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Abstract: Real-word errors are characterized by being actual terms in the dictionary. By providing
context, real-word errors are detected. Traditional methods to detect and correct such errors are
mostly based on counting the frequency of short word sequences in a corpus. Then, the probability
of a word being a real-word error is computed. On the other hand, state-of-the-art approaches make
use of deep learning models to learn context by extracting semantic features from text. In this work,
a deep learning model were implemented for correcting real-word errors in clinical text. Specifically,
a Seq2seq Neural Machine Translation Model mapped erroneous sentences to correct them. For that,
different types of error were generated in correct sentences by using rules. Different Seq2seq models

check for

updates were trained and evaluated on two corpora: the Wikicorpus and a collection of three clinical datasets.
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with patient information. Moreover, GloVe and Word2Vec pretrained word embeddings were used
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Clinical notes often contain spelling errors due to time and efficiency pressure. Among
abbreviations, punctuation errors and other types of noise, misspellings hinder text pro-
cessing tasks for knowledge extraction such as term disambiguation and named entities
recognition. For that reason, automatic detection and correction of misspellings in med-
ical text are essential to clinical decision support and related endeavors [1,2]. Spelling
detection and correction are considered from the perspective of non-real words and real
words [3]. The former is concerned about misspellings that result in non-existent words,
e.g., ‘graffe’ for ‘giraffe’. These errors are usually detected by looking for them in the
dictionary, and corrected by calculating the edit distance from similar words [4]. On the
other hand, misspellings that result in actual words are referred to as real-word errors [5,6].
For instance, ‘there” for ‘three’ results in a real-word error after the transposition of two
letters. Similarly, grammatical errors are also considered as real-word errors. In this case,
the use of dictionaries is an invalid approach and real words must be analyzed regarding
their context.

Several methods have been proposed to correct real-word errors based on the analysis
Attribution (CC BY) license (https:// ~ Of word context. Traditional approaches may implement rules for error detection based on
creativecommons.org/ licenses /by / word similarity [7] and compute n-gram frequencies to determine the correct word [8]. For
40/). instance, by splitting texts in short sequences and counting their number of occurrences
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in a corpus, the probability of a word being a real-word error is obtained. However,
short n-grams may convey ambiguous meaning, whereas long n-grams are less frequently
found. More recently, deep learning (DL) models have been trained to reflect semantic
and syntactic features from words. Recurrent neural networks (RNNs), specifically long
short-term memory (LSTM) and gated recurrent unit (GRU) cells, memorize relationships
between different time steps in an ordered sequence. Thus, RNNs became the structural
units of the encoder-decoder system in seq2seq neural machine translation, which has
been proposed for grammatical error correction [9]. By contrast, attention mechanisms
have replaced LSTM networks in the transformer architecture providing state-of-the-art
results [10,11].

In this work, a DL approach based on a seq2seq neural machine translation model has
been implemented to correct real-word errors in medical texts written in Spanish. Large
amounts of data are required to train the model. Therefore, synthetic erroneous sentences
were generated by applying a set of rules. Each rule generated a different real-word error
type. Correct sentences were extracted from the Wikicorpus and a collection of medicine
corpora containing clinical notes in Spanish. The use of pre-trained word embeddings
is also relevant in order to extract as many context features from words as possible [12].
Therefore, Word2Vec and GloVe embeddings has been also used as the input data to
the model.

The rest of the paper is organized as follows. In Section 2, state-of-the-art approaches
for real-word error correction are explored. Then, the approach proposed in this work is
described in Section 3, including the corpora used to train the model, pretrained embed-
dings and the developed model. In Section 4, the experiment conducted to validate the
model and its results are discussed. Finally, conclusions and future work are put forward
in Section 5.

2. Related Works

Eight approaches were studied for the purpose of real-word error automatic correction
and other related endeavors. The analyzed approaches were applied to texts in English,
Basque, Arabic and Spanish, but related works for Spanish text are not common. The
methods encountered have been distinguished between rule-based, n-gram counting, noisy
channel, neural embedding and DL methods. Traditional works corresponded to rule-
based systems and word or n-gram counting. The two first studied approaches are the
result of combining the former for detection and the later for correction. However, error
diversity is wide and simple methods may have a limited scope. For that reason, the more
complex a model is, the more robust it will be against different types of error. Similar to
n-gram language models, word embeddings are used for correcting errors by analyzing
their context. On the other hand, DL models learn language representations from previous
examples.

Rule-based approaches are the most straightforward solution. Provided that a con-
dition is met, a predetermined action takes place. However, their implementation is not
necessarily easy, since precise knowledge, as well as an efficient, ordered and complete set
of rules, are required for testing every possible scenario.

One example of a rule-based system was developed in [7] for error detection. The
following rules were implemented for detecting a set of misspelling corrections: edit
distance equal to one, missing white space between two words, edit distance equal to
two, words phonetically similar, combination of the first two rules and concatenation of
multiple words. These rules were applied sequentially; if a rule matched at least one valid
suggestion, the rest were not verified and the procedure was stopped. On the other hand,
the authors introduced a frequency-based correction method. Candidates were generated
by the detection rules. Suggestions were ranked in two ways: taking into account the
context of the misspelled word and calculating single word frequency. In the first case,
the Carnegie Mellon University (CMU)-Cambridge Statistical Language Modelling Toolkit
was used to compute unigram, bigram and trigram probabilities. In the second case,
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word occurrences were counted in the training corpus. A knowledge base was built from
dictionaries containing standard medical terminology. It was intended to remove as many
noisy terms as possible, i.e., abbreviations and variant formats, that could mislead counting.
Finally, both context and single frequencies were combined for a more precise correction.

In addition, a set of heuristics was applied, as accuracy of corrections would increase
for special cases. For instance, suggestions generated by an edit distance equal to one
did not follow the main algorithm and were not ranked by the context-sensitive ranking
algorithm. Misspellings of adverbs ending with “-ly” were corrected satisfactorily by
picking the first candidate in the ranking ending with “-ly”. The use of heuristics suggests
the weakness of rule-based systems due to the variety of error nature.

On the other hand, n-grams consist of sequences of words. A language model assigns
probabilities to sequences of words, i.e., the probability of a sequence to occur in a text
or corpus. Common n-grams are made of two and three words (bigrams and trigrams),
larger sequences may not be often found in the corpus and would result in poorly accurate
models. Interestingly, n-grams take into account the context of the error.

Pratip and Bidyut [8] developed a system based on the local word bigram and trigram.
The probabilities of the n-grams allow the simultaneous detection and correction of real
words. To obtain the probabilities, each target word is assigned a confusion set. This set is
made of words taken from a dictionary, whose minimum edit distance with respect to the
target word is equal to one. The target word is also included. Next, the bigrams and the
trigram of all the words in the set are formed and their frequencies are obtained using the
Brigham Young University (BYU) corpus n-gram counts. Then, n-gram probabilities are
computed. Next, the probability of the left bigram as an example of how to calculate an
n-gram probability is defined:

count(Wi’lw]?)

P(W;

Wifl) _ )

qu:O count(Wi=1Wj)
W! is the word from the confusion set and Wi~ is the word to the left of W]l By count-

]
ing the occurrences of wi—lw;‘, p (W]’ ’ Wi_l) is obtained. Finally, the score is computed by

a linear combination of left, right bigrams and trigram probabilities. To detect real words,
some rules are applied. In general, a real word was detected if the score of the target word
was below 0.01. This threshold was the estimated confidence value for a real-word error to
occur. Because the score of some correct words could be zero, scoring its stemmed form
was also considered. Correction is done by replacing the detected error by the candidate
with the highest score. At last, the method was tested on a corrupted set of 25,000 words
from the Project Gutenberg corpus (http:/ /www.gutenberg.org/ (accessed on 20 April
2021)). To introduce errors in the test dataset, one from every twenty words was selected to
generate a set of strings by substituting, adding or deleting characters. Then, a string was
picked at random from those valid words. In this way, 50 real-word errors were introduced.
Alternatively, errors may be thought of as the distorted output of a communication
channel: the noisy channel distorts the correct word passing through it. In this way,
correction is done by passing every word through a model of the noisy channel and
identifying the closest output to the error. Correction is estimated by means of Bayesian

inference as follows:
¢’ = argmaxP(x|w)P(w), ()

P(x|w) is the probability that word w will be distorted (i.e., misspelled) as x, whereas
P(w) is the probability of w being generated by the source. Estimation ¢’ is the correct word
predicted by the model. P(w) can be calculated by counting the word frequency in the
corpus. P(x|w) can be obtained by computing the inverse of the Damerau-Levenshtein
distance between w and x.

Lai et al. [13] propose the noisy channel for spelling correction in medical texts.
First, preprocessing was done so as to minimize errors present in the training corpus
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and avoid later attempts of correcting proper names, email and website addresses by
the spell checker. In addition, commonly misspelled terms such as “alot” were localized
and corrected. Stanford Named Entity Recognition was used to avoid misclassification
of person names as errors. Second, detection of misspellings was done with the help of
dictionaries containing standard medical terminology. If a word was not found in the
vocabulary, it was considered as a possible misspelling. However, this approach is not
valid for detecting real-word errors. Moreover, a list of suggestions was obtained for each
misspelling using Aspell. A ranking system based on Equation (2) was applied. The error
was corrected if the first suggestion had a score below a threshold value that varied with
the misspelling length.

Among the solutions that have been described so far, only n-grams take advantage
of the error context. Nevertheless, the best current option for that is the use of word
embeddings. An embedding is a representation of words in a vector space. A vector
represents a word and consists of features describing the context of the word in a corpus.
Therefore, two close vectors in the space have similar meaning.

Fivez et al. [14] took advantage of word embeddings for retrieving contextual infor-
mation and countering the frequency bias of context-insensitive correction methods based
on corpus frequency. A word embedding is a vector representation of a word, where each
vector entry contains semantic and syntactic information [3]. Their work is focused on
correcting non-word errors that had been already provided, therefore, no detection method
is described. On the other hand, the authors recommended this method for correcting
real-word errors. Candidates selection was done according to a Damerau-Levenstein
distance of 2 and the Double Metaphone from Aspell, an algorithm for determining the
similarity of two words by analyzing their phonetics. To create the word embedding, a
FastText skip-gram model was trained on a 450-million-word corpus using the default
parameters and an embedding dimension of 300. Scoring of correction candidates was
done by computing the cosine similarity between the candidate word and the context
vector. The context vector was obtained by computing a weighted sum of the word vectors
surrounding the error. Finally, the score was divided by the Damerau-Levenshtein distance
between the candidate and the error. Should the candidate be not be included in the
vocabulary, it would be penalized. The misspelling was replaced by the first candidate in
the ranking.

More recently, DL approaches have been explored. They already implemented so-
lutions for such tasks as speech recognition, language translation and text generation in
the Natural Language Processing (NLP) field [3]. Not surprisingly, researchers have been
studying their performance on the automatic correction of texts. For instance, the seq2seq
neural machine translation [15] is one the most successful methods, although it was initially
designed for language translation. It consists of an encoder, which maps a sentence from
one language to an intermediate vectorized format, and a decoder, which decodes it into
a second language. When applied to automatic correction, the source is the erroneous
sentence and the target is the correct sentence. The uselessness of a detection method is
noticed, since the whole sentence undergoes translation. Nevertheless, the major drawback
of language encoders is the requirement of very large amounts of data for the optimization
of the model parameters. As a solution, synthetic data is generated by introducing errors
in correct sentences.

In [11] a seq2seq approach was used for error correction in the Basque language. The
studied model was the open-source OpenNMT-py, a Seq2Seq architecture based on a self-
attention mechanism [16]. A set of rules generated four types of grammatical error: subject-
verb discordance, wrong use of verb tenses, misuse of verbal suffixes and verb paradigm.
The rules consisted in replacing specific words. To do so, grammatical information was
provided by Eustagger, a morphosyntactic analyzer for the Basque language. For example,
a verb in the future tense was replaced by its equivalent in the present tense. By applying
these rules in different ways, three datasets were created for training the model. In addition
to these, a baseline dataset was compiled, where words were replaced randomly, provided
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that the bigram (previous word, replacement word) existed in the corpus. The first dataset
generated by the rules was obtained by randomly applying just one to each correct sentence.
The second dataset contained sentences with one type of error by applying every rule to
each correct sentence. At last, the third one contained sentences with several types of error
by applying all rules, if possible, to each correct sentence. Moreover, a development dataset
was created automatically following the four strategies. An additional manually reviewed
dataset was created, since the rules could sometimes generate correct sentences. Finally,
unknown words were treated by Byte-Pair Encoding (BPE) tokenization to avoid the open
vocabulary issue.

On the other hand, ELMo (Embeddings from Language Models) [17], BERT (Bidi-
rectional Encoder Representations from Transformers) [18] and RoBERTa (Robustly Opti-
mized BERT pre-training Approach) [19] are considered the state-of-the-art bidirectional
pretrained encoders for language modelling. ELMo learns embeddings that vary according
to the context. Therefore, a word may have multiple representations, in contrast to those
modelled by fastText [20], GloVe [21] and Word2Vec [22]. BERT learns language represen-
tations bidirectionally by randomly masking the tokens of the input texts. RoBERTa is a
highly pretrained BERT model. All of them can be fine-tuned for different NLP tasks, such
as sentiment analysis and next sentence prediction, by adding a few layers and further
training the resulting models.

The ability of these models to detect and locate grammatical errors was studied
in [23]. Error examples were taken from the NUCLE (NUS Corpus of Learner English)
dataset consisting of pairs of erroneous and correct sentences. A confusion set of words
was developed for each error type. The most frequent error types were selected: article,
preposition, link words, noun number and verb form replacements, to name a few. The
probability of confusing one correct word by another was calculated based on the frequency
of that error occurring in NUCLE. To analyze the extent to which the pretrained encoders
identify grammatical errors, probabilistic transformation was used. The method consisted
in sampling the error examples collected from NUCLE and introducing them in selected
positions, which were determined by a parse tree modeled by a syntactic parser. Thus,
separate datasets were built for each error type. Each dataset was made of 10,000 sentences
of 10 to 60 tokens from the 1B Word Benchmark. One or two errors were introduced
to half of the sentences. The datasets were split into training, development and testing
sets by a proportion of 80-10-10, respectively. The following pretrained encoders were
evaluated: (1) ELMo, pretrained on the bidirectional language modelling task on the 1B
Word Benchmark; (2) BERT-base-uncased, pretrained on masked language modelling and
next sentence prediction tasks on 16 GB English text; and (3) RoBERTa, pretrained on
160 GB data. An attention-mechanism layer and a binary classifier layer were added on top
of these models, which were then trained on the error datasets, while the pretrained layers
remained fixed to study their ability to retain information about the error positions. In this
manner, the attention layer was intended to evaluate the identification of the error position
in the sentence and the binary classifier would determine the correctness of the sentence.
As a result, the contextual layers have a stronger ability to detect and locate errors than the
input embedding layers.

In [24] the authors present a system named Sahah for the automatic spelling correction
for dyslexic Arabic text. The proposed tool detects misspelled words by searching for
each word in a dictionary and combines a statistical approach by using the prediction by
partial matching (PPM) compression-based language model and edit operations to generate
possible alternatives for each misspelled word. Then, the correct alternative is chosen using
the number of bits required to encode the text using a compression algorithm. In their
experiments, the authors first evaluated the accuracy of the system using an Arabic corpus
containing errors made by dyslexic writers with 28,203 words, namely, the Bangor Dyslexic
Arabic Corpus (BDAC), and then compared the results with those obtained using word
processing software and an existing text correction tool called Farasa. The BSK corpus,
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which combines three representative corpora for the Arabic language, was used to train
the model.

Finally, a collocation error correction in Spanish learner corpora is described in [25].
Miscollocations are detected using a frequency-based metric. In particular, a corpus
consisting of lists of PoS-tagged n-grams in Spanish is used as a reference. If the frequency
of a given collocation in the reference n-gram list is bellow an empirically calculated
threshold, then such collocation is considered erroneous. Then, in order to correct the
miscollocation different strategies are considered. First, synonyms of the terms used in the
original collocation are analyzed to check if they form a valid collocation. Otherwise, one
out of three possible correction selection metrics are applied to select among correction
candidates generated from the original collocation, namely, affinity metric, lexical context
metric and context feature metric. The Spanish learner corpus ‘Corpus Escrito del Espafiol L2’
(CEDELY) is used in the experiments to test the performance of the collocation recognition
approach and each of the miscollocation correction metrics.

Table 1 summarizes the corpora and methods used in each study. Eight different
approaches were studied. A rule-based system might be straight-forward for detecting
known error types in the text, however, there exist many exceptions which may be un-
noticed by the rules. N-grams attempt to model language by grouping together short
sequences of words and take into account near context when correcting errors. However,
correction is based on counting the frequency of occurrence of n-grams, therefore, very
large corpora are required for this solution to be effective. On the other hand, approaches
based on neural networks provide more information about context than n-grams, although
the issue of the amount of data persists. Finally, most of these methods were applied to
English corpora. In this work, neural networks were proposed to automatically correct
clinical texts in the Spanish language.

Table 1. Corpora and methods used in each study.

Study Corpora Methods Language
Corpus of clinical records of the Rule-based system and
[7] Emergency Department at the frequency-based method for detection ~ English
Concord Hospital, Sidney. and correction, respectively.

8] Brigham Young University bigram Correction frequency-based method: Eneli

- . . . nglish

and trigram corpus. bigram and trigram counting.
[13] Free-text allergy entries from Allergy  Dictionary look-up detection method Enelish
- Repository (PEAR). and noisy channel correction method. &
Clinical free-text from the Medical No detection method. Word
[14] Information Mart for Intensive Care embedding cosine similarity for English
1T (MIMIC-III) database. correction.
[1] Sentences extracted from Basque Correction with seq-2-seq Neural Basque
news websites. Machine Translation model. !
Sentence pairs from 1B Word BERT, RoBERTa gnd ELMO encoders
[23] Bp and feature/fine-tuning based English
enchmark. trainine f locati
raining for error location.
Dictionary look-up detection method.

[24] Bangor Dyslexic Arabic Corpus PPM language model, edit operations Arabic

(BDAC). and compression codelength for

correction.
Error detection based on the
[25] Corpus Escrito del Espafiol L2 frequency of n-grams. Affinity, lexical Spanish
; (CEDEL2). context and context feature metrics to P

select candidate correction.

3. Seq2Seq Neural Machine Translation-Based Approach to Texts Correction

In this work we propose the use of seq2seq for Neural Machine Translation. In this
way, erroneous texts must be tokenized in sentences, which are the input to the model. The
model then maps the erroneous sentences to the correct sentences, provided that it learnt
context from previous examples. Additionally, pretrained embeddings containing semantic
features have been implemented in the model. The overall process and stages adopted
in this research are depicted in Figure 1. In a nutshell, the data analysis pipeline of our
proposal is as follows. First, two corpora are collected to train and test the system. For that,
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different datasets are gathered and integrated. Next, a number of text preprocessing steps
are executed in order to remove unwanted characters and symbols. Then, two datasets for
each corpus are generated by using two complementary error generation strategies. The
implemented seq2seq model is then trained with the generated datasets by considering
different settings including the use of GloVe and Word2Vec pretrained embeddings. Finally,
a post-processing stage is required to deal with some issues of the seq2seq model when
correcting sentences.

Corpora collection

an

Corpora collection

R

Text Preprocessing

a2 v W

D (8

Dataset integration Sentence-tokenizer Sentence-filtering Other preprocessing

v

Dataset compilation

multiple-error  single-error
generation  generation

4
Feature-generation

Unknown-words

Error generation POST-processing

no-pretrained  Word2Vec GloVe o

Seq2Seq
Q

Levenshtein distance

Figure 1. Block diagram of the seq2seg-based approach to clinical texts correction.

In this section, the proposed approach is described in detail. First, some background
on seq2seq neural machine translation is provided. Then, the corpora used to train and
test the system are pointed out and the pretrained embeddings are outlined. Finally, the
steps taken in building the seq2seq model, including text preprocessing, error generation,
dataset compilation, model implementation and correction method, are illustrated.

3.1. Seq2Seq Neural Machine Translation

Seq2seq [15,26] is based on an encoder—decoder system that translates input sentences
into different ones. Difference in length between the input and the output is achieved by
an intermediate vector of fixed-size. This characteristic is desirable in language translation,
where the word length varies from one language to another. However, the output length
may be the same as the input when correcting sentences with errors. In order to extract
features from the sequences, the encoder-decoder system consists of two connected RNNS.
First, the encoder RNN maps the input sentence into an intermediate vector. Second, the
decoder RNN generates the output sentence from the intermediate vector. The conditional
probability of the whole output sentence vy, ..., yp provided the input sentence x1, ..., xt
is given by the intermediate vector v and the previous output y1, ..., y;—1 as shown next:

TI
Py1, ..., yrlxr, oo xr) = [ p(elo, ya, -o) ye1) ®)

t=1



Sensors 2021, 21, 2893

8 of 27

For N sentence pair examples, the encoder and the decoder are jointly trained to
maximize this probability.

It is worth noting that a vector of fixed size might not be long enough to store all
the features of the input sentence, especially if the input is long. For that reason, the
attention mechanism focuses on those parts of the sequences which are the most significant
for predicting the target word [27]. An encoder-decoder with attention works similarly,
although this time the output sentence is predicted as a function of a context vector along
with the previous output, where the context vector c; only contains information about
relevant positions in the source:

P(yilya, ---, Yi—1, X) = f(Yi-1,¢i) 4)

Attention was originally implemented in [27] by using a bidirectional RNN so as to
identify information surrounding the input word. It reads the input sequence xy, ..., x7
- =

—
from left to right and vice versa obtaining the forward hidden states h1 , hy, ..., ht and
—

<
reverse hidden states iy, hy, ..., ht. Then, the hidden states are concatenated to obtain
an annotation. Finally, this annotation vector is used by the decoder to compute the context
vector.

The Transformer Architecture

The transformer is a state-of-the-art encoder-decoder system which performs in the
absence of recurrent layers [16]. These are replaced by feed-forward layers and several
attention layers. One encoder layer is composed of a multi-head attention layer and feed-
forward layer, whereas the decoder layer is composed of two multi-head attention layers
and a feed-forward layer. Scale-dot product attention is used: the dot product of a query
vector is computed for a number of vectors called keys and a softmax function is applied
to obtain the weights on the values. Multi-head attention is the application of several
scale-dot product layers in parallel, so that multiple outputs are considered.

3.2. Initial Setup
3.2.1. Corpora

Two corpora have been used to train and test the proposed system for real-word error
correction: the Wikicorpus and the medicine corpus. The Wikicorpus is the largest one
with more than 611 million words extracted from Wikipedia articles in Spanish, whereas
the medicine corpus is a collection of approximately 5750 clinical cases and 2 million words
derived from three different corpora. The Wikicorpus served as a first test on general
language due to the large amount of data required for the correction systems to work.
Therefore, once the system performed satisfactorily on this data, it was then tested on the
created medical corpus, a much smaller source although indispensable for the purpose of
this work.

Wikicorpus. The Wikicorpus [28] contains large portions of the Wikipedia in Catalan,
Spanish and English. The current version (V.1.0) contains over 750 million words. The texts
have been automatically enriched with linguistic information. They have been annotated
with lemma and part of speech information using the open source library FreeLing [29]. In
addition, word sense disambiguation and lexical similarity features were added using the
Word Sense Disambiguation algorithm [30].

Wikipedia contains a large amount of freely available text resulting in an attractive
resource for NLP applications. However, this fact also requires an effort to cope with text
like redirection, disambiguation and poorly edited pages, which are useless. To that end,
articles with no category were filtered by the authors. On the other hand, raw text was
extracted from the useful articles. Due to processing problems with the text parser, around
80 million words are still missing for the Spanish corpus. The Spanish corpus is the largest
one containing over 611 million of words and 455 tokens per article on average.
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The three corpora (Catalan, Spanish, and English) have been made publicly available
in two formats. The first one contains raw text from the extracted articles and the second
one contains tokenized text with part of speech information. Articles are differentiated
from each other by a header and an ending tag. Depending on the user application, further
preprocessing might be needed because of the quality of articles that is characteristic of an
open resource.

The Spanish corpus in raw format has been used for the purpose of this work, although
the annotated text files may be useful for such tasks as preprocessing and grammatical
error generation.

Medicine corpus. The medicine corpus is a collection of three datasets containing
clinical cases in Spanish: CodiEsp, Medical Document Anonymization (MEDDOCAN) and
Spanish Clinical Case Corpus (SPACCC). Table 2 shows the size of these datasets.

Table 2. Size of the Spanish medicine datasets.

Dataset Cases Sentences Tokens

CodiEsp 3751 50,052 1,233,201
MEDDOCAN 1000 33,000 495,000

SPACCC 20,900 20,900 436,000

CodiEsp is a manually coded corpus of clinical case reports written in Spanish that
cover diverse medical specialties. The corpus was developed for the Clinical Case Coding
in Spanish Shared Task (eHealth CLEF 2020) to promote the development and evaluation
of automatic clinical coding systems for medical documents in Spanish. Clinical coding
standardizes medical records for health information management systems so as to perform
research studies, monitor health trends or facilitate medical billing and reimbursement [31].
The documents are released in plain text format along with separate code files. These
last ones consist of manual annotations on the diagnostic and procedure for each clinical
case. There are 1000 clinical cases: the training set is made of 500 documents and the
development and test sets are made of 250 each. The total number of sentences and tokens
are 16,684 and 411,067, respectively. In addition, a background set of 2751 documents was
made available for the CodiEsp challenge to encourage participants to scale their coding
systems to larger data collections. For the present task, the background set is joined to the
training set in order to increase the number of examples.

MEDDOCAN, on the other hand, contains 1000 clinical cases that were selected
manually by a practicing physician. These were enriched with protected health information
from discharge summaries and medical genetics clinical records. The corpus was created
for the MEDOCCAN: Medical Document Anonymization Track, a challenge devoted to
the anonymization of medical documents in Spanish. The corpus has around 33,000 total
sentences and 33 sentences per clinical case on average. It has 495,000 words in total and an
average of 494 words per clinical case. It has been distributed in plain text, where each case
is stored in a single file. The corpus has been divided into the training, development and
test sets. The training set contains 500 cases, whereas the other two sets contain 250 cases
each. In addition, a background set is present to deter manual corrections and to scale
systems to larger data collections, however, it is the same set as the one provided by the
CodiEsp corpus, so that it has not been included in the final medicine corpus to avoid
duplicates.

Finally, the SPACCC corpus is a collection of clinical cases from SciELO (Scientific
Electronic Library Online), a source that contains scientific articles from Latin America,
South Africa and Spain. The corpus was released for the second Biomedical Abbreviation
Recognition and Resolution (BARR2) track, whose aim was to promote the development of
systems that were able to identify and define medical abbreviations, a frequent resource
amongst healthcare professionals [32]. The corpus contains 1000 articles that were selected
by a clinician according to their similarity to real clinical texts in terms of structure and con-
tent. The approximate number of sentences and tokens are 20,900 and 436,000, respectively.
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Figures were removed in order to extract plain text and those articles having multiple cases
were divided into separate ones. The downloaded corpus is not classified into training,
development and test sets. No annotation is provided either.

3.2.2. Pretrained Embeddings

In this section, pretraining of GloVe and Word2Vec embeddings is described. Word
embeddings are vector representation of words in which similar words tend to have similar
representation. Word embeddings can be learned from scratch for a specific task, such as
sentence classification, or be learned by using a general-purpose task in mind, such as next-
word prediction, and transfer this knowledge to a different task resulting in models that
generalize better and that they work best on data that they have not seen during training.
Our proposal evaluates two different strategies to learn pre-trained word embeddings as
well as the word embeddings that are learnt during training for real-word correction. To
do this, we set different parameters needed to be specified according to the algorithm used,
yet the vocabulary size, word frequency, context window and vector dimension were the
same for the two approaches. Moreover, text was previously preprocessed by masking
numbers and removing non-alphanumeric characters.

GloVe. GloVe embeddings were created using J. Pennington et al. implementation [21].
Training is performed on global word co-occurrences statistics from a corpus. First, the
vocabulary was compiled with words occurring with a minimum frequency in the corpus.
Second, the algorithm built the co-occurrence matrix, whose entries are the frequency of
word pairs. Third, this matrix is provided to learn the embedding. The context window
size was set to five and the embedding size was 512. Words occurring 10 or more times
were considered. The rest of the parameters were set to their default. However, the script
also provided an evaluation step consisting of word similarity queries, i.e., A is to B what C
is to D’, no improvements were observed by modifying the hyperparameters.

Word2Vec (W2V). Word2Vec was implemented using Python/Gensim [33], a machine
learning library for training large-scale semantic NLP models, representing text as vectors
and finding semantically related documents. A word embedding was created with the
Word2Vec model class. The training corpus was organized in a list of sentences. Words
occurring 10 or more times in text were considered. The vector size was set to 512 for
training the Seq2seq model. Finally, a context window of five was thought to capture the
information necessary for error correction. Since Word2Vec is an unsupervised learning
algorithm, there is not an objective evaluation approach.

3.3. Seq2Seq Model Building
3.3.1. Text Preprocessing

Python’s Natural Language Toolkit (NLTK, http://www.nltk.org/ (accessed on 20
April 2021)) [34] has been used at the text preprocessing stage. Text was split into sentences
by using the nltk/sent tokenize method. The method instantiated a tokenizer pretrained on
Spanish texts to mark the beginning and the end of sentences. In this way, a list of sentences
of variable length were obtained. However, the method failed to process semicolons. These
were usually identified as delimiters and were placed at the beginning of the sentences.
For that reason, sentences were processed to remove semicolons at the beginning.

Raw text from the Wikicorpus contained invalid lines that should be removed. Such
lines were mostly metadata and header and ending strings separating the articles. These
lines were identified and filtered. After applying the sentence tokenizer, some sentences
contained external links, the title of related articles and short chains with no meaning.
These sequences were no longer than 5 tokens and thus were filtered by their length.
Additionally, sentences no longer than 40 tokens were selected, since very long sentences
could be difficult to learn by the model.

For the medicine corpus, text from the 3 datasets were joined in a single file. The
clinical cases contained mainly free text and no further preprocessing steps were required.
By contrast, MEDDOCAN text files were structured in fields with personal data and then
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a description of patient history was provided at the end. Fields were removed, so that
sentences were extracted from the bulk of the text. After tokenizing the text in sentences,
these were not filtered by length, since the amount of data was not large enough.

Finally, numbers were masked by replacing them with a string constant. Then, non-
alphanumeric symbols were substituted by a blank space. At last, punctuation signs were
separated by a blank space as stated in [35], otherwise the vocabulary would contain
compound terms. The generated sentences contained only words and punctuation signs.
Moreover, capital letters remained unmodified, since lower-case words at the beginning of
a sentence is another type of real-word error.

3.3.2. Error Generation

A sufficient amount of data are needed to train the seq2seq model, however, such
amount of text is not available when it comes to the task of real-word error correction. As
a solution, errors were introduced in clean text by using rules as it is done in [36]. Errors
were generated straightforwardly in the absence of text annotations and syntactic parsers.
For instance, some corpora contain part-of-speech information about words that could be
useful to generate grammatical errors. On the other hand, syntactic parsers might be used
to introduce the errors in the sentences [11].

Among the errors generated, six types were distinguished: (1) grammatical genre,
(2) number, (3) grammatical genre-number, (4) homophones, (5) Hunspell-generated and
(6) subject-verb concordance. The rules were designed to identify specific substrings in
the target word and replace them to generate a new word. No syntactic or morphological
information was provided to the rules. Therefore, sentence words were iterated by the
rules and the first match was used to introduce an error in the sentence. The new words
generated by the rules were searched in a dictionary to determine whether they were real
words. The dictionary was compiled from the training corpus. All the errors generated
differed as much as three edit operations from the correct word, in other words, three or
less characters were deleted or added to the word to obtain the error. Table 3 shows an
example of an erroneous sentence generated for each type.

Table 3. Different error types used. Errors were generated by replacing word substrings (in Spanish).

Error Type Substring Replacement Erroneous Sentence
Grammatical -ido—-ida Dicho traspaso se realiza unida al de su compafiero.
genre -eras—»-eros Las aguas del oeste son traicioneros.
Number -e—-es La aeronaves terminé contra un muro de contencion.
e -des—-d Consciente de sus numerosas virtud.
Grammatical -050S—-05 Se caracterizan por tener disefios agresivos y sinuosa.
genre-number -ado—-adas El proyecto fue abandonadas hace afos.
Homonhones a-—ha- Es una de las compafiias mds importantes ha nivel mundial.
P -n-—-nh- Receta de pollo con lima y enhebro.
H calle—callé Mas de la mitad de la gente vive ahora en la callé.
unspell : p
agravio—agrado El agrado cost6 el reemplazo de los muebles.
Subject-verb -an—-as Tanto las mujeres como los hombres las llevas.
concordance -aba—-dbamos Peleabamos con los invitados para divertirse.

1.  Grammatical genre errors were generated by identifying the most common morpho-
logical suffixes: -ero, -ano, -ado, -ino, -ido, -ico, -ito, -0so, -ario, -ento, -olo, etc. In Spanish,
as opposed to English, nouns, adjectives, or determiners, have lexical gender and
vary their inflection in order to share an agreement in the same clause. If the input
word ending matched one suffix listed, then the termination was replaced by the
opposite, so that the word genre was modified. The rules were applied to masculine
and feminine words in both singular and plural forms.

2. In asimilar manner, number errors were generated by identifying and modifying the
most common word endings in singular, i.e., -0, -¢, -a, -d, -n, -1, -j and -#, or in plural
form, i.e., -0s, -es, -as. Singular words were replaced by their plural and vice versa,
regardless of their genre.



Sensors 2021, 21, 2893

12 of 27

3.  Grammatical genre-number rules were combined to generate both kinds of error in
the same word. For instance, singular words had their genre modified first and then
the plural form was obtained, whereas plural words were changed to singular and
then its genre was modified.

4. Writing down a list of homophone words would have been tedious. For that reason,
similar rules to those that have been described so far were defined. The most common
homophone words contain the letters b, v, I, y and h, since the pairs b/v and ll/y are
equally pronounced in Spanish, whereas the letter # is silent. Therefore, the rules
determined first whether these characters were present in the target word and then
replaced them by the opposite. If a word started with & or this letter followed after n
or s, then it was removed. The inverse rules were also considered.

5. Inaddition to the previous rules, the method Hunspell/suggest [37] was used so as to
obtain additional real-word error types. The method took an input word and returned
a list of terms that were written in a similar way though they differed in meaning. In
this way, the first suggestion was picked from the list. The generation of previous
errors was avoided by testing the aforementioned rules before picking a word, so that
new error types were obtained.

6. The last type of real-word error generated was concerned with subject and verb
concordance. Spanish verbs are divided into three conjugation groups: -ar, -er and
-ir. For each group, the terminations of the conjugated verbs were listed for past,
present and future tenses in both indicative and subjunctive moods. Only regular
verbs were considered. Additionally, the conjugation of the verb haber was listed,
since it is frequently used as the auxiliary verb in perfect tenses. If the input word
was a verb, then it was identified as long as its termination appeared in the list
and the person was randomly changed by a different one in the same tense. If the
termination was not identified, then the whole word was compared to the conjugation
list of haber. Conjugation groups were identified in the sentence by using the method
Hunspell/stem [37], which returns the verb in its infinitive form.

There are many grammatical features that were not considered, such as grammatical
genre exceptions. Nevertheless, a large enough dataset was obtained by having considered
the most common errors. Additionally, word grammatical genre could have been modified
by simply identifying the last characters of masculine and feminine words -a and -o.
However, this choice was considered as ambiguous, since many unexpected errors would
have been included in the dataset. For instance, the word casa is ineligible in this case,
because its genre is invariant. The output term caso is a real word, but it has a different
meaning. By writing down a list of the most common morphological suffixes, there were
fewer rule misuse cases and the type of error in the sentence was also known. Finally, the
inverse rules were also considered.

3.3.3. Dataset Compilation Strategies

As described in the previous section, rules were created to generate erroneous sen-
tences. Seq2seq input data was organized in one dataset containing the source or erroneous
sentences and a second dataset containing the target or correct sentences. Similar to [11],
different datasets were compiled according to two strategies: (1) many sentences with
different errors were generated from one correct sentence; and (2) only one erroneous
sentence was generated from one correct sentence.

1. The first strategy (hereafter, strategy 1) consisted in generating multiple erroneous
sentences from one correct sentence. For that, the whole set of rules was selected and
applied separately to the correct sentence. In order to balance the number of error
types in the dataset, rules were divided according to the error type they generated
and, for each group, only one rule was applied at random. Therefore, one sentence or
none was obtained for each error type, depending on the rules that were applicable
to the correct sentence. Not every attempt succeeded in generating one erroneous
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sentence. Sentences contained only one error. Additionally, the correct sentence was
added to the erroneous dataset [11], as doing so augmented the training data.

2. The second strategy (hereafter, strategy 2) generated only one erroneous sentence
from the correct sentence by applying only one rule. Thus, only one error type was
generated in the sentence. Again, rules were classified according to the output error
type. The groups were applied at random, so as to make sure that the resulting
dataset had a balanced number of error types. If the rule generated a real word in
the sentence, then the erroneous sentence was added to the dataset and the rest of
the rules were not tested. On the other hand, the correct sentence was added to the
erroneous dataset only when no rule was able to generate an erroneous sentence.

Rules took single words as input. Therefore, the sentence was split into tokens and
iterated by each rule. If a rule matched a token and returned a real word, the matched
token was replaced and the resulting sentence was added to the dataset. Errors were likely
to be generated at the beginning of the sentence. Moreover, some words occurred quite
frequently in the text. In this way, the same error would have been generated often in the
error dataset. Such words were listed, identified and ignored before testing the rules to
increase error variability. For instance, determinants and prepositions were included in
this list.

These strategies were used to compile four datasets from the medicine and Wiki-
corpus. The total number of extracted sentences was 103,959 and 3,539,199, respectively.
Tables 4 and 5 show the number of sentences generated for each error type: grammatical
genre (E1), number (E2), grammatical genre-number (E3), homophone (E4), Hunspell-
generated (E5) and subject-verb concordance (E6). ‘Strategy 1" and ‘Strategy 2’ stand for the
first and second dataset generation strategies described above. Although balance between
error types was intended by generating them at random, some of them were obtained
more frequently. For instance, it was easier to modify the number of any word than a
homophone occurring in the sentence.

Table 4. Number of sentences for each error type for the Wikicorpus datasets. Error types: genre
(E1), number (E2), genre-number (E3), homophone (E4), Hunspell-generated (E5) and subject-verb
concordance (E6).

Wikicorpus El E2 E3 E4 E5 E6
Strategy 1 1,952,506 3,196,193 2,027,014 1,712,850 2,753,397 1,786,375
Strategy 2 472,376 788,092 492,374 415,709 671,898 430,993

Table 5. Number of sentences for each error type for the medicine datasets. Error types: genre
(E1), number (E2), genre-number (E3), homophone (E4), Hunspell-generated (E5) and subject-verb
concordance (E6).

Medicine E1 E2 E3 E4 E5 E6
Strategy 1 64,439 100,871 71,027 27,609 90,917 67,849
Strategy 2 18,537 24,261 19,704 6000 20,004 18,852

3.3.4. Model Implementation

Seq2seq was implemented by using OpenNMT-py, a framework based on Pytorch
for implementing seq2seq neural machine translation models [35]. State-of-the-art models
can be implemented with OpenNMT-py. LSTM (Long Short-Term Memory), GRU (Gated
Recurrent Unit), SRU (Simple Recurrent Unit) hidden units, as well as their bidirectional
variants are available for recurrent layers. Additionally, attention mechanisms at decoder
level improves context learning on longer sentences.

Similar to [11], the transformer model was implemented in this work. However,
this model differs from [16] in the use of recurrent layers instead of feed-forward layers.
Parameter setting was the same, however. For that, see the YAML file in Appendix A.
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OpenNMT-py provides complete documentation and examples of basic scripts for
building, training and testing seq2seq models. Parameters for building the vocabulary and
training the model were configured in a YAML file. In general, three steps are followed
when using OpenNMT-py: vocabulary compilation, training and translation.

First, vocabularies for both source and target languages were created. For the purpose
of error correction one vocabulary was compiled. The vocabulary size may vary between
10 and 50,000 in medium corpora. Large vocabularies complicate learning, whereas small
ones may cause translation issues. The number of sample lines from the text is specified to
build the vocabulary.

Sentences might be preprocessed before training the model, such as removing words
with low frequency and pruning translated sequence length. Similarly, the maximum length
of source and target sentences is optionally set. For the error correction task, the input and
output length should be the same. Additionally, other sorts of data transformation were
available, i.e., data augmentation by random substitution of words, token masking and
BPE-dropout [38]. Previous preprocessing was already applied to the Wikicorpus and the
medical dataset, so none of these techniques were applied.

Second, training starts after compiling the vocabulary and preprocessing the data.
Both the encoder and the decoder have an embedding layer to learn vector representations
of the source and target words. GloVe and Word2Vec pretrained embeddings are also
supported. Three seq2seq architectures are available in OpenNMT-py: RNN-based, CNN-
based and the transformer. The transformer was proved to learn long-term dependencies
between data better than RNN-based models [16]. On the other hand, the CNN-based
architecture is not completely implemented. For these reasons, the transformer architecture
was chosen along with a recurrent layer as in [11]. The transformer does not support
bidirectional recurrent layers, since this feature is only available for the RNN-based archi-
tecture. Multiple GPUs might be optionally configured, otherwise training on a single CPU
can be very slow.

Third, translation consisted in predicting correct sentences from erroneous sentences.
An option allows the user to replace the unknown words in the predictions with the source
token having the highest attention weight. However, such tokens were processed later by
comparing them with the source sentence. The minimum and maximum lengths of the
prediction can be also optionally set. Finally, ensemble prediction with several models is
also possible.

3.3.5. Correction Method

The seq2seq model had some issues when correcting sentences. The development and
test sentences were different from the set used to train the seq2seq model. In this way, some
words in the test set were not found in the training vocabulary. This issue was treated by
writing the constant string <unknown> in the predicted sentence. On the other hand, an
unexpected word was sometimes found at the position of a correct word. Furthermore,
source and predicted sentences varied in length in some cases.

Unknown words were treated by replacing them by the source word. Additionally,
the Levenshtein distance between the source and the predicted words was measured in an
attempt to minimize unexpectedly predicted words. Therefore, the minimum number of
edit operations on the original term to obtain the predicted term was calculated. Recall
that errors were previously generated by addition and deletion of characters. For that
reason, the Levenshtein distance was calculated by taking into account only these edit
operations. Next, a threshold distance was set to determine whether to add the source or the
predicted token to the correct sentence. If the edit distance was below the threshold, then
the prediction was added to the correct sentence. A high threshold increased the possibility
of adding a bad prediction to the correct sentence, whereas a low value dismissed the
correction of errors with higher distance to the correction. The edit distance to the correct
word was 3 for genre, number, genre-number, homophone and Hunspell-generated errors,
whereas it was 6 for subject-verb concordance errors.
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4. Evaluation

The seq2seq model was evaluated with the medicine corpus and the Wikicorpus. The
total number of sentences was 103,959 and 3,539,199, respectively. Both sets were also
combined in a third set in order to evaluate the model performance in mixed corpora.
Recall (R) (Equation (5)), precision (P) (Equation (6)) and Fy5 (Equation (7)) were obtained
in order to evaluate the seq2seq models. These are the most common measures for the task
of real-word error correction [10,11,13].

_ Corrected errors

Total errors ©®)
B Corrected errors ©)
" Corrected errors + Bad corrections
1.25% P xR
5= 0054 P+ R @

For each set of sentences, errors were generated by following the two aforementioned
strategies to compile two training datasets for each corpus as described in Tables 4 and 5 in
Section 3.3.3. The validation dataset used to prevent overfitting contained 5000 sentences.
For each corpus, 10,000 sentences were used in total to compile the evaluation dataset,
which contained the same number of error types. Seq2seq models were also evaluated
according to each error type. The same evaluation dataset was used for both datasets.
Moreover, GloVe and Word2Vec pretrained embeddings were used to train different models.
The main statistics of the datasets employed in the different evaluation experiments are
shown in Table 6.

Table 6. Evaluation datasets statistics.

Training Validation * Test Total
Wikicorpus
Strategy 1 14,181,497 5000 10,000 14,196,497
Strategy 2 3,512,147 5000 10,000 3,527,147
Medicine
corpus
Strategy 1 276,835 5000 9533 291,368
Strategy 2 75,062 5000 9533 89,595
Medicine-
Wikicorpus
Strategy 1 553,670 5000 10,000 568,670
Strategy 2 150,124 5000 10,000 165,124

* The validation dataset is used during training to avoid the model overfitting.

The transformer was configured in the same way as in [16], since the model was very
sensitive to parameter variation. Both the encoder and the decoder contained 6 layers
and the number of heads of the multi-attention layer was 8. The dropout ratio was set to
0.1. Moreover, recurrent layers were implemented in the encoder and the decoder. The
recurrent layer contained 512 hidden units. The training batch size was 4096 sentences,
and the validation batch size was 8. Adam’s optimizer was used. The network weights
were initialized to zero and the initial learning rate was set to 2.0 with 8000 warm-up steps.
The models were trained until no improvement in the validation set was observed and the
model with the highest validation perplexity was chosen. The complete configuration is
available in Appendix A.

4.1. Experiments Sample Corrections

For illustrating purposes, in Table 7 several correct and incorrect sample corrections
are pointed out. In particular, exemplary sentences generated using strategy 2 (i.e., only
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one error type generated in each sentence) in the medicine corpus are shown (‘source’),
along with the original correct sentence (‘target’) and the seq2seq proposed correction.
Examples of successful and failed corrections for each error type are put forward.

Table 7. Sample successful and failed corrections (in Spanish).

Error Type

Result

Sentence (Source/Target/seq2seq Correction)

Grammatical

Success

Source: “Se procede a la electrocoagulacién de varias areas con sangrado activa”
Target: “Se procede a la electrocoagulacion de varias dreas con sangrado activo
Seq2seq correction: “Se procede a la electrocoagulacion de varias areas con sangrado activo”

genre

Failure

Source: “Estabilizacion y traslada a planta de medicina interna”
Target: “Estabilizacion y traslado a planta de medicina interna”
Seq2seq correction: “Estabilizacion y traslada a planta de medicina interna”

Success

Source: “No obstante el pacientes se encuentra tranquilo en actitud placida”
Target: “ No obstante el paciente se encuentra tranquilo en actitud placida”
Seq2seq correction: “No obstante el paciente se encuentra tranquilo en actitud placida”

Number

Failure

Source: “Sin antecedente de enfermedades cronicodegenerativas”
Target: “Sin antecedentes de enfermedades cronicodegenerativas”
Seq2seq correction: “Sin antecedente de enfermedades cronicodegenerativas”

Grammatical

Success

Source: “Los cultiva del LCR fueron negativos”
Target: “Los cultivos del LCR fueron negativos”
Seq2seq correction: “Los cultivos del LCR fueron negativos”

genre-number

Failure

Source: “La movilidad facial estaba conservados”
Target: “La movilidad facial estaba conservada”
Seq2seq correction: “La movilidad facial estaba conservados”

Homophones

Success

Source: “Durante un afio de seguimiento a presentado esputos hemoptoicos ocasionales”
Target: “Durante un afo de seguimiento ha presentado esputos hemoptoicos ocasionales”
Seq2seq correction: “Durante un afio de seguimiento ha presentado esputos hemoptoicos ocasionales”

Failure

Source: “Tampoco refiere el huso de algtin farmaco de forma usual ni alergias”
Target: “Tampoco refiere el uso de algtin farmaco de forma usual ni alergias”
eq2seq correction: “Tampoco refiere el uso de algun farmaco en forma usual ni alergias
Seqg2seq tion: “Tamp f; 1 de algtin f f I ni alergias”

Success

Source: “En la observacion genera, el abdomen se presentaba blando e indoloro”
Target: “En la observacion general, el abdomen se presentaba blando e indoloro”
Seq2seq correction: “En la observacion general, el abdomen se presentaba blando e indoloro”

Hunspell

Failure

Source: “Tras la administracion de contraste la amas realzaba su densidad”
Target: “Tras la administracion de contraste la masa realzaba su densidad”
Seq2seq correction: “Tras la administracién de contraste la amas realzaba su densidad”

Subject-verb

Success

Source: “Se realizo ECO doppler y angioma TAC”
Target: “Se realiza ECO doppler y angioma TAC”
Seq2seq correction: “Se realiza ECO doppler y angioma TAC”

concordance

Failure

Source: “Se realizaron una artrocentesis bajo control de radioscopia con anestesia general”
Target: “Se realiz6 una artrocentesis bajo control de radioscopia con anestesia general”
Seq2seq correction: “Se realizaron una artrocentesis bajo control de radioscopia con anestesia general”

4.2. Performance on All Error Types

Table 8 shows the evaluation of 18 Seq2seq models on all error types described in
Section 3.3.2. The threshold Levenshtein distance to correct one word was set to six, since
the distance between the error and the correct word could be as much as this value.

For Wikicorpus, the model trained on the training set generated using strategy 1 with
no pretrained embedding outperformed the rest (Fo5 = 59.77%). For this training set, recall
and precision were considerably lower when using pretrained embeddings, especially for
GloVe with R = 12.79% and P = 21.71%. However, this was not the case for the models
trained on the training set generated using strategy 2 where Word2Vec and GloVe perfor-
mance improved. Additionally, the results of the model without pretrained embedding
considerably decreased on this dataset (R = 23.58%, P = 46.04% and Fy5 = 38.67%). In
the case of the medicine corpus, the highest performance was given by the models with
no pretrained embedding (Fp5 = 60.53% and Fy5 = 64.98%), followed by those using
Word2Vec (Fp5 = 50.71 and Fy5 = 58.08. ). On the contrary, using GloVe embeddings
provided once more poor results (Fy5 = 17.48% and Fy5 = 24.01%). At last, the results
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achieved by the models trained on the mixed corpus showed a decrease in performance as
compared to the ones obtained on separate corpora. In this case, using GloVe led to the less
significant result so far obtained. In general, models trained on the training set generated
using strategy 2 performed better than those trained on the training set generated using
strategy 1, whereas higher Fy 5 measures were obtained for the models trained on medicine
sentences.

Table 8. Recall (R ), precision (P ) and Fys measure for the datasets generated according to the
strategies listed in Section 3.3.3 (‘Strategy 1’ and ‘Strategy 2’). The results are shown for the Seq2seq
models with GloVe and Word2Vec pretrained embeddings and with no pretrained embedding at all
(-). All error types were considered.

Training Strategy R P Fos

- 37.61 70.19 59.77

Strategy 1 GloVe 12.79 21.71 19.05

wav 18.88 39.72 32.54

Wikicorpus

- 23.58 46.04 38.67

Strategy 2 GloVe 21.16 41.65 34.89

\PAY 23.84 48.42 40.15

- 46.06 65.68 60.53

Strategy 1 GloVe 15.79 17.95 17.48

\AAY 40.07 54.31 50.71

Medicine corpus

- 50.92 69.79 64.98

Strategy 2 GloVe 21.58 2471 24.01

Wwav 46.69 61.82 58.08

- 20.61 45.83 36.82

Strategy 1 GloVe 3.76 4.61 441

Ww2v 14.88 24.79 21.88

Medicine-wikicorpus

- 27.92 56.33 46.81

Strategy 2 GloVe 10.63 13.36 12.70

wav 23.36 40.92 35.57

4.3. Performance on Each Error Type

The same models were evaluated on each error type: (1) grammatical genre, (2)
number, (3) grammatical genre-number, (4) homophones and (5) Hunspell-generated and
(6) subject-verb concordance errors.

1.  Evaluation of grammatical genre error correction. Table 9 shows the performance
of the models on grammatical genre error types. In the Wikicorpus, precision of
models without pretrained embeddings was high (86.35% and 83.14%) and corrected
around 30% of errors. Models using pretrained embeddings provided lower values.
The lowest results were obtained for GloVe with R = 13.92% and P = 30.20%.
Nevertheless, a similar performance to the models without pretrained embedding is
observed for Word2Vec in the training set generated using strategy 2 with R = 30.57%
and P = 74.60%. In the medicine corpus, the performance of the models improved
with respect to the Wikicorpus. The model without pretrained embedding trained
on the training set generated using strategy 2 corrected almost 50% of genre errors.
However, GloVe performance decreased in the training set generated using strategy
1 (Fo5 = 14.22%) and in the training set generated using strategy 2 (Fp5 = 26.21%).
Models with pretrained embeddings improved from the training set generated using
strategy 1 to the training set generated using strategy 2 for both corpora.
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Table 9. Recall (R ), precision (P ) and Fy5 for the evaluation of genre error correction.

Training Strategy R P Fos

- 30.52 86.35 63.22

Strategy 1 GloVe 13.92 30.20 24.47

Ww2v 21.53 65.93 46.68

Wikicorpus

- 32.16 83.14 63.13

Strategy 2 GloVe 25.09 53.56 43.66

W2v 30.57 74.60 57.92

- 36.71 81.70 65.62

Strategy 1 GloVe 11.51 15.12 14.22

Ww2v 30.85 61.19 51.13

Medicine corpus

- 48.10 84.83 73.59

Strategy 2 GloVe 21.48 27.74 26.21

W2v 45.75 78.99 68.97

Evaluation of number error correction. Table 10 shows the performance of the
models on number error types. In the Wikicorpus, the model without pretrained
embedding corrected 43.01% of errors in the training set generated using strategy 1,
whereas it corrected 49.58% in the training set generated using strategy 2. Precision is
high for both: 87.81% and 84.18%, respectively. GloVe results were much lower in the
training set generated using strategy 1 (R = 27.12% and P = 45.53%) and the training
set generated using strategy 2 (R = 39.45% and P = 62.66%), whereas Word2Vec
performed similar to the model without pretrained embedding (R = 48.93% and
P = 81.42%) in the training set generated using strategy 2. In the medicine corpus,
models without pretrained embedding and models with Word2Vec improved when
trained on medicine sentences. The model without pretrained embedding shows
Fo5 = 77.22% in the training set generated using strategy 1 and Fy5 = 82.82% in the
training set generated using strategy 2. This last model corrected more than 70% of
sentences. For both corpora, better results were obtained in the training set generated
using strategy 2 than in the training set generated using strategy 1.

Table 10. Recall (R ), precision (P ) and Fy 5 for the evaluation of number error correction.

Training Strategy R P Fys

- 43.01 87.81 72.67

Strategy 1 GloVe 27.12 45.53 40.09

W2v 37.97 77.00 63.87

Wikicorpus

- 49.58 84.18 73.87

Strategy 2 GloVe 39.45 62.66 56.06

W2v 48.93 81.47 71.91

- 60.32 83.03 77.22

Strategy 1 GloVe 22.35 27.05 25.96

W2v 55.67 74.54 69.81

Medicine corpus

- 72.11 86.01 82.82

Strategy 2 GloVe 28.24 31.42 30.73

W2v 66.57 79.15 76.27

Evaluation of grammatical genre-number error correction. Table 11 shows the per-
formance of the models on grammatical genre-number error types. In the medicine
corpus, the model without pretrained embedding and the model with Word2Vec
corrected 53.40% and 50.74% of sentences when trained on the training set gener-
ated using strategy 1 and a precision of 78.57% and 70.71% was obtained. GloVe
performance was again quite below these values, showing Fy5 = 18.13%. The results
improved after training the models on the training set generated using strategy 2. For
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the model without pretrained embedding, recall was 70.57% and precision 84.90%.
The models trained on Wikicorpus sentences performed lower than when trained
on medicine sentences. However, this is not true for GloVe in both the training sets
generated using strategy 1 and strategy 2, where Fy 5 was equal to 30.49% and 45.75%,
respectively.

Table 11. Recall (R ), precision (P ) and Fy5 for the evaluation of genre-number error correction.

Training Strategy R P Fos

- 35.07 82.37 64.87

Strategy 1 GloVe 19.45 35.53 30.49

Ww2v 30.19 67.61 54.18

Wikicorpus

- 39.61 78.84 65.81

Strategy 2 GloVe 29.97 52.69 45.75

wav 38.14 71.60 60.91

- 53.40 78.57 71.80

Strategy 1 GloVe 16.40 18.63 18.13

Ww2v 50.74 70.71 65.55

Medicine corpus

- 70.57 84.90 81.59

Strategy 2 GloVe 27.64 30.48 29.87

Wwav 64.94 77.74 74.80

Evaluation of homophone error correction. A good performance was obtained for
the models without pretrained embeddings (see Table 12). In the medicine corpus,
recall was equal to 72.24% and precision 88.76% in the training set generated using
strategy 1 and 75.68% and 83.30% in the training set generated using strategy 2. In
the Wikicorpus, recall was 78.41% and precision was 93.34% when trained on the
training set generated using strategy 1, which resulted in Fy 5 = 89.92%. Nevertheless,
these values sharply decreased in the training set generated using strategy 2, resulting
in Fy5 = 42.28%. Then, Word2Vec performed well for the medicine corpus in both
the training sets generated using strategy 1 and strategy 2 with Fy5 = 75.28% and
Fo5 = 74.34%, respectively. Very bad results were obtained for GloVe. For the Wiki-
corpus, this model corrected less than 9% of sentences in the training set generated
using strategy 1 and precision was 19.63%. In line with this, for the medicine corpus
this model corrected 26.11% of the sentences and the precision was 26.54%.

Table 12. Recall (R ), precision (P ) and Fy 5 for the evaluation of homophone error correction.

Training Strategy R P Fos

- 78.41 93.34 89.92

Strategy 1 GloVe 8.77 19.63 15.73

wav 13.20 51.16 32.48

Wikicorpus

- 17.20 66.52 42.28

Strategy 2 GloVe 12.98 33.62 25.51

wav 30.57 74.59 57.92

- 72.24 88.76 84.88

Strategy 1 GloVe 26.11 26.65 26.54

wav 70.75 76.50 75.28

Medicine corpus

- 75.68 83.30 81.66

Strategy 2 GloVe 28.85 29.68 29.51

wav 69.66 75.63 74.34

Evaluation of Hunspell-generated error correction. In Table 13, for the medicine
corpus the model without pretrained embedding corrected only 36.10% of sentences
in the training set generated using strategy 1, whereas the model with Word2Vec
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corrected 30.08%. However, the precision of the former is 75.40% compared to 56.13%
of the latter. In the Wikicorpus, the number of corrected sentences decreased to 17.42%
for the model without pretrained embedding in the training set generated using
strategy 1. The three models revealed a very bad performance in the training set
generated using strategy 2. Actually, for this error type, results decreased in all models
that were trained on the training set generated using strategy 2 in both corpora.

Table 13. Recall (R ), precision (P ) and Fy5 for the evaluation of Hunspell-generated error correction.

Training Strategy R p Fys

- 17.42 78.06 46.03

Strategy 1 GloVe 15.49 40.96 30.82

Ww2v 20.27 58.74 42.58

Wikicorpus

- 10.25 56.60 29.72

Strategy 2 GloVe 7.17 28.00 17.71

Ww2v 7.52 31.88 19.34

- 36.10 75.40 61.92

Strategy 1 GloVe 13.31 16.36 15.64

Ww2v 30.08 56.13 47.85

Medicine corpus

- 20.60 54.57 41.04

Strategy 2 GloVe 9.69 12.95 12.13

Ww2v 20.65 4446 36.13

Evaluation of subject-verb concordance error correction. Models show better per-
formance when trained on the medicine corpus than on the Wikicorpus (see Table 14).
In the medicine corpus, the model without pretrained embedding corrected 44.55% of
sentences in the training set generated using strategy 1 and 47.39% in the training set
generated using strategy 2. Precision was low for both datasets (59.30% and 62.18%).
The model with Word2Vec corrected 41.37% of sentences in the training set generated
using strategy 1 and 43.01% in the training set generated using strategy 2, whereas the
model with GloVe corrected 16.65% of sentences in the training set generated using
strategy 1 and 19.72% in the training set generated using strategy 2. The results of the
models in the Wikicorpus are poorer than in the medicine corpus. The model without
pretrained embedding corrected 24.55% of sentences in the training set generated
using strategy 1, whereas the models using GloVe and Word2Vec corrected 7.89% and
10.96%, respectively.

Table 14. Recall (R ), precision (P ) and Fy5 for the evaluation of subject-verb concordance error

correction.
Training Strategy R P Fys

- 24.55 50.00 41.41

Strategy 1 GloVe 7.89 16.55 13.57

\\PAY 10.96 33.95 23.92

Wikicorpus

- 15.23 44.48 32.14

Strategy 2 GloVe 11.89 32.58 24.17

W2V 14.24 38.46 28.70

- 44.55 59.30 55.61

Strategy 1 GloVe 16.65 18.69 18.25

W2V 41.37 52.07 49.51

Medicine corpus

- 47.39 62.18 58.53

Strategy 2 GloVe 19.72 22.74 22.06

W2v 43.01 55.59 52.52
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The results obtained from the evaluation of subject-verb concordance error correction
were very poor. The reason for that could have been the large Levenshtein distance
between the generated error and the correct word, which in some cases was as much as
six. Similarly, some Hunspell-generated errors had distances larger than three. Moreover,
mistakes usually occur by editing one or two characters. Errors with a higher number of
edit operations are unlikely. Therefore, new models were trained on sentences without
subject-verb concordance error, whereas Hunspell-generated errors of distance equal to
two were selected. The goal was to find out whether correction results improved.

Table 15 shows Fy5 for (E1) grammatical genre, (E2) number, (E3) grammatical genre-
number, (E4) homophones and (E5) Hunspell-generated errors. These values were com-
pared before and after removing subject-verb concordance error types. Results were
obtained for both Wiki and medicine corpora.

Table 15. Comparison of F5 measures before and after removing the subject-verb concordance error
type and selecting Hunspell-generated errors of Levenshtein distance equal to two. No pretrained
embedding was used. (E1) genre, (E2) number, (E3) genre-number, (E4) homophones and (E5)
Hunspell-generated errors.

Training Strategy El E2 E3 E4 E5

Before 63.22 72.67 64.87 89.92 46.03
After 54.41 65.30 50.81 86.91 78.92

Before 63.13 73.83 65.81 42.28 29.72

Strategy 1

Wikicorpus

Strategy2  afier 5129 6736 4968 7374 7099
Strategy ] Before 6562 7722 7180 8483 6192
&Y After 5002 7196 6214  77.09  77.53
Medicine corpus
Before 7359 8282 8159  81.66  41.04
Strategy 2

After 56.52 74.78 67.16 72.44 7442

4.4. Discussion

Compared to [11], in which the authors use seq2seq for grammatical error correction
for the Basque language, the performance of seq2seq for the corpus used in this research
was low. Taking into account all error types, the best model trained on the medicine
corpus only corrected 50% of the total number of sentences, whereas precision was near
70%. On the other hand, a few models revealed good results for homophone, number and
grammatical genre-number, where the number of corrected sentences increased to 70%.
Correction of errors generated with Hunspell and subject-verb concordance errors showed
the lowest rate.

Models trained on the Wikicorpus were expected initially to perform better than those
trained on medicine sentences, due to the larger amount of data. Wikicorpus sentences
varied in length from 5 to 60 tokens. Moreover, article topics were diverse, which resulted in
a very large vocabulary and unknown words in the evaluation set, whereas known words
were used in different contexts. At last, Wikipedia is open source and widely contributed,
so that they may contain syntactic and grammatical errors. On the contrary, clinical text
vocabulary and context was reduced to one single domain and sentences were written in a
simple style. This could answer why results improved for models trained on the medicine
corpus even if the dataset was smaller.

After comparison of the models trained on the training set generated using strategy
1 to those trained on the training set generated using strategy 2, different results were
obtained according to the type of error. In general, models performed better on the training
set generated using strategy 2 for genre, number and grammatical genre-number errors,
whereas better results were obtained on the training set generated using strategy 1 for
Hunspell-generated errors. Repeating the same sentence with a different error each time
might be adequate depending on the error type. Grammatical genre and number variants
of a same word convey the same meaning in a sentence, although it is not grammatically
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correct. In fact, these categories would be produced in the training set generated using
strategy 1 by modifying the grammatical genre and number of the same word to form
different sentences. This would lead to repeating data and, thus, overfitting. However,
Hunspell-generated errors completely differed in meaning. In this way, the modified
sentence was different with respect to the others, providing the model with a new example.
Nevertheless, different models should be trained on Hunspell-generated errors only and
then grammatical genre and number errors to clarify the statement of data redundancy.

The use of GloVe and Word2Vec pretrained embeddings had different impacts on the
results. These approaches extract features by means of different techniques. Nevertheless,
the fact that the lowest results were obtained by GloVe does not imply that this approach
is less suitable for learning embeddings. On the other hand, success is believed to rely
on the adjustment of parameters. The model is not sensitive to the variation of every
parameter, therefore, only some of them may affect the results. The embedding size used in
the experiments was 512, however, a common value is 300. The transformer required this
parameter to be equal to the number of units in the recurrent layers of the encoder and the
decoder. By decreasing the size of the recurrent layers, the performance did as well, due
to the sensibility of the transformer architecture. Therefore, whether the embedding size
affected the final result, it should not be modified. On the contrary, Word2Vec performed
much better with the same embedding size. For future work, the impact on performance
of other related feature extraction techniques such as doc2vec, TF-IDF and bag-of-words
(BoW) will be explored.

By combining several corpora, larger datasets could be obtained to train the Seq2seq
model. The same number of sentences from the Wikicorpus were added to the medicine
sentences so as to determine whether results improved. On the contrary, this solution
did not work as performance decreased for all the models. The medicine corpus itself is
a collection of three different sources, however, they all belong to the same domain and
sentences are written in a similar style. Relating two completely different corpora might
have been the reason for a decrease in the results.

By removing the subject-verb concordance errors (Table 15), F0.5 decreased for each
error type except for Hunspell-generated errors (E5) and many were removed from the
training set generated using strategy 1, decreasing the training dataset size. On the contrary,
more errors of the other categories were generated without repetition of sentences and
the same dataset size was obtained in the training set generated using strategy 2, yet
the results were lower than before. This suggests that error variability in the training
dataset improves the performance of seq2seq correction. On the other hand, correction of
Hunspell-generated errors improved by selecting those of Levenshtein distance shorter
than two.

5. Conclusions and Future Work

Real-word errors can affect the performance of automatic text processing tools, in-
cluding decision support systems and recommender systems. In the medical domain,
these errors can even lead to serious deficiencies in patient care services [13]. In order to
tackle this problem, in this work a DL approach was evaluated on the task of real-word
error correction in Spanish clinical texts. In particular, we proposed the use of a Seq2seq
model for neural machine translation, which translates erroneous sentences to correct
ones. Moreover, in the absence of sufficiently large amounts of text, the implementation
of pretrained embeddings and model performance on mixed corpora were evaluated in
this work.

The performance results obtained were poorer than expected at the beginning, espe-
cially considering those published in [11]. It is worth noting that Basque (the language
on which [11] is focused) and Spanish are completely different, so the comparison of the
results must be taken with caution. First, Basque is an agglutinative language whereas
Spanish is fusional, so the way in which words are composed is different and so is the
probability of generating real-word errors. Moreover, although Spanish and Basque share
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the alphabet to a great extent, the conjugations and declinations are very different. Second,
Basque is the only surviving Pre-Indo-European language in Western Europe. Spanish, in
contrast, is derived from Latin and has a very wide lexical richness with words derived
from Italian, French, English, Romanian and Latin America. Third, Basque has only rarely
accented markers, which can reduce the possibility of producing real-word errors as with
the diacritical mark in Spanish. Forth, Spanish has many homonymy words since the 'h’” is

VA ALY

silent in Spanish and several letters in Spanish are pronounced the same (e.g., ‘b’-'v’, ‘g’-7,
mw-y).

The medicine corpus was much smaller in size than the Wikicorpus, but context was
restricted to a unique domain and the sentences extracted were uniform, which led to better
results. By contrast, not enough samples were obtained and clinical text scarcity continues
to be an issue. Moreover, repeating several times a sentence by modifying word genre and
number may produce model overfitting during training, since genre and number do not
change the meaning of the correct word, whereas Hunspell-generated errors completely
differ in meaning, which may provide new samples.

Performance clearly decreased in the experiments when using pretrained embeddings.
The poorest results were obtained with GloVe, although those obtained with Word2Vec
were not far from the best models. A possible explanation for this is the difficulty of training
word vectors with a large embedding size. For future work, a new GloVe embedding would
be trained on a larger corpus such as the Spanish Billion Word Corpus (SPWC) [39]. In
addition, we will check the reliability of contextual word embeddings based on BETO
(https:/ /github.com /dccuchile/beto (accessed on 20 April 2021)) [40] and then fine-tune
them to the medical domain. We will also evaluate the reliability of pretrained word
embeddings like FastText, which, contrary to Word2Vec, also handles out-of-vocabulary
words because word embeddings are learned from character n-grams instead of words.
These Spanish word embeddings have been evaluated in other NLP tasks with promising
results [41-43]. Moreover, the possibility to adapt non-Spanish pre-trained embeddings
specifically built for domains close to the medical one such as BioBERT (‘Bidirectional
Encoder Representations from Transformers for Biomedical Text Mining’, https://github.
com/naver/biobert-pretrained (accessed on 20 April 2021)) [44] will be analyzed.

Joining both Wiki and medicine corpora decreased the performance of the models.
This solution might be adopted as long as the data sources are similar. Therefore, a model
for correcting medical texts should be trained exclusively on data from that domain. In line
with this, new training datasets could be compiled in future work, so that they only contain
one error type to study the variation of model performance. For instance, different models
could be trained on Hunspell-generated errors only and on genre and number errors to
study data redundancy.

A natural next step, which we leave for future work, is to assess whether clinical
decision support systems improve when dealing with the corrected sentences or not.
Similarly, the impact of real-word errors correction in semantic-based recommendation
engines such as that described in [45] is to be measured.
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Appendix A

Seq2seq YAML configuration file:

# Where the samples will be written

save_data: wiki_spanish/run/example

# Where the vocab(s) will be written

src_vocab: wiki_spanish/run/example.vocab.src
tgt_vocab: wiki_spanish/run/example.vocab.tgt
# Prevent overwriting existing files in the folder
overwrite: True

# Corpus opts:

data:

corpus_1:

path_src:/directory/of /the/source/training/set/
path_tgt:/directory/of /the/target/training/set/
valid:

path_src:/directory/of /the/source/development/set/
path_tgt:/directory/of /the/target/development/set/
# Vocabulary files that were just created
src_vocab: directory/of/the/source/vocabulary/
tgt_vocab: directory/of/the/target/vocabulary/
# General opts
save_model:/directory/of/the/saved /model/
save_checkpoint_steps: 500

valid_steps: 500

train_steps: 2000

# Batching

queue_size: 10000

bucket_size: 32768

batch_type: “tokens”

batch_size: 4096

valid_batch_size: 8

max_generator_batches: 2

accum_count: [4]

accum_steps: [0]

# Optimization

model_dtype: “fp32”

optim: “adam”

learning_rate: 2

warmup_steps: 8000

decay_method: “noam”

adam_beta2: 0.998

max_grad_norm: 0
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label_smoothing: 0.1
param_init: 0
param_init_glorot: true
normalization: “tokens”

# Model

encoder_type: transformer
decoder_type: transformer
position_encoding: true
enc_layers: 6

dec_layers: 6

heads: 8

rnn_size: 512
word_vec_size: 512
transformer_ff: 2048
dropout_steps: [0]
dropout: [0.1]
attention_dropout: [0.1]
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