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Abstract: The paper explores the possibility of using high-resolution fiber Bragg grating (FBG)
sensing technology for on-specimen strain measurement in the laboratory. The approach provides a
means to assess the surface deformation of the specimen, both the axial and radial, through a chain
of FBG sensor (C-FBG), in a basic setup of a uniaxial compression test. The method is cost-effective,
straightforward and can be commercialized. Two C-FBG; one was applied directly to the sample
(FBGBare), and the other was packaged (FBGPack) for ease of application. The approach measures
the local strain with high-resolution and accuracy levels that match up to the existing local strain
measuring sensors. The approach enables the evaluation of small-strain properties of the specimen
intelligently. The finite element model analysis deployed has proven the adaptability of the technique
for measuring material deformation. The adhesive thickness and packaging technique have been
shown to influence the sensitivity of the FBG sensors. Owing to the relative ease and low-cost of
instrumentation, the suggested method has a great potential to be routinely applied for elemental
testing in the laboratory.

Keywords: chained FBG sensor; measurement of deformation; uniaxial compression test; elastic
behavior; strain-transfer coefficient

1. Introduction

The study of the mechanical behavior of rocks provides solutions to engineering
problems related to a wide range of human activities, especially with the evolvement of
large geotechnical engineering structures, such as deep tunnels, boreholes for oil and gas,
and tunnels for storage of radioactive waste. Analyzing the mechanical behavior of rocks
requires strain measurement. Most rocks are very stiff, and therefore their strain response
to loading is minimal (microstrain) [1]. It requires a very accurate and high-resolution
device to obtain a realistic stress-strain relationship of the rocks.

In the laboratory, the uniaxial compression test (UCT) is one of the basic tests routinely
performed on rock specimens [2–5]. Both the International Society for Rock Mechanics
(ISRM) [6] and the American Society for Testing and Materials (ASTM) [7] methodizes UCT.
Over the years, devices like linear variable differential transformer (LVDT) [8,9], strain
gauges [10,11], acoustic emission (AE) [9,12], digital image correlation (DIC) [13,14], and
extensometer [15,16] were used during the UCT to determine the strain response of rocks
with acceptable accuracy. High-resolution, accuracy, cost-effectiveness, simplicity, and
reliability are the major factors that entail the selection of instruments for UCT. Difficulties
in mounting, poor resolution, use of many cables, edgy acquisition, high-cost, and loss of
alignment towards the end of the test by some devices, continued to exist, which is why
other new methods continue to evolve.

Fiber Bragg grating (FBG) sensors have been adopted for measuring various quantities
(strain, temperature, pressure, discharge, acceleration, force, displacement, vibration, etc.)
as reflected in both application and review studies [17,18]. Perhaps due to the decreasing
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cost of FBG sensors and the advantages offered over conventional sensors, such as their
embeddability, flexibility, small in size, immune to electrical or magnetic interference
(EMI), resistance to corrosion, multiplexing, multifunctioning, high-resolution, and high
measuring accuracy [17,19–21]. FBG sensor is usually imprinted on a bare fiber, and many
points can be written along the same fiber forming a chain of FBG sensors. Sometimes FBG
requires protection when they are used in a harsh environment. To enhance the mechanical
strength and durability of FBG sensors, they are encapsulated in composite material or
encased in a steel casing fabricated explicitly for a particular sensing purpose [19,22]. Many
techniques of packaging FBG are reported in the literature based on a specific need [23–25].

The conventional strain gauges like electrical resistance strain gauges (SG) and linear
variable differential transformers (LVDTs) get damaged when in contact with water, and
each gauging unit requires many cables making it vulnerable to EMI and electrical noise,
thereby affecting the measured strain. The typical extensometer demands to record values
manually [26], which is hectic and tiring. Digital techniques entail moving the device
frequently and require rigorous post-experimental computation, which is feverish and con-
sumes time. Over the years, the FBG sensor has gained acceptance for use in determining
the mechanical behavior of rocks [16,17,27–30]. FBG has been tentatively bonded to the
core specimen for the determination of stiffness properties [16,17,27–30]. C-FBG can be
used to measure both axial and radial strain of rocks. For simplicity and commercialization,
C-FBG can be packaged as a single sensor for measuring both radial and axial.

The study intends to report the use of bare and packaged C-FBG sensors for axial and
radial strain measurements during the UCT of rock. Two pairs of C-FBG sensors consisting
of two packaged (FBGPack) and two bare (FBGBare), respectively and two strain gauges
are bonded on each specimen. To ascertain the practicability and efficiency of packaged
C-FBG, the strains of the FBGpack are compared with that of the FBGBare, strain gauge
(SG) and linear variable differential transformer (LVDT). All the FBG sensors used in the
experiments are of the same size and imprinted on the same type of optical fiber (OF) for
consistency in the analysis. Numerical studies were conducted on the limestone geometric
models to assess the strain transfer through the FBGpack in comparison with the strain
transfer through the FBGBare.

2. Principle, Calibration and Packaging of FBG for Strain Sensing
2.1. Principle of FBG Strain Sensing Technology

Standard FBG sensors are usually inscribed on a single-mode optical fiber (SMF),
which consists of a cylindrical inner core surrounded by cladding. The refractive index of
the core is higher than that of the cladding. SMF allows the transmission of a single ray of
light over a long-distance, making it suitable for various applications. The most common
way of inscribing FBG is by using a phase mask method where a short segment of the fiber
core is exposed to intense ultraviolet (UV) light through a medium (phase mask). When
the UV light passes through the phase mask, it got diffracted to split into ±1 diffractive
order. The fiber is positioned close to the phase mask, and once the fiber is exposed to
the diffracted UV beams, it generates a periodic pattern to write a grating on the fiber
core. Depending on the phase mask’s periodic pattern space, the grating period would
be half of the phase mask’s period length. A reflection prism is used to inscribe FBG of
various grating lengths with the aid of an adjustable linear guide to adjust the UV beam’s
distance passing through the fiber core. The phase mask technique is simple and cheap.
An inexpensive excimer laser can be used for writing FBG, which makes it suitable for the
mass production environment.

Fiber exposure to UV light creates a permanent periodic alteration in the fiber core’s
refractive index along the axis of the fiber called Bragg grating, which reflects a particular
band of light wavelength and transmits all the others when broadband of light source is
launched into the fiber. The UV pulse energy must be adjusted to a correct level to produce
a perfect FBG sensor. The fiber coating must be removed with a standard stripping tool.
The amount of alteration depends on the intensity of the UV light, photosensitivity of the
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SMF, and exposure duration. Usually, UV light is produced by a krypton fluoride (KrF)
excimer laser at 248 nm or an argon fluoride (ArF) excimer laser at 193 nm [31].

FBG sensing technology is well-known for measuring the strain and temperature
of various structures. Figure 1 illustrates the working principle of the FBG strain sensor
and how strain is measured with the FBG sensor. When OF is subjected to an external
load, it alters the wavelength of the reflected light (Bragg wavelength), as shown in
Figure 1. The relationship between Bragg wavelength and change in strain ∆ε or change in
temperature ∆T can be determined with Equation (1) [32]. Temperature change also affects
the Bragg wavelength shift through thermal expansion and contraction of the periodicity
and refractive index of the gratings [33]. Therefore, it is important to apply temperature
compensation where FBG is used in an environment where temperature varies.

∆λB/λB = (1 − peff)∆ε + (ξ + α)∆T (1)

where λB is the Bragg wavelength given as 2neffΛ, peffis the effective photo-elastic parameter
related to the fiber core, ξ is thermal-optics coefficient of the OF core, α is the thermal
expansion coefficient of the OF, neff is the refraction index of the core of the fiber and Λ is
the grating period of index modulation. These parameters are constant for a particular fiber.
When a measurement is taken at a relatively uniform temperature, any shift in the Bragg
wavelength (∆λB) can be determined using Equation (2). All the uniaxial compression
experiments in this study were conducted under relatively the same laboratory temperature
and in a relatively short period; therefore, the temperature effect is assumed negligible;
hence, Equation (2) is used to obtain the FBG strain:

∆λB = λBε(1 − peff) (2)

where (1 − peff) is a strain constant given as k. peffis constant (0.22); therefore, k is approxi-
mately 0.78 for a typical SMF.
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Figure 1. Working principle of fiber Bragg grating (FBG) sensors.

2.2. FBG Strain Calibration

Many researchers adopt the k value of 0.78, which is acceptable [20,34]. Nevertheless,
some SMF may contain impurities; thus, it is good to determined k based on the available
SMF. The authors have reported a laboratory technique of calibrating FBG sensors for
strain measurement [35]. The apparatus consists of a linear translation stage fitted with
a vernier micrometer, a fabricated box to aid the measurement, a mechanical vibration
isolation platform, and an FBG fixed between the linear translation stage and the box. The
FBG is connected to a smartfiber SmartScan interrogator, and it is used throughout the
study. SmartScan is a very compact and robust interrogator. It is a wavelength division
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multiplexing (WDM) instrument based on a flexible, tunable laser source that enables
high-resolution interrogation at multi kilohertz frequencies. The high-frequency scan rates
allow oversampling and averaging to give an extraordinary resolution. SmartScan has
four channels, scan frequency of 25 kHz, repeatability of less than 1 pm, a wavelength
range of 40 nm from 1528 to 1568 nm and operation temperature between −15 to 55 ◦C [36].
The setup of the experiment is shown in Figure 2a. Both the translation stage and box are
mounted on the platform at a distance of 230 mm apart. FBG sensor is fixed between the
translation stage and the box. When the vernier micrometer is turned, the corresponding
FBG reading is taken with the aid of interrogator. Loading and unloading values are taken
at an interval of 0.01 mm. Figure 2b presents the calibration result. The k value was found
to be 0.751, with R2 of 0.99 and it is used to determine FBG strain for this study.
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Figure 2. Strain calibration of FBG sensor. (a) FBG sensor strain calibration setup. (b) FGB strain calibration result.

Both FBG and SG measure strain by attaching on an object with glue. FBG has high-
resolution and more robust over a long-range than SG. FBG sensors can keep pace with SG
price-wise. They can even be written in the laboratory on SMF, which is very cheap. If the
inscribing machine is available, skilled personnel can imprint FBG on a considerably cheap
OF. FBG sensors provide surpassing qualities, making them suitable for specific specialized
applications. For instance, FBG sensors work very well with composite materials. They are
ideal for measuring high strain (>10,000 µm/m).

2.3. Preparation, Packaging and Attachment of C-FBG Strain Sensors

Several types of fibers can be used to package FBG sensors for engineering purposes:
carbon fiber-reinforced polymer (CFRP), glass fiber-reinforced polymer (GFRP), synthetic
fiber-reinforced polymer (SFRP). The CFRP was selected due to its strength and lightweight.
In addition, the modulus of CFRP and SMF cable is approximately the same. This study
harnessed the quasi-distributed sensing capability to package the FBG sensor that can
measure both the radial and axial strain of rocks. The packaging consists of a layer of CFRP
with FBGs attached to it using cyanoacrylate adhesive followed by a layer of Sellotape to
add more protection. The packaging and attachment of all sensors were conducted using
cyanoacrylate adhesive throughout the study as it was found to be suitable for pasting
FBG on rocks [37].

A pair of FBG sensors are inscribed 25 mm apart, and each pair was spliced to a
connector to enable data login. An L-shaped CFRP of approximately 20 mm by 30 mm was
prepared, and each pair of FBG sensors was attached to the CFRP of 0.5 mm approximate
thickness. Cyanoacrylate adhesive was adopted for pasting the coupled FBG sensors on
the CFRP. The coupled FBG sensors were pasted to the CFRP with cyanoacrylate adhesive.
They were packaged such that one is oriented to measure the strain Y-axis and the other-
oriented to measure deformation along X-axis (Figure 2). By doing so, both axial and radial
strain can be measured with a single FBGPack. To enable data comparison, another pair
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of multiplexed FBGs (FBGBare) were also prepared and spliced to OF connector. Figure 3
illuminates the pictorial view of the final FBGPack sensor.
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Figure 3. FBGs packaged for axial and lateral strain measurement.

To minimize attenuation resulting from bending or medium of transmission, standard
SMF (SMF-28e) was adopted in all experiments for imprinting FBG sensors and connecting
the sensors to the interrogator. In each C-FBG sensor, two FBG sensors are inscribed on the
same SMF, with each grating assigned a different wavelength to enable the interrogator
to capture and record all readings simultaneously using wavelength division multiplex-
ing. All the assigned wavelengths in this study are within the range of 1528 to 1560 nm
(SmartScan wavelength range) to ensure that each sensor works within a particular spectral
range. The FBG sensors were supplied by NanZee Sensing Technology Ltd. and were
inscribed using the phase mask method described in Section 2. Table 1 shows the typical
specifications of the FBG sensors used in the study. All the FBGPack were prepared at least
two days prior to testing and attached to the rock specimen a day before the testing. The
sensor position was marked on each sample, and the surface was cleaned with alcohol
to provide a clean surface free from dusty and oily particles that can affect the bonding
strength. Figure 4 shows the steps for sensor preparation, packaging and attachment to
rock specimen. FBGBare was also attached directly to each sample for measuring lateral and
axial strain. The FBGBare provides a basis for comparing the performance of the FBGPack.
Moreover, SG and LVDT were also deployed for validating the results obtained from FBG
sensors. The FBGPack is fixed to the required position on the host rock with a thin layer
of cyanoacrylate.

Table 1. Typical specifications of the FBG sensors used for experiments.

S/N L (mm) Wavelength λB (nm) BW@−3dB
(nm)

SLSR
(dB)

Reflectivity
(%)

1 10 1530.0 0.171 15 95
2 10 1533.7 0.187 13 95
3 10 1537.0 0.184 15 95
4 10 1540.3 0.169 16 95
5 10 1544.0 0.205 14 95
6 10 1547.6 0.184 13 95
7 10 1551.1 0.183 16 95
8 10 1554.5 0.204 15 95
9 10 1558.0 0.199 15 95

L: length of the gratings; λB: central wavelength (CW) corresponding to each grating; SLSR: side lobe sup-
pression ratio: highest secondary peak bigger than 3 dB amplitude within ±3 nm from CW. For standard
FBGs SLSR > 15 dB; reflectivity R% = 1–10(T(dB)/10): Measured from transmission spectra.
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3. Materials and Methods

In this study, a limestone rock core of 50 mm in diameter was drilled from an under-
ground sewerage pipeline installation site in Ipoh, Perak, Eastern part of Malaysia. The
core was then cut to the size of a laboratory testing specimen of approximately 2.0 aspect
ratio (length/diameter). The two faces of the rock are trimmed cautiously to obtain a per-
fect right circular cylinder following the International Society for Rock Mechanics (ISRM)
standard. The specimens are oven-dried for 24 h before testing to ensure testing on the
dry state.

The uniaxial compression test is conducted with a servo-controlled RT-1000 compres-
sion test machine manufactured by an IPC global rock tester that has an axial loading
capacity of 1000 kN. The testing machine is controlled with the aid of software installed
in a computer that enables the user to set parameters according to the testing condition.
The software provides the user with several options, including the type of the test and
the loading condition (axial force-controlled or displacement controlled). Limestone core
instrumented with FBGPack, FBGBare, and SG attached to the specimen along both axial and
radial direction to record axial and radial strain, respectively, is placed on the lower plate
of the machine. For a better comparison of the recorded data, the FBGPack, FBGBare, and SG
are positioned adjacent to each other, respectively. The uniaxial test was carried out using
a displacement-controlled rate of 0.01 mm/s. Additionally, an LVDT with a measuring
range of 10 mm was mounted on the machine frame with the tip touching the top-loading
plate to record the axial displacement. Figure 5 shows the testing setup, including how the
SG and FBG data are recorded during testing.

Uniaxial testing on the limestone was carried out per the ISRM guidelines and ASTM
D7012-07 standards [6], and the test took 2–5 min to complete. The FBG sensors data
were recorded throughout the testing period at a frequency of 1000 Hz. FBG measures
wavelength, which is converted to strain using the calibration factor obtained in Section 2.2.
The converted strains were used to plot the FBG stress-strain curves for each tested speci-
men. The SG and LVDT data were recorded using an 8 channels dynamic and static strain
measurement data logger (GTDL-160). The SG, LVDT and data logger are manufactured by
JooShin corporation Korea [38]. The FBG data were recorded with the aid of a SmartScan
software installed in a laptop, while the SG and LVDT data were recorded with the support
of multiscan software that comes with GTDL-160 data logger (Figure 5).
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4. Results and Discussion
4.1. Laboratory Experiment

This section presents and discusses the results of the uniaxial compression test ex-
periments performed on limestone specimens equipped with C-FBG sensors (FBGBare
and FBGPack), SG, and LVDT. FBGBare, FBGPack, and SG are attached to the sample for
measuring on-specimen (Local) strain, while LVDT is attached to the upper loading plate
to measure the crosshead deformation. The experiments were conducted at relatively room
temperature, ignoring the effect of changes in temperature on FBG sensors. The C-FBG
sensors were connected to two channels of the SmartScan interrogator for data logging.
The SG and LVDT were connected to the same data logger, and both were controlled with
the same software installed on a laptop. All the sensors were tested by logging in a few
seconds of data to ensure all software and hardware are working correctly before the actual
testing begins.

The stress was plotted against the axial and radial strain response recorded by FBGBare,
FBGPack, SG, and LVDT. A total of 6 specimens were tested, readings from all sensors were
recorded, and the results are presented in Figure 6, with each response designated by a
distinct color.
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Figure 6. Experimental stress-strain curves of limestone specimens (a) UC1, (b) UC2, (c) UC10, (d) UC13, (e) UC26, and
(f) UC31.
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Homogenous specimens were selected by visual inspection. As indicated in Figure 6,
there is a consistency in the stress-strain curves of all the sensors plotted and for all the
specimens. Slight variations in strain response of the local sensors (FBGBare, FBGPack,
and SG) are observed in all the specimens. The LVDT data recorded a much higher
strain response in all the samples. The higher strain recorded by LVDT is evident as it
measures the accumulated deformation from the bottom of the load cell to the bottom
plate, while the FBGBare, FBGPack, and SG measure the strain on the specimen. The findings
are in agreement with [8,13,39,40], which pointed out that measuring the deformation
of the sample using techniques other than the local deformation measuring techniques
is accompanied by bedding and system compliance error. During the experiment, two
significant damages occurred on the rocks; axial splitting with soft crackling and multi
fracturing accompanied by loud crackling and rapid unloading to zero, which agrees
with [41,42].

One of the crucial requirements of a local strain measuring device is high-resolution
and the ability to capture the small strain response of rock since the rock response to
deformation is generally small [40]. To understand the initial strain state achieved by the
sensors, the first few loading stages are magnified, as shown in Figure 6 for each tested
specimen to appreciate the performance of FBG sensors. Both the FBGBare and FBGPack
have demonstrated remarkable performance more than LVDT and similar to the SG in all
the specimens.

Furthermore, elastic parameters (Young’s modulus and Poison’s ratio) that provide
vital information required for the design of excavation, borehole stability, and defining
parameters needed for constitutive models, etc., are computed from the stress–strain
curves. All the moduli are determined at about 50% of UCS. Tangent modulus (Et),
average Eavg modulus, secant modulus (Es), and Poisson’s ratio (v) are computed as per
ASTM D 7012-04 [43]. Figure 7 demonstrates the method adopted for computing Young’s
modulus, while the Poisson’s ratio is calculated using Equation (3).

v = (Et of axial curve/Et of lateral curve) (3)
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The UCS and variations in the computed Young’s modulus of all the specimens are
shown in Table 2. While Young’s modulus obtained from FBGPack is slightly higher in all
the samples, the modulus obtained from FBGBare is almost the same as that of the SG in
all cases. For instance, considering specimen UC1, with reference to SG, Et for FBGPack, is
8% higher, for FBGBare is 1.44% lower, and for LVDT is 26.9% lower.
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Table 2. UCS and Young’s modulus obtained from all the sensors on each specimen.

S/N UCS (MPa) Modulus FBGPack FBGBare SG LVDT

UC1
Et (MPa) 30,070 27,300 27,700 20,240

48.98 Eav (MPa) 29,310 27,630 28,280 20,230
Es (MPa) 33,547 33,320 33,456 21,769

UC2
Et (MPa) 23,820 23,030 22,220 16,770

45.8 Eav (MPa) 23,790 22,070 21,970 16,840
Es (MPa) 23,130 23,131 21,810 15,793

UC10
Et (MPa) 32,520 31,560 - 28,150

52.56 Eav (MPa) 32,820 31,890 - 28,080
Es (MPa) 35,990 35,892 - 25,022

UC13
Et (MPa) 29,010 27,560 29,050 22,350

51.25 Eav (MPa) 28,800 26,880 28,250 21,810
Es (MPa) 28,444 26,947 26,148 18,920

UC26
Et (MPa) 19,300 20,420 19,300 17,100

32.81 Eav (MPa) 19,135 20,290 19,130 17,350
Es (MPa) 20,500 18,222 19,294 13,015

UC31
Et (MPa) 29,750 28,780 29,870 22,610

63.27 Eav (MPa) 28,860 27,230 28,050 21,990
Es (MPa) 30,170 27,002 28,590 17,416

Moreover, a parameter m based on Equation (4) was computed, and the results are
tabulated in Table 3:

m = Etsensor/EtSG (4)

Table 3. Variation of m for sensors across the specimens.

Specimen m
FBGPack

m
FBGBare

m
LVDT

UC1 1.08 0.98 0.73
UC2 1.07 1.04 0.76

UC10 - - -
UC13 0.99 0.95 0.77
UC26 1 1.05 0.89
UC31 1.00 0.96 0.76

In Equation (4), EtSG and Etsensor represent the tangent modulus obtained from the SG
and each of the other sensors (FBGBare, FBGPack, and LVDT), respectively. m measures the
relativeness of the C-FBG sensors and LVDT readings to that of the SG. Values close to unity
indicate perfect agreement between the stiffness obtained from SG and other sensors. The
values of m from all the C-FBG sensors approach unity, which means a definite correlation
between the stiffness from SG and both C-FBG sensors. The values of m for the LVDT are
further away from unity; hence, considerable variation in the stiffness, and it even proves
the accumulation of bedding and machine compliance error associated with measuring
deformation on the machine load cell.

Table 4 summarizes the calculated Poisson’s ratios (v) of the rock from all the sensors.
The calculated v from FBGPack is higher in most specimen than the FBGBare and SG, except
for the samples UC2 and UC13 that have the same values of v as SG. There is a close
resemblance in all the deformation parameters of FBGPack and FBGBare with SG.
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Table 4. Poisson’s ratio of each specimen computed from the sensors.

Specimen FBGPack FBGBare SG

UC1 0.3 0.23 0.21
UC2 0.3 0.24 0.3

UC10 0.27 0.25
UC13 0.32 0.29 0.32
UC26 0.25 0.23 0.22
UC31 0.21 0.23 0.22

4.2. Finite Element Modeling (FEM)

FEM was conducted with Ansys software version R3 2019 to investigate the Strain-
Transfer Coefficient (STC) between the rock surface and the FBG in both the bare and
packaged FBG sensors (Equation (5) defines STC). The geometric models were constructed
in Solidworks for simplicity and then imported to Ansys R3 for modelling. The geometry
of the model was made up of 5 parts; the rock specimen, adhesive, bare or packaged FBG
sensor, top, and base plates. The rock was designed as a solid deformable cylindrical
element of the same size as the experimental test specimen (100 mm by 50 mm); the top and
base plates were designated as circular steel plates of 60 mm diameter and 20 mm length.
The mesh was a structured mesh with 3D hexahedral elements. The method of meshing
used was multizone. Acceptable mech quality was attained with 63,744 total elements
and 267,002 nodes. The mesh size of plates and rock were 5 and 1 mm whereas the size
of adhesive, packaging and FBG mesh was 0.5 mm. The contact between the specimen
and both the top and base steel plates was set as fictional with a 0.02 frictional coefficient.
All the remaining contacts were kept bonded. The loading (10 steps) was assigned as a
displacement control from the top plate, portraying the experimental condition. Table 5
shows the properties of all the materials used in the FEM. The properties of CFRP and
cyano were obtained from the manufacturers [44,45]. The parameters of the UC31 specimen
were adopted for the FEM analysis.

STC =

(
1 −

εr− ε f

εr

)
× 100 (%) (5)

where εr and εf represent deformation on rock and FBG.

Table 5. Properties of model materials.

Limestone Steel Cyano CFRP FBGs

E (GPa) 29.75 200 1.88 70 73
ν 0.21 0.3 0.2 0.32 0.2

UCS (MPa) 63.27 - - - -
σt (MPa) 6.10 460 23.3 504.3
κ (GPa) 17.1 166.67 1.04 64.82 43.45
G (GPa) 12.3 76.92 0.78 26.52 29.92

ρ (kg/m3) 2800 7850 - 1600 2600

The FBG packaging was designed as shown in Figure 8a. The shape of the adhesive
on top of the CFRP was presumed to be elliptical, having 2 mm width, and the FBG was
immersed in the adhesive. The top adhesive thickness is designated as y, while the bottom
adhesive thickness is x. The thickness of CFRP and the adhesive that attached the package
sensor on the rock were kept at 0.3 and 0.1 mm, respectively. During the FEM, displacement
was applied at the top plate incrementally, and the base plate was kept as fixed support.
The model elements, meshing, loading, and FEM analysis are shown in Figure 8.

An STC analysis of the package FBG sensors was carried out as per Table 6. The
analysis was in three classes; in class 1, 2, and 3, the package length was kept at 15, 20
and 30 mm, respectively, while the bottom adhesive thickness (x) was varied, keeping the
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adhesive thickness on top of the FBG (y) constant. Studies have shown that the effect of the
top thickness (y) is negligible [46,47]. As such, it was kept at 0.2 mm throughout this study.

Table 6. FBGPack specification for FEM analysis.

Division Length (mm) Y (mm) X (mm)

Class 1
15 0.2 0.05
15 0.2 0.1
15 0.2 0.2

Class 2
20 0.2 0.05
20 0.2 0.1
20 0.2 0.2

Class 3
30 0.2 0.05
30 0.2 0.1
30 0.2 0.2

The comparison of the stress-strain curves of FBGBare, FBGPack, strain from FBG and
rock elements of FBGPack FEM are shown in Figure 9. The stress-strain curves of FBGPack
FEM is based on a packaging length of 30 mm, the bottom thickness of 0.05 mm and
0.05 mm thickness of adhesive between the CFRP and limestone. All the curves are typical
of brittle character; hence, both models were suitable for characterizing the behavior of
limestone rock tested. There was an agreement between the resulted of the tested and
FEM specimen, which validated the suitability of FBG sensors for strain measurement
in uniaxial compression testing. Values of E were computed as illuminated in Table 7.
Even the stiffness parameters of tested and FEM specimens accorded well with each other.
Though all the results were in agreement with the limit of experimental error, FBGPack
results were more similar to FEM than FBGBare.
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Table 8 presents the effect of packaging length and bottom adhesive thickness (x) on
STC. It can be observed that the length of the package sensor influenced the STC. When
the length increased, the STC also increased. There was also a reduction in STC with an
increase in the bottom thickness. STC was more than 90% at 30 mm packaging length
in all adhesive thickness. Both the length and bottom thickness had influenced the STC.
The highest value of STC was observed at 30 mm packaging length and 0.05 mm bottom
thickness (x); therefore, it was selected for all subsequent analyses. Adhesive thickness was
shown to have greatly influenced STC.
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Table 7. Comparison of stiffness parameters of FEM and experimental results.

Specimen Analysis Et
(GPa)

Eav
(GPa)

Es
(GPa)

UC31

FEMRock 30,560 30,450 30,170
FEMFBG 31,340 31,440 32,192
FBGBare 28,780 27,230 27,002
FBGPack 29,750 28,860 30,170

SG 29,870 28,050 28,590

Table 8. Variation of strain-transfer coefficient (STC) with packaging length.

Packaging Length (mm) STC at x = 0.05 (%) STC at x = 0.1 (%) STC at x = 0.2 (%)

15 82.24 81.55 80.33
20 90.14 89.44 88.5
30 93.64 92.87 91.55

Furthermore, the comparison of STC between the FBGBare and FBGPack demonstrated
that FBGBare was more sensitive than FBGPack (Figure 10). This may be attributed to the
presence of the packaging layer in the case of FBGPack. Figure 10a compare FBGBare and
FBGPack based on the variation of the bottom thickness (x), while the effect of varying the
adhesive thickness between FBGBare and limestone, CFRP and limestone are shown in
Figure 10b, respectively. It is important to note that the bottom thickness was the same as
the thickness between the FBG and limestone for FBGBare. STC reduced with the increase
in adhesive thickness.
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Figure 11 shows the variation of STC as a function of packaging modulus and Poisson’s
ratio (vP) at different values of adhesive Poisson’s ratio (vA). In Figure 11a, vP varied as 0.2,
0.3, and 0.4, CFRP modulus varied as 65, 70, 75 and 80 GPa, while vA was kept constant
(0.2). The same scenario was repeated for vA of 0.3. The sensitivity of the packaged FBG
sensor rose with increasing CFRP modulus. STC declined with the rise in both vA and vP.
This implies that the increase in the package modulus courses corresponding increase in
the sensitivity of the sensor, while a rise in Poisson’s ratio of both adhesive and packaging
material reduced the sensitivity of the sensor.
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4.3. Study of the Effect of Frictional Coefficient (FC) between Steel Plates and Specimen

In many testing situations, less attention is given to the influence of FC on rock stress
and strain data. In this section, five models were analyzed by varying FC (0.05, 0.1, 0.15,
0.2 and 0.25). Figure 12 indicted high peak stress and strain values when FC was increased.
Both peak stress and strain values followed a similar trend. This highlights the importance
of lubricating the top and button steel plates while conducting UCS testing to reduce the
effect of FC on the experimental results.
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5. Conclusions

Smart techniques of measuring rock deformation precisely with reasonable accu-
racy using C-FBG sensors are presented and evaluated. Uniaxial compression tests were
performed on samples with sensors attached to the specimen and the machine load cell.
C-FBG sensors have been shown to offer the advantages of measuring both radial and axial
strain with a single sensor and allowing packaging to ease labour and sensor attachment
complications on the sample.

According to the experimental test results, both the FBGBare and FBGPack compete
with SG and have much higher accuracy than the conventional LVDT. The sensors have
demonstrated effectiveness in monitoring the small strain deformational response of rocks
with ease, high-resolution, and accuracy. It was found out the stiffness parameters obtain
from FBGBare and FBGPack nearly the same as that of the SG.

Furthermore, the FEM employed demonstrated the applicability of the concept for
measuring correct material properties in the laboratory. The STC analyses revealed the
influence of adhesive thickness and packaging material on the sensitivity of both FBGBare
and FBGPack. Even though FBGBare is more sensitive than FBGPack, FBGPack can measure
material deformation with reasonable accuracy. Based on the experimental and numerical
findings, C-FBG sensors can be utilized to measure strain response in the laboratory.
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