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Abstract: In previous works, a non-linear equation describing variable area (VA) flowmeters in
transient was presented. The use of a full nonlinear equation, despite giving accurate results, can
be difficult and time-consuming and it requires having specific software and knowledge at one’s
disposal. The goal of this paper was to simplify the existing model so that it could be used in
applications where ease of use and ease of implementation are more important than accuracy. The
existing model was linearized and simple formulae describing natural frequency and damping
coefficients were derived. With these parameters, it is possible to assess the dynamic properties of a
variable area flowmeter. The step response form can be identified and natural frequency and settling
time can be estimated. The linearized model and the experiment were in reasonable agreement.
The step response type was captured correctly for each of the six VA meter types. The error in the
undamped natural frequency was not larger than 15%, which means that the VA meter sensor’s
dynamic properties can be predicted at the design stage with sufficient precision.

Keywords: variable area flowmeters; rotameters; flow sensors; micro sensors; industry 4.0; mathe-
matical modeling

1. Introduction

The rapid development of Industry 4.0 and the Internet of Things (IoT) has caused
an increased demand for various kinds of sensors. Newman [1] projects that there will be
more than 41 billion IoT devices by 2027, up from about 8 billion in 2019. Most of such
devices include one or more sensors that collect data and information from the surrounding
environment. These sensors measure or detect such quantities as temperature, pressure,
humidity, moisture, sound, light, motion, acceleration, magnetic fields, gases or objects
in proximity. One of the essential quantities is flow rate [2]. Considering the number of
devices that rely on flow rate, one can expect that simple, rugged and cheap sensors will be
of great interest for these purposes.

Therefore, the right solution for the measurement of flow rate could be a variable
area (VA) flowmeter (commonly called a rotameter) equipped with a device that converts
the position of a float into any standardized signal. In [3,4], a simple remote readout
method is proposed that consists of a linear variable differential transformer. Other sources
mention the application of Hall sensors [5,6], magneto-resistive sensor matrices parallel to
the tube [7] or capacitance transmitters [8].

The VA flowmeter is a rugged and economical flow measurement device that is widely
used for both low and medium flow rates in various industries [9–11]. IoT applications
require a simple sensor construction and suitable operational properties, as well as decent
metrological properties. VA flowmeters are characterized by moderate accuracy at best.
However, similarly to process control and automation systems, in IoT applications, dy-
namic properties can be just as or even more important than static performance. Another
advantage for IoT devices is the low and nearly constant pressure drop across VA meters.
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In [12], such parameters as settling time, nature of step response (periodic or aperiodic)
and overshoot of VA meters were studied and optimization procedures were presented.
An analytical model describing VA meter dynamics was developed and validated experi-
mentally. However, the application of such a model is time-consuming and, during the
optimization process, nonlinear equations must be solved hundreds of times or more.
Moreover, it requires appropriate software.

The main goal of this work is to simplify the existing formulae for applications where
ease of use and ease of implementation are more important than accuracy. It was achieved
by transforming the transient equation for VA meters into a linear form. With the linearized
equation, the dynamic properties of the VA meter, such as undamped natural frequency and
damping coefficient, can be obtained with a simple calculator. With such information, the
dynamic performance of a variable area flowmeter can be easily assessed. It can determine
if the response of the flowmeter will be oscillatory or aperiodic. In the case of oscillatory
response, one can check whether the natural frequency would interfere with possible flow
pulsations, which could cause resonance and uncontrolled bouncing of the float. Moreover,
the linearized equations can be used for guidance on which parameters should be modified
to obtain desirable behavior from the meter. Knowledge of natural frequency and damping
can aid in tuning the flow control loop in process control applications.

The presented mathematical model can facilitate the development of new, miniatur-
ized versions of VA meters, particularly useful for IoT applications. The model can also be
used for diagnostics, where the registered flowmeter response to step change is compared
against the linearized model.

2. Materials and Methods
2.1. Basic Theory of VA Meters

This subchapter recalls the basic theory of VA meter operation and introduces the
terminology used throughout the article. For more information on complete derivations,
see [12].

A simple VA meter’s crucial components are a conical tube and a float (Figure 1).
Floats can be centrally guided, which may introduce friction effects or unguided, offering
more repeatable results [13].

The pressure difference across the float results in an upthrust force balanced with the
float’s immersed weight. Analysis of the force balance makes it possible to develop the
steady-state equation of the VA flowmeter [12] in the form:

Q = C(Re)A

√√√√2gVf

(
ρ f − ρ

)
ρA f

(1)

where A(h) = π
(

hd f tanγ + h2tan2γ
)

is the area of the annular slot between the float and
the tube, df is the float diameter, h is the elevation of the float in the tube, γ is half of the
tube’s tapering angle, g is the acceleration due to gravity, Vf is the float volume, ρf is the
float density, ρ is the fluid density and A f = πd2

f /4 is the area of the perpendicular section
of the float.

During the derivation of (1), numerous simplifying assumptions were made. The
contraction effect is present, so the narrowest annular stream section, the “vena contracta”,
is located at some point downstream of the float. Moreover, velocity profiles are not uniform
and viscous effects together with dynamic drag take place. The secondary flows, usually
appearing downstream bends or rectangular ducts [14], will also appear downstream of the
float. The impact of all of these factors can be determined experimentally as a function of
Reynolds number and introduced to Equation (1) in the form of the flow coefficient C(Re).
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Figure 1. Simplified geometry of a variable area flowmeter and the streamlines across it (not to scale).

If volumetric flow rate changes over time, additional terms are present. The equation
describing float movement for incompressible gas during transience was derived in [12]
and it takes the following form:

m
d2h
dt2 = ρA f

[
Q(t)− C(Re)A(h) dh

dt − A f
dh
dt

]2

2[C(Re)A(h)]2
− gm (2)

where m is the mass of the float.
As the differential Equation (2) is nonlinear, it requires numerical methods to approxi-

mate its solution.

2.2. Transformation of the Equation of VA Meter into Linear Form

In [12], the optimization of the VA meter with the use of Equation (2) is presented.
The use of a full nonlinear equation, although giving accurate results, was proven to be
difficult, time-consuming and requiring specific software and knowledge at one’s disposal.
During the optimization process, the equation must be solved hundreds of times or more.

From a practical point of view, it would, therefore, be advantageous to have simple
formulae that allow quick computation of the natural frequency and damping of the VA
flowmeter. In the case of a linear differential equation in the form:

A2
d2h
dt2 + A1

dh
dt

+ A0h = BQ (3)

it is possible to transform it using the Laplace transform into an algebraic equation:

G(s) =
Y(s)
U(s)

=
kω0

2

s2 + 2ζω0s + ω02 (4)
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where k is the static gain, ω0 is the natural frequency, s is a complex variable and ζ is the
damping coefficient. Then, the natural frequency equals:

ω0 =

√
A0

A2
(5)

The damping coefficient ζ equals:

ζ =
A1

2
√

A0 A2
(6)

and the damped natural frequency ω equals:

ω = ω0

√
1− ζ2 (7)

Formulae (5) and (6) may be the basis for optimization of the VA meter in terms of
its dynamic performance (e.g., minimization of the settling time). The linearized version
of Equation (2) is derived in Appendix A. The approach used assumes continuity of the
function in Equation (3). Then, a Taylor series expansion in a stable operating point can be
applied. This expansion is limited to first-order terms, as in [15]. The steady-state position
of the float was chosen as the operating point.

The damping coefficient ζ and undamped natural frequency ω0 take the form:

ω0 =

√√√√ρA f Q2
0

(
πd f tanγ + 2πtan2γh0

)
C(Re)A3(h0)m

(8)

ζ =
ρA f

[
C(Re)A(h0) + A f

]
Q0

2ω0C(Re)A2(h0)m
(9)

where h0 and Q0 are the position of the float in steady state and volumetric flow rate in
steady state, respectively.

Then, the damped natural frequency ω can be calculated from Equation (7) and the
height of the float in the VA meter can be calculated from:

h(t) = kQ0

[
1− 1√

1− ζ2
e−ω0ζtsin

(
ω0

√
1− ζ2t + arctg

√
1− ζ2

ζ

)]
(10)

where k = h0/Q0 and t is time, counting from the flow rate step input.

2.3. Experimental Setup

Six VA flowmeters with two float shapes (plumb bob and sphere) were investigated.
Meters were calibrated with the use of a bell prover and flow coefficient C was determined
experimentally as a function of the Reynolds number. There was a question of the appro-
priate approximating function, which would allow the calculation of a flow coefficient for
any Reynolds number. Various approximating functions were verified: first-, second- and
third-order polynomials, exponential functions and logarithmic functions. The residual
sum of squares was calculated to estimate the goodness of fit. The best fit was obtained
with the use of a logarithmic function:

C(Re) = Dln[E · Re(t) + 1] (11)

Coefficients D and E are listed for each VA meter in Table 1. The averaged values of D
and E coefficients for a plumb bob float can be used for the initial, rough approximation of
the flow coefficient at the design stage, when the real experimental data are not yet known.
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Table 1. List of investigated variable area (VA) flowmeters and their most important parameters.

VA No. Nominal Range
in dm3/h Float Shape df

in mm
dlow

in mm
dhigh

in mm
∆h

in mm
m

in g D E

1 3–30 Plumb bob 3.990 4.080 4.310 236 0.053 0.2369 0.0815
2 20–220 Plumb bob 4.030 4.130 4.560 223 0.381 0.2485 0.0388
3 100–800 Plumb bob 8.910 9.307 10.360 216 0.595 0.2132 0.0502
4 200–2200 Plumb bob 9.020 9.237 10.354 215 4.055 0.1789 0.0929
5 500–3000 Plumb bob 11.030 11.22 12.485 236 7.298 0.1444 0.297

Averaged for plumb bob 0.20438 0.11208
6 550–2400 Sphere 8.731 9.237 10.354 215 27.9 0.1680 0.1654

The experimental study concerning the dynamic performance of VA meters was
conducted with a methodology fully developed by the authors, which is described in detail
in [12].

The test stand is shown in Figure 2. The step change in the flow rate was generated by
opening a fast spring-operated valve. The volumetric flow rate step input was not ideal.
Therefore, it was registered using a hot wire anemometer and later approximated by a
function in the form of

Q(t) = Q0

(
1− e−90t

)
(12)

Figure 2. Test stand for the study of the VA meter’s dynamic performance. 1—fast-opening valve;
2—flow control valve; 3—constant-temperature anemometer with data acquisition system; 4—VA
meter; 5—camera.

This formula was used in the nonlinear equation solution. In the case of the linearized
equation, ideal step input was assumed.

The step response of the meter was registered with an analog 8 mm camera with a
framerate of 50 frames per second. The position of the float was then measured on the
screen of a film previewer.

2.4. Uncertainty Evaluation

Uncertainty analysis for steady state was developed in [12] under the assumption that
the results will be comparable to the transient. As the experimental setup remains the same.
the previously assessed uncertainty values apply to the present study as well.

The uncertainty of computing the steady-state position of the float varied from meter
to meter. The largest uncertainty concerned the 3–30 dm3/h VA meter, where the expanded
uncertainty was equal to U95(h) = 18.02 mm. The uncertainties were smaller for larger VA
meters and were in the range of 2–4.5 mm.

The experimental uncertainty was assessed to be in the range of 0.4–2.6 mm.
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3. Results and Discussion

There is a question of how such a massive simplification as linearization influences
results. In this chapter, the linearized equation results are presented alongside the experi-
mental data and the full nonlinear equation solutions.

The comparison of experimental data with the results obtained from the nonlinear
Equation (2) and linearized Equation (10) is presented in Figures 3–8. Figures 9–11 present
selected images of a step response captured by camera for various step values. In [12], more
images are present for other response forms. The experimental data match the solutions of
the nonlinear equation very well. The differences between experimentally captured step
responses and nonlinear equation solutions are discussed in detail in [12].

Figure 3. Step response for VA meter no. 2 for tested flow rates 60 dm3/h and 100 dm3/h. Damped
natural frequency ω and damping ratio ζ refer to linearized equation solutions.

Figure 4. Step response for VA meter no. 4 for tested flow rates 700 dm3/h and 1000 dm3/h. Damped
natural frequency ω and damping ratio ζ refer to linearized equation solutions.
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The analysis of the calculated values of natural damped frequency ω and damping
coefficient ζ presented in Figures 3–8 can be used to understand VA meter behavior.

The oscillation frequency was higher for a lower step value in Figures 3–5. More-
over, oscillation fragments below steady-state value were shorter than the upper parts in
Figures 3–6. This is easy to explain if we notice that natural frequency also increased as
step value decreased.

Figure 5. Step response for VA meter no. 5 for tested flow rates 975 dm3/h and 1500 dm3/h. Damped
natural frequency ω and damping ratio ζ refer to linearized equation solutions.

Figure 6. Step response for VA meter no. 6 for tested flow rate 1381 dm3/h. Damped natural
frequency ω and damping ratio ζ refer to linearized equation solution.
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Figure 7. Step response for VA meter no. 1 for tested flow rates 10 dm3/h, 20 dm3/h and 30 dm3/h.
Damping ratio ζ refers to linearized equation solutions.

Figure 8. Step response for VA meter no. 3 for tested flow rates 180 dm3/h, 300 dm3/h and
500 dm3/h. Damped natural frequency ω and damping ratio ζ refer to linearized equation solutions.
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Figure 9. Selected frames from the 500 dm3/h step response of VA meter no. 3.

Figure 10. Selected frames from the 300 dm3/h step response of VA meter no. 3.

Figure 11. Selected frames from the 180 dm3/h step response of VA meter no. 3.

The settling time decreased with the step value in both aperiodic and oscillatory
responses. This is also evident as the damping coefficient increased at lower step values.
The overshoot in the oscillatory response was smaller for the linearized model and the
settling time during the aperiodic response was longer.

Comparing parameters such as damping ratio is not possible, because in the exper-
iment and the nonlinear model, the response of the system was significantly different
from a linear response. To assess the differences between both models and experiments,
parameters such as damped natural frequency, overshoot and rise time were calculated.
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The mean absolute error of calculating the damped natural frequency with the linear
model in comparison to the experiment was equal to 6%, with the largest errors not
exceeding 15%.

Overshoot was compared for oscillatory responses. In the case of plumb bob floats, the
linear model always underestimated the overshoot, on average by 32%. The full nonlinear
model either under- or overestimated the overshoot with a mean absolute error of 23%. In
the case of the spherical float, both models overestimated the overshoot—the linear model
by 18% and the nonlinear model by 11%.

Rise time was compared for aperiodic responses. The mean absolute error was equal
to 35% in the case of the linear model and 7% in the case of the nonlinear model.

The linearized model captured the step response type correctly for each of the studied
cases. The accuracy of the linearized model was worse than that of the full nonlinear
model. The largest discrepancies are seen in the Figure 3, especially in the initial stage
of the float movement. This came from the fact that the linearization was based on one
specific operating point—the steady-state position of the float. In the initial stage the float
position was significantly different and the accuracy of the linearized model was reduced.
The approximating function C(Re) was another reason for the discrepancies. Firstly, the
flow coefficient itself is a simplification that considers float shape. The agreement between
experiments and numerical simulations was better for the simple ball shape than for the
more complicated plumb bob shape. Secondly, the approximating function C(Re) was
obtained by means of best fit of experimental data. Moreover, there was the uncertainty of
the experimental data and uncertainty related to the inputs to the model, such as the shape
of the float and the tube, the form of the step function, etc. Another factor that influenced
results was that the plumb bob float rotates which requires some energy from the flow.
This fact was included by neither the nonlinear nor the linearized model.

Although the damping coefficient was overestimated by the linearized equation, it
correctly represented the behavior of the VA meter during transience. If calculated for
several flow values over the meter flow rate range, it could deliver valuable information
regarding its dynamic properties.

4. Conclusions

The primary mathematical model [12] describing the VA meter float during transience
in the form of a nonlinear equation was the basis of the work presented in this paper. The
simplified model presented here could be applied in scenarios where ease of use and ease
of implementation are more important than accuracy. It was successfully validated during
laboratory experiments with air as the test medium, showing good agreement between the
model and experimental results.

After linearization, simple and well-known parameters were determined, namely, the
natural frequency ω and damping coefficient ζ of the meter. They allowed the identification
of the form of the step response (oscillatory or aperiodic) and assessment of the settling
time. Such a form is much more convenient for a system engineer or meter designer.

The accuracy of the linearized model was inevitably worse than the accuracy of the
full, nonlinear model. For the plumb bob float shape, the mean absolute error in computed
overshoot with the linear model was 32%, whereas, in the case of the nonlinear model, it
was 23%. In the case of the spherical float, both models overestimated the overshoot, the
linear model by 18% and the nonlinear model by 11%.

The rise time during aperiodic response was longer for the simplified model. The
mean absolute error was equal to 35% in the case of the linear model and 7% in the case of
the nonlinear model.

The natural frequencies calculated from the linearized model differed from the real
values obtained from experiments by over 12%. However, both models reflected good
agreement with the actual step response characteristics. The accuracy of data derived from
the linearized model will, in most cases, be sufficient to predict the dynamic properties of
the VA meter sensor at the design stage.
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Further research directions could cover the dynamics of VA meters for liquids and
other types of VA meters, such as orifice VA meters. The present paper is limited to plumb
bob and sphere floats; the research scope could be extended to other float shapes in future.
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Nomenclature

A = π (d2−df
2)/4 (m2) Area of the annulus between tube and float

A0. A1. A2. B Coefficients of the differential equation
Af = πdf

2/4 (m2) Area of the float
C (-) Flow coefficient
d (m) Tube diameter corresponding to the current float position
df (m) Float diameter
dlow (m) Tube diameter at the height corresponding to the lower flow rate limit Qmin
dhigh (m) Tube diameter at the height corresponding to the upper flow rate limit Qhigh
D, E (-) Coefficients of a curve approximating C(Re)
g (m/s2) Acceleration due to gravity
h (m) Position of the float related to the zero level
h0 (m) Position of the float in a steady state
hlow (m) Height corresponding to the lower flow rate limit Qmin
hhigh (m) Height corresponding to the upper flow rate limit Qmax
k (m2/s) Gain
m (kg) Float mass
Q (m3/h) Volumetric flow rate
Qmax (m3/h) Upper flow limit
Qmin (m3/h) Lower flow limit
Q0 (m3/h) Volumetric flow rate in steady state
Re (-) Reynolds number
s (-) Complex variable
t (s) Time
U (m/s) Average fluid velocity
U95 (-) Expanded uncertainty at 95% confidence level
Vf (m3) Float volume
∆h (m) Distance between dlow and dhigh
ν (Pa·s) Kinematic viscosity of the fluid
ρ (kg/m3) Fluid density
ρf (kg/m3) Float density
γ (rad) Tapering angle
ζ (-) Damping ratio
ω (1/s) Damped natural frequency
ω0 (1/s) Undamped natural frequency
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Appendix A

The known [12] transient differential equation of the VA meter (2) can be rewritten as

2[C(Re)A(h)]2m d2

dt2 h + ρA f

{
2Q(t)

[
C(Re)A(h) + A f

]
− [2C(Re)A(h)A f+

[C(Re)A(h)]2 + A f
2] d

dt h
}

d
dt h + 2[C(Re)A(h)]2gm = ρA f Q(t)2 (A1)

with
A(h) = π

(
hd f tanγ + h2tan2γ

)
(A2)

Let us denote for convenience that c = C(Re) β1 = πd f tanγ and β2 = πtan2γ. Then,

A(h) = β1h + β2h2 (A3)

An introduction of space representation for this problem yields the following form:

x1(t) = h(t)x2(t) =
d
dt

h(t) (A4)

which allows representing the relation (A1) in the form

2[cA(x1)]
2m d

dt x2

+ρA f

{
2Q(t)[cA(x1) + A f ]− [2cA(x1)A f + [cA(x1)]

2

+A f
2]x2

}
x2 + 2[cA(x1)]

2gm = ρA f Q(t)2
(A5)

After basic transformations. we obtain a state space representation:

d
dt

x1 = x2

d
dt x2 = f (x1, x2, Q)

= − ρA f [cA(x1)+A f ]
[cA(x1)]

2m
Q(t)x2

+
2ρA f {cA(x1)A f +[cA(x1)]

2+A f
2}

2[cA(x1)]
2m

x2
2 − g +

ρA f Q(t)2

2[cA(x1)]
2m

(A6)

where X = [x1(t) x2(t)]T is a vector of states and Q(t) is an input vector. A linearization of non-
linear dynamic system (A6) in a considered state X0 yields a linear dynamic representation
in the form:

d
dt

X = AX + Bu u = Q(t)

Y = CX y(t) = x1(t) = h(t)
(A7)

where

A =

[
0 1
α1 α2

]
B =

[
0
λ

]
C =

[
1 0

]
α1 =

d
dx1

f (x1, x2, Q)

∣∣∣∣
X0

α2 =
d

dx2
f (x1, x2, Q)

∣∣∣∣
X0

λ=
d

dQ
f (x1, x2, Q)

∣∣∣∣
X0

(A8)

A transformation of (A7) into a transfer function form yields a compact representation
of dynamics,

Y(s) = C[s1− A]−1BU(s)⇒ x1(s) =
λ

s2 − α2s− α1
u(s) (A9)
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that contains all of the basic information about the dynamic response of ∆h(t) in respect to
flow ∆Q(t) changes:

H(s) =
β

s2 + 2ζω0s + ω02 Q(s) (A10)

where β is the gain in steady state. ω0 is the eigen-frequency value. and ζ is the damping
factor. This representation must be developed for the steady state, when h(t) is constant
and equal to h0. hence, x2.0 = 0.

The derivation of coefficients α1, α2 and λ for (A9) yields the following formula:

α1 = d
dx1

f (x1, x2 , Q)|X0

= − d
dx1

{
ρA f [cA(x1)+A f ]

c2 A(x1)
2m

Q(t)x2

}∣∣∣∣
X0

+ d
dx1

{
2ρA f c[A(x1)A f +[cA(x1)]

2+A f
2]

2c2 A(x1)
2m

x2
2
}
|X0

+ d
dx1

{
−g +

ρA f Q(t)2

2c2 A(x1)
2m

}∣∣∣∣
X0

(A11)

In the considered steady state x2.0 = 0; hence, it is not necessary to consider the first
two terms of (A11) and in effect we obtain:

α1 = d
dx1

f
(

x1, x2, Q)
∣∣X0 = d

dx1

{
−g +

ρA f Q(t)2

2c2 A(x1)
2m

}∣∣∣∣
X0

= − ρA f Q(t)2[β1+2β2x1]

c2 A(x1)
3m

∣∣∣∣
X0

= − ρA f Q0
2[β1+2β2h0]

c2 A(h0)
3m

(A12)

In the case of the second coefficient α2, we can derive a similar formula, considering
that terms with x2(t) will vanish at steady state:

α2 = d
dx2

f (x1, x2, Q)|X0

= − d
dx2

{
ρA f [cA(x1)+A f ]

c2 A(x1)
2m

Q(t)x2

}∣∣∣∣
X0

+ d
dx2

{
2ρA f [cA(x1)A f +[ cA(x1)]

2+A f
2]

2c2 A(x1)
2m

x2
2
}∣∣∣∣

X0

+ d
dx2

{
−g +

ρA f Q(t)2

2c2 A(x1)
2m

}∣∣∣∣X0 = − ρA f [cA(x1)+A f ]
c2 A(x1)

2m
Q(t)

∣∣∣∣
X0

= − ρA f [cA(h0)+A f ]
c2 A(h0)

2m
Q0

(A13)

The coefficient λ representing a static gain (A9) is determined by a relation derived
like others:

λ = d
dQ f (x1, x2, Q)

∣∣∣
X0

= − d
dQ

{
ρA f [cA(x1)+A f ]

c2 A(x1)
2m

Q(t)x2

}∣∣∣∣
X0

+ d
dQ

{
2ρA f cA(x1)A f +[cA(x1)]

2+A f
2

2c2 A(x1)
2m

x2
2
}∣∣∣∣

X0

+ d
dQ

{
−g +

ρA f Q(t)2

2c2 A(x1)
2m

}∣∣∣∣
X0

=
2ρA f Q(t)

2c2 A(x1)
2m

∣∣∣∣
X0

=
ρA f Q0

c2 A(h0)
2m

(A14)
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Introducing values for steady-state point h0 and Q0, one can obtain the following results:

ω0 =
√
−α1 =

√√√√ρA f Q0
2[β1 + 2β2h0]

c2 A(h0)
3m

=

√√√√ρA f Q0
2
[
πd f tanγ + 2πtan2γh0

]
c2 A(h0)

3m
(A15)

ζ =
−α2

2ω0
=

ρA f

[
cA(h0) + A f

]
2ω0c2 A(h0)

2m
Q0 (A16)

k =
λ

ω2
0

∼=
h0

Qo
(A17)
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