). The rig is fitted with a lubricating system that comprised of a pump,
filter, radiator, and sump for oil circulation and cooling of DE and intermediate gearboxes.
The rig rotation is regulated through a variable frequency drive. All of the rotating compo-
nents of the experimental rig are covered by mesh to prevent injury due to entrapment.
Figure 2 and Table 2 respectively provide an image of the experimental rig and the technical
specifications of its main components.
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Table 2. Technical specifications of main rig components.

Rig Component Description (Abbreviation) Specification/Dimension

Electric motor

Horsepower 2.0
Speed 3600 RPM

Maximum torque 3.9 Nm
Type Shunt

Current 6.8 Amps
Voltage 200 V

Shafts
Type Mild steel

Length 1 040 mm
Diameter 35 mm

Gears

Type Helical (key-mounted)
Pitch circle diameter (PCD) 107 mm

Face width 37 mm
Circular thickness 4.5 mm
Number of teeth 35

Addendum 2.35 mm
Dedendum 1.95 mm

Bearings

Type Anti-friction ball bearings
Make SKF
Model SY20TF/RA SEY20/NP20

Number of rolling elements 8
Diameter of rolling elements 7.938 mm

Bearing width 31 mm
External diameter 47 mm
Internal diameter 20 mm

Bearing pitch circle diameter 33.5 mm

Pulleys

Type Toothed, taper lock-mounted
Thickness 32 mm

Tooth thickness 6.8 mm
Drive pulley diameter 100 mm

Driven pulley diameter 125 mm

Belts
Type Toothed, timing

Model Fenner 200H-100

4.2. Instrumentation

VM data were acquired through the aid of three accelerometers (one installed on
bearings near each of the three gearboxes). The raw signals from the accelerometers pass
through a signal condition that also powers the accelerometers, then to an analogue-to-
digital converter (ADC). Table 3 provides a summary of the technical specifications of the
main instrumentation.
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Table 3. Technical specifications of main instruments.

VM Instrument Parameter Specification

Accelerometer

Model No. 352C33
Sensitivity (±10%) 100 mV/g

Frequency range (±5%) 0.5 to 10,000 Hz
Resonant frequency ≥50 kHz
Temperature range −65 to +200 ◦F

Settling time (within 10% of bias) <10 s

Signal conditioner

Input sensor type ICP, voltage, charge
Voltage gain ×0.1 to ×200

Voltage gain increment 0.1
Charge conversion (selectable) 0.1, 1.0, 10.0 mV/pC
Frequency range (gain <100) 0.05 to 100 kHz
Frequency range (gain 100) 0.05 to 75 kHz

ADC

Number of channels 16 differential/32 single ended
ADC resolution 16 bits

Sampling rate 250 kS/s single channel; 250 kS/s
multi-channel (aggregate)

Input range ±10 V, ±5 V; ±1 V, ±0.2 V
Input FIFO size 4095 samples

4.3. Seeded Operating Scenarios

Considering that this was an existing multi-component rig without full knowledge of
its state of health, the initial case that contained no seeded fault was termed the baseline
case (BC). However, the amplitude spectra generated from the data obtained under BC
displayed significantly high amplitudes at several harmonics of the machine speeds, which
was adjudged to be due to inherent misalignment and unbalance faults. Therefore, BC
can be classified as exhibiting rotor-related anomalies. The other two cases are the single
fault (SF) and multiple fault (MF) cases. As shown in Figure 3, the SF case was simulated
by introducing a slight notch on a gear tooth within the non-drive end (NDE) gearbox
while the MF case was a combination of SF and additional wear on a gear tooth within the
intermediate gearbox. Under all cases, VM data were collected at three distinct machine
speeds (i.e., 7, 14, and 21 Hz), thereby yielding a total of nine experimentally simulated
operating scenarios. In this study, a scenario represents one combination of case and speed
(e.g., VM datasets for BC @ 7 Hz). The experimental flow is shown in Figure 4.
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4.4. Data Acquisition and Signal Processing Parameters

For each of the scenarios described in Section 4.3, 3 VM datasets were acquired for
approximately 120 s (totally 27 VM datasets in 9 scenarios). Here, two additional datasets are
collected in each scenario to confirm that there are no anomalies in the experimental data.
During spectrum and CCS calculation, the signal processing parameters used were 10,000 Hz
sampling frequency ( fs), 80% segment overlap, 0.5 Hz frequency resolution (d f ), 448 number
of segment averages, 20,000 as the number of FT data points (N), and Hanning window.

5. Feature Selection and Optimisation

A typical VM process of rotating machines is usually associated with the generation of
various features, especially when dealing with those characterised by multiple components.
The fundamental objective of CCS data fusion approach is to rationalise data such that the
VM of rotating machines can be simplified. Since the faults considered here are rotor- and
gear-related, three sets of features (1st–5th harmonics of shaft speed and 1st–5th harmonics
of gear mesh frequency) were extracted after computing the CCS as per Equations (1)–(4).
Owing to the high energy contents of typical GMFs, the SE of the resultant CCS was also
computed as per Equation (5) so as to observe its performance as a feature. Figure 5 shows
the amplitude distributions of shaft (α1–α5) and GMF (β1–β5) features across all scenarios,
where it can be seen that β1 was the most consistently dominant feature at all speeds and
the patterns of other features were inconsistent across different scenarios. It can also be
observed that BC, at all speeds, contained a prominent β1 feature, which is unsurprising due
to the existence of inherent gears/shaft misalignment and shaft unbalance. Although the
selected shaft harmonic features (α1–α5) in Figure 5 were observable for all scenarios, their
distribution is similarly inconsistent. With regards to harmonic distribution, the SE-based
GMFs (denoted by γ1–γ5 in Figure 6) exhibited very similar trends, except for slightly
higher amplitudes of higher harmonics at 21 Hz (Figure 6). This therefore implies that while
all selected features are appropriate for identifying the presence of anomalies, reliance on
such features alone for fault characterisation and separation is nearly impossible due to the
identified inconsistencies for different scenarios. The preliminary performance comparisons
performed here aided and formed the basis for the selection of the most influential features,
which then formed the basis for the next stage of the faults classification framework.
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6. Classification Results and Their Implications

Having established the most influential features for both shaft/rotor and gear faults
in Section 5, the next stage of the analysis involves reducing the dimensionality of such
features using PCA as well as examining the abilities of different combination of features
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to retain the highest variability. The implementation of PCA was based on the theories
described in Equations (7)–(10). The four classes of features considered for this study
are rotor/shaft only (α1–α5); GMFs only (β1–β5), combined rotor/shaft and GMFs (α1–
α5) + (β1–β5) and SE-GMFs (γ1–γ5) features. The content distributions for 10 PCs were
compared for all classes of features at all speeds as shown in Table 4. Since it is well
established that the most significant information will usually reside within the first few
PCs, the performance of combined PC1–2 and PC1–3 was compared, where it can be seen
that PC1–3 held slightly superior information, which implies that it holds the potential to
offer the most distinctive classification for all scenarios.

Table 4. Percentage of explained variance by each principal component (%).

Feature (α1–α5) + (β1–β5) (α1–α5) (β1–β5) (γ1–γ5)

Frequency 7 Hz 14 Hz 21 Hz 7 Hz 14 Hz 21 Hz 7 Hz 14 Hz 21 Hz 7 Hz 14 Hz 21 Hz

PC1 62.6576 57.2374 29.9398 68.7087 55.7500 43.1111 67.6914 68.2912 38.7355 72.2149 75.0048 51.7278
PC2 7.8065 12.0692 15.6375 11.6652 14.0066 19.1375 13.8599 18.4893 22.1045 13.6757 17.8493 21.7150
PC3 6.4451 6.9354 10.9601 9.3631 12.0432 16.4981 9.7019 6.2872 16.7807 8.7733 3.1274 11.5762
PC4 5.5788 5.6463 9.5130 5.7620 9.8999 10.9578 4.9216 3.9276 13.0665 3.0254 2.4268 8.2653
PC5 4.5685 4.5533 8.1750 4.5010 8.3003 10.2954 3.8252 3.0047 9.3127 2.3107 1.5916 6.7156
PC6 4.0954 4.2480 6.3779 —— —— —— —— —— —— —— —— ——
PC7 2.7094 3.2698 5.5352 —— —— —— —— —— —— —— —— ——
PC8 2.2992 2.7340 5.1251 —— —— —— —— —— —— —— —— ——
PC9 2.0604 1.8771 4.7339 —— —— —— —— —— —— —— —— ——
PC10 1.7791 1.4295 4.0022 —— —— —— —— —— —— —— —— ——

PC1–2 70.4641 69.3066 45.5773 80.3739 69.7566 62.2486 81.5513 86.7805 60.8400 85.8906 92.8541 73.4428
PC1–3 76.9092 76.2420 56.5374 89.7370 81.7998 78.7467 91.2532 93.0677 77.6207 94.6639 95.9815 85.0190

However, owing to the higher data requirements for the PC1–3 combination and
correspondingly higher computational burden, the performance of the PC1–2 combination
was additionally explored for comparative purposes as shown in Figure 7. As anticipated,
the PC1–3 combination offered the best separation between the clusters that represent all
machine conditions (Figure 7a–c), but the performances of several PC1–2 combinations were
also encouraging, especially those that involved (α1–α5) + (β1–β5) and SE-GMFs (γ1–γ5)
features in Figure 7e,f and Figure 7m–o, respectively. However, despite the good intercluster
separations achieved with PCA, its manual approach makes it unsustainable for routine
diagnosis of rotating machines, whereby huge amounts of data related to highly dynamic
scenarios is involved. Based on this perceived limitation, there is a need for applying
approaches that possess self-learning capabilities with minimal human intervention. One
of such approaches is ANN, whose proficiency with the current framework has already
been established with several rotor-related faults at various machine speeds.



Sensors 2021, 21, 2957 15 of 24

Sensors 2021, 21, x FOR PEER REVIEW 15 of 25 
 

 

PC8 2.2992 2.7340 5.1251 ------ ------ ------ ------ ------ ------ ------ ------ ------ 

PC9 2.0604 1.8771 4.7339 ------ ------ ------ ------ ------ ------ ------ ------ ------ 

PC10 1.7791 1.4295 4.0022 ------ ------ ------ ------ ------ ------ ------ ------ ------ 

PC1–2 70.4641 69.3066 45.5773 80.3739 69.7566 62.2486 81.5513 86.7805 60.8400 85.8906 92.8541 73.4428 

PC1–3 76.9092 76.2420 56.5374 89.7370 81.7998 78.7467 91.2532 93.0677 77.6207 94.6639 95.9815 85.0190 

However, owing to the higher data requirements for the PC1–3 combination and 

correspondingly higher computational burden, the performance of the PC1–2 combination 

was additionally explored for comparative purposes as shown in Figure 7. As anticipat-

ed, the PC1–3 combination offered the best separation between the clusters that represent 

all machine conditions (Figure 7a–c), but the performances of several PC1–2 combinations 

were also encouraging, especially those that involved (α1 − α5) + (β1 − β5) and SE-GMFs 

(γ1–γ5) features in Figure 7e,f and Figure 7m–o, respectively. However, despite the good 

intercluster separations achieved with PCA, its manual approach makes it unsustainable 

for routine diagnosis of rotating machines, whereby huge amounts of data related to 

highly dynamic scenarios is involved. Based on this perceived limitation, there is a need 

for applying approaches that possess self-learning capabilities with minimal human in-

tervention. One of such approaches is ANN, whose proficiency with the current frame-

work has already been established with several rotor-related faults at various machine 

speeds. 

 

Figure 7. PCs combinations for all scenarios: (a–c) PC1–3 for (α1 − α5) + (β1 − β5) at 7, 14, and 21 Hz, respectively; (d–f) PC1–2 

for (α1 − α5) + (β1 − β5) at 7, 14, and 21 Hz, respectively; (g–i) PC1–2 for (α1 − α5) at 7, 14, and 21 Hz, respectively; (j–l) PC1–2 

for (β1 − β5) at 7, 14, and 21 Hz respectively; (m–o) PC1–2 for (γ1–γ5) at 7, 14, and 21 Hz, respectively. 

The current study aims to consolidate as well as extend the robustness of the ap-

proach by investigating an entirely novel class of faults with regards to a CCS-based data 

Figure 7. PCs combinations for all scenarios: (a–c) PC1–3 for (α1–α5) + (β1–β5) at 7, 14, and 21 Hz, respectively; (d–f) PC1–2

for (α1–α5) + (β1–β5) at 7, 14, and 21 Hz, respectively; (g–i) PC1–2 for (α1–α5) at 7, 14, and 21 Hz, respectively; (j–l) PC1–2

for (β1–β5) at 7, 14, and 21 Hz respectively; (m–o) PC1–2 for (γ1–γ5) at 7, 14, and 21 Hz, respectively.

The current study aims to consolidate as well as extend the robustness of the approach
by investigating an entirely novel class of faults with regards to a CCS-based data fusion
approach. The classification problem is defined as classifying the data into 3 classes (BC,
SF, and MF) based on the selected features. To achieve this, 3 ANN architectures were
examined for PC1–3 and PC1–2 combinations for all cases at all speeds. For the PC1–3
combination, the ANN architectures had 3–10–3, 3–20–3, and 3–30–3 configurations for
ANN1, ANN2, and ANN3 respectively. For PC1-2 combinations, however, 2–10–3, 2–20–3,
and 2–30–3 configurations were respectively applied for ANN1, ANN2, and ANN3. In
order to ascertain the performance without PCA, ANN4 was computed without PCA and
its outcome was also used for comparison (i.e., 10–30–3 for (α1–α5) + (β1–β5) and 5–30–3 for
(γ1–γ5)). It is vital to note that 3–10–3, 3–20–3, 3–30–3, 2–10–3, 2–20–3, 2–30–3, 10–30–3, and
5–30–3 for individual ANN configurations, respectively representing the inputs, number of
neurons for hidden layers, and outputs. The analysis was conducted based on a 70–15–15
random split of features extracted from measured VM data for training, validation, and
testing, respectively. The PCA step described in Section 3.2.1 was then applied to 85% of the
datasets (i.e., combined training and validation datasets), after which 15% of the datasets
were then extracted from the 85% and used for validation. Subsequently, the classification
steps described in Section 3.2.2 were then applied to the testing datasets. The transfer
function adopted here is the sigmoid symmetric transfer function. Since the ANN type is
backward propagation, scaled conjugate gradient (SCG) was used as a learning algorithm
as well as for overfitting avoidance. Tables 5–7 provide full details of the configurations
and performance at all speeds.
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Table 5. ANN properties for (α1–α5) + (β1–β5) using PC1–3 and without PCA.

Parameters ANN1 ANN2 ANN3 ANN4

Network
STRUCTURE 3–10–3 3–20–3 3–30–3 10–30–3 (without PCA)

Rotation
Frequency 7 Hz 14 Hz 21 Hz 7 Hz 14 Hz 21 Hz 7 Hz 14 Hz 21 Hz 7 Hz 14 Hz 21 Hz

Accuracy
(%)

Training 99.1 98.8 98.2 99.1 99.0 98.2 99.3 99.3 98.5 98.9 100 98.7
Validation 99.5 98.5 98.5 99.5 99.5 98.5 99.5 99.5 98.5 99.5 100 99.0
Testing 99.5 99.0 98.5 99.5 99.5 99.0 99.5 100 99.0 98.5 100 97.0
Overall 99.2 98.8 98.3 99.2 99.2 98.3 99.3 99.4 98.6 98.9 100 98.5

Table 6. ANN properties for (α1–α5) + (β1–β5) using PC1–2 and without PCA.

Parameters ANN1 ANN2 ANN3 ANN4

Network Structure 2–10–3 2–20–3 2–30–3 10–30–3 (without PCA)

Rotation
Frequency 7 Hz 14 Hz 21 Hz 7 Hz 14 Hz 21 Hz 7 Hz 14 Hz 21 Hz 7 Hz 14 Hz 21 Hz

Accuracy
(%)

Training 98.9 99.1 95.1 98.9 99.1 95.3 98.9 99.1 95.4 98.9 100 98.7
Validation 99.0 99.0 95.0 99.0 99.0 95.5 99.0 99.0 95.5 99.5 100 99.0
Testing 99.0 99.0 95.0 99.0 99.0 94.5 99.5 99.0 93.5 98.5 100 97.0
Overall 98.9 99.1 95.0 98.9 99.1 95.2 99.0 99.1 95.1 98.9 100 98.5

Table 7. ANN properties for (γ1–γ5) using PC1–2 and without PCA.

Parameters ANN1 ANN2 ANN3 ANN4

Network Structure 2–10–3 2–20–3 2–30–3 5–30–3 (without PCA)

Rotation
Frequency 7 Hz 14 Hz 21 Hz 7 Hz 14 Hz 21 Hz 7 Hz 14 Hz 21 Hz 7 Hz 14 Hz 21 Hz

Accuracy
(%)

Training 99.4 100 88.2 99.5 100 89.3 99.5 100 89.3 99.5 100 97.5
Validation 99.5 100 89.0 99.5 100 88.5 99.5 100 89.5 99.0 100 96.5
Testing 99.5 100 89.0 99.5 100 90.5 99.5 100 87.5 99.5 100 97.0
Overall 99.4 100 88.4 99.5 100 89.3 99.5 100 89.0 99.4 100 97.3

There are 2 aspects of evaluating the performance of ANNs: one is the accuracy of
fitting and the other is whether overfitting occurs. As shown in Tables 5–7, the results
of different ANN architectures are very similar for same scenarios (i.e., same speeds and
same sets of features). For instance, at 21Hz, the accuracy of ANN with inputs of PC1–3
for (α1–α5) + (β1–β5) was significantly better than that of PC1–2 for (α1–α5) + (β1–β5)
and PC1–2 for (γ1–γ5). However, PC1–2 for (γ1–γ5) has the best classification results at
the other 2 speeds. The ANN computed based on inputs without PCA yielded similar
results overall, except that it performed better than PC1–2 for both (α1–α5) + (β1–β5) and
(γ1–γ5) at 21Hz. This was because the percentages of explained variance by PC1–2 at
21Hz were relatively small (i.e., 45.577 or 3% and 73.442 or 8%). In general, there was no
significant difference in the accuracies of the ANNs trained based on these 3 features as
inputs at the same speeds. Further evidence on the reason for not using (α1–α5) + (β1–β5)
+ (γ1–γ5) as a feature in this study are depicted in Table A1 within Appendix A. In order
to demonstrate the rationale behind using ANN as the machine learning classifier in this
study, the classification accuracy of ANN was compared to those obtained from three other
machine learning classifiers, namely, k-NN (k = 10), naïve Bayes, and linear SVM as shown
in Table 8. The comparisons were based on two input feature types. Figure 8 shows that
k = 10 for k-NN had overall best results in a range of k from 1 to 15 for all considered
scenarios. Therefore, k = 10 has been chosen for comparisons in Table 8. The results indicate
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that the ANN method outperformed all other classifiers for every scenario considered in
this study.

Table 8. Classifier properties for (α1–α5) + (β1–β5), and (γ1–γ5) using PC1–2.

Parameters Features Rotation
Frequency ANN1 (2–10–3) k-NN (k = 10) Naïve Bayes Linear SVM

Accuracy (%)

(α1–α5) +
(β1–β5)

7 Hz 98.9 98.9 98.5 98.8
14 Hz 99.1 98.8 98.5 98.7
21 Hz 95.0 94.3 91.5 94.3

(γ1–γ5)
7 Hz 99.4 99.4 98.0 99.3
14 Hz 100 100 99.7 100
21 Hz 88.4 88.3 87.8 86.7Sensors 2021, 21, x FOR PEER REVIEW 18 of 25 
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In order to ensure good classification effects, overfitting must be avoided. Since
the decision boundary of the classifier trained by the input sets with 3 dimensions or
above is reasonably hyperplane in nature, it is difficult to visualise the decision rules in
a 2-dimensional map. Thus, the difficulty of direct observation on whether there is an
overfitting problem in an ANN with high-dimensional inputs could yield challenges in
practice. On the contrary, the decision rules of ANNs trained by 2-dimensional input sets
can be easily displayed. Based on this premise, it is fair to assume that 2-dimensional
training input sets with PCA are advantageous when the variations in accuracy are minimal.

It is well known that overfitting is an immense threat to the abilities of machine
learning algorithms to accurately detect and classify new data, owing to the incorporation of
extrinsic details during the training process. In this study, it is envisaged that the application
of SCG as a training algorithm will help mitigate potential problems. During individual
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trainings, the initial values of neurons will be reset randomly, with a corresponding random
redivision of the data into 3 distinct groups for training, validation, and testing. This
approach implies that training multiple times with a single input set will produce different
results with slightly different decision boundaries. Figure 9 shows the decision rules of
ANNs trained by PC1–2 for (α1–α5) + (β1–β5) and (γ1–γ5) at different speeds (i.e., typical
results after a single round of training). The input datasets here correspond to (d–f) and
(m–o) in Figure 7. The number of neurons of the hidden layer is considered as a variable
for controlling potential overfitting problems. The emergence of complex boundary curves
and narrow or slender envelope area within decision regions are likely indications of
overfitting. For instance, the curvature of the decision boundary that exists between SF
and MF regions is quite steep in Figure 9c as well as the visible elongated sharp strip
area at the lower end of MF region in Figure 9i indicate that ANN3 could be associated
with overfitting problems. With reference to Figure 9, decision maps generated from
more neurons tend to be associated with overfitting problems. Therefore, since there are
only 2 input values and 3 output classes in this classification, 10 neurons are adjudged
sufficient for optimised, reasonably comprehensive, and complete classification of the cases
considered in this study (i.e., increasing the number of neurons may not lead to better
results). However, as more and more fault types emerge, it may be necessary to increase the
number of neurons to boost the accuracy of classification. In general, the results presented
here show that the initially proposed automated fault diagnosis framework is capable of
identifying and classifying common gearbox faults using very simple and well-known
features such as amplitude of rotor-related and GMF harmonics. This thereby provides
good encouragement that the approach may be suitable for integrating rotor and gearbox
fault diagnosis into a single framework in the near future.
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7. Validation Dataset

In order to further examine the effectiveness of the applied method for classifying in-
dependent datasets, the study obtained publicly available gearbox fault datasets provided
in an earlier study by Shao et al. [44] for validation. According to Shao et al. [44], the vali-
dation gearbox datasets were acquired from a drivetrain dynamic simulator, whereby two
kinds of working conditions (i.e., rotating speed and load) were experimentally simulated.
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The rotating speed and load configurations were set to 20 Hz–0 V and 30 Hz–2 V. Vibration
data were collected using 6 accelerometers mounted at 2 measuring positions. Position
one (P1) datasets were acquired from the planetary gearbox measurement location in three
directions (i.e., x, y, and z). Similarly, Position two (P2) datasets were acquired in three
directions (i.e., x, y, and z) but from a parallel gearbox.

The different types of faults for both gearboxes are shown in Table 9. The datasets
contain five different working conditions (i.e., four fault types and one healthy). Hence, the
fault diagnosis here is based on a 5-class classification task. For each of the scenarios, 10 VM
datasets were acquired for approximately 200 s. During spectrum and CCS calculation,
the signal processing parameters used are 5120 Hz sampling frequency ( fs), 80% segment
overlap, 0.5 Hz frequency resolution (d f ), 249 number of segment averages, 10,240 number
of FT data points (N), and Hanning window. For CCS computation, two forms of data
fusion approaches were considered. The former on the one hand was implemented to
fuse the data from all six accelerometers mounted at the two measurement locations into a
single spectrum (i.e., P1xyz+P2xyz). The latter on the other hand was implemented to fuse
the data from the two accelerometers that had the same orientation (i.e., P1x+P2x, P1y+P2y,
and P1z+P2z). ANN1 (2–10–5) was used as a classifier, and the PC1–2 of shaft harmonic
features (α1–α5) was used as input. The analysis was also conducted based on a 70–15–15
random split of data for training, validation, and testing, respectively. Based on the linear
space generated by the application of PCA to the training and validation datasets, linear
transform was then implemented on the testing datasets.

Table 9. Description of validation gearbox fault types [44].

Type Description

Chipped Crack occurs in the gear teeth
Miss Missing one gear tooth
Root Crack occurs in the root of the gear

Surface Wear occurs in the surface of gear

The classification problem is defined as classifying the data into 5 classes (Health,
Chipped, Miss, Root, and Surface) based on the selected features. Tables 10 and 11 and
Figure 10 show the results of the validation, where it can be observed that the applied
approach effectively classifies all the considered validation datasets, thereby confirming
the robustness. It was also observed that the outcomes obtained by integrating all six
accelerometers are better than when only two accelerometers were used.

Table 10. Percentage of explained variance by each principal component for (α1–α5) of public datasets (%).

Working
Condition 20 Hz–0 V 30 Hz–2 V

Measuring
Position

P1xyz +
P2xyz P1x + P2x P1y + P2y P1z + P2z P1xyz +

P2xyz P1x + P2x P1y + P2y P1z + P2z

PC1 54.9056 55.6459 41.0896 65.2457 42.4231 54.2842 39.2872 48.8888
PC2 19.5594 21.0863 24.5452 17.6613 27.5368 24.7716 23.0098 25.1579
PC3 13.8458 14.4407 19.5344 14.2051 13.1208 10.2944 17.9762 15.9588
PC4 10.4256 7.2607 13.3457 1.9847 9.8741 8.0938 11.5219 8.3389
PC5 1.2636 1.5664 1.4851 0.9032 7.0452 2.5560 8.2049 1.6557

PC1–2 74.4650 76.7322 65.6348 82.9070 69.9599 79.0558 62.2970 74.0467
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Table 11. ANN1 (2–10–5) properties for (α1–α5) of public datasets using PC1–2.

Working Condition 20 Hz–0 V 30 Hz–2 V

Measuring Position P1xyz +
P2xyz P1x + P2x P1y + P2y P1z + P2z P1xyz +

P2xyz P1x + P2x P1y + P2y P1z + P2z

Accuracy
(%)

Training 100 100 91.5 100 100 99.5 87.5 96.7
Validation 100 100 92.0 100 100 99.5 86.6 96.8

Testing 100 100 90.4 99.5 100 99.5 86.6 95.2
Overall 100 100 91.4 99.9 100 99.5 87.2 96.5
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8. Concluding Remarks and Future Possibilities

Industrial rotating machines are multi-component assets which imply that a truly
holistic faults classification framework should be capable of detecting anomalies associated
with each component, since faults rarely occur in isolation. Previous studies on CCS data
fusion have effectively rationalised vibration-based condition monitoring data of rotating
machines as well as characterised most of the faults commonly encountered in practice.
However, as valuable as the findings from those studies were, their applications have been
restricted to rotor-related faults such as misalignment, rub, crack, looseness, and bend,
which often raises questions about the efficacy of the technique. Additionally, the founding
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works on CCS were based on manual classifications, which may be unrealistic for routine
VM that often involves the analysis of huge amounts of data on a continuous basis. In
order to alleviate these challenges, this study enhances current knowledge through the
following two main premises:

• It establishes a framework by which the diagnosis of multiple classes of rotating
machine faults can be automated through machine learning algorithms.

• It incorporates gearbox fault detection into a single framework. Hence, the extension
provided here now considers an entirely different and unique class of rotating machine
components—the gearbox, so as to complement earlier findings and ascertain robustness.

The results observed further affirmed the proficiency of the framework for both rotor
and gearbox faults. Additionally, the proposed approach is primarily based on tools and
features that are universally established across academia and industry (especially amplitude
spectrum), thereby easing the transfer of theoretical knowledge into practice. Considering
that all studies related to the application of CCS and pCCS data fusion approaches to fault
diagnosis feature generation have been purely experimental, future endeavours will focus on
validating such experimental scenarios within a theoretical environment.
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Abbreviations

A Matrix of the input data
ACCS Amplitude of composite coherent spectrum
ASE Spectral energy
aij Element of the input data matrix A
Aj Sample mean of elements of the jth column of A
B Matrix of the new input data without labels
b Total number of measurement points
b′ Scalar bias term of artificial neural network
bij Element of the new input data matrix B
CX Covariance matrix of X
d f Frequency resolution
fGMF Gear mesh frequency
fk Frequency
fs Sampling frequency
h Ordinal number of data points
i Ordinal number of rows of matrix
j Ordinal number of columns of matrix
k Number of nearest neighbours
L Number of largest singular values
m Number of samples
N Number of data points
n Number of features
nR Rotating speed of the pinion
ns Number of vibration signal segments
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p Ordinal number of measurement points
R Real matrix
r Ordinal number of vibration signal segments
S Transformed score matrix
S Coherent cross-power spectral density
SCCS Composite coherent spectrum
Sj Sample standard deviation of the jth column of A
SL Transformed truncated score matrix
T Score matrix for principal components analysis
TL Truncated score matrix
V Orthogonal matrix
W Weights of artificial neural network
X Standardised matrix
X Discrete Fourier transform
XCCS Component of composite coherent spectrum
xij Element of the standardised matrix X
Y Transformed matrix
yij Element of the transformed matrix Y
z Resultant class of machine health condition
zt Number of teeth on pinion
α1–α5 Amplitudes of 1st–5th harmonics of shaft speed
β1–β5 Amplitudes of 1st–5th harmonics of gear mesh frequency
γ1–γ5 Spectrum energies of 1st–5th harmonics of gear mesh frequency
γ2 Coherence
Λ Diagonal matrix

Appendix A

As shown in the Table A1, the performance of (α1–α5) + (β1–β5) + (γ1–γ5) is very
similar to that obtained from using only (γ1–γ5) at 7 and 14 Hz, but performed even more
poorly at 21 Hz. This was adjudged to be owing to the extraction of both (β1–β5) and
(γ1–γ5) from GMF information. Therefore, combining (γ1–γ5) with (α1–α5) + (β1–β5)
would lead to information overload and possible redundancy, which would be counterin-
tuitive to the primary aims of the paper.

Table A1. ANN3 properties for different features using PC1–2.

Feature (α1–α5) + (β1–β5) (γ1–γ5) (α1–α5) + (β1–β5) + (γ1–γ5)

Parameters ANN3 ANN3 ANN3

Network Structure 2–30–3 2–30–3 2–30–3

Rotation Frequency 7 Hz 14 Hz 21 Hz 7 Hz 14 Hz 21 Hz 7 Hz 14 Hz 21 Hz

Accuracy
(%)

Training 98.9 99.1 95.4 99.5 100 89.3 99.6 100 87.3
Validation 99.0 99.0 95.5 99.5 100 89.5 99.5 100 87.0
Testing 99.5 99.0 93.5 99.5 100 87.5 99.5 100 84.0
Overall 99.0 99.1 95.1 99.5 100 89.0 99.6 100 86.8
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