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Abstract: Signal-dependent speckle-like noise has constituted a serious factor in Brillouin-grating
based frequency-modulated continuous-wave (FMCW) reflectometry and it has been indispensable
for improving the signal-to-noise ratio (S/N) of the Brillouin dynamic grating measurement to clarify
the noise generation mechanism. In this paper we show theoretically and experimentally that the
noise is generated by the frequency fluctuations of the pump light from a laser diode (LD). We could
increase the S/N from 36 to 190 merely by driving the LD using a current source with reduced
technical noise. On the basis of our experimental result, we derived the theoretical formula for S/N
as a function of distance, which contained the second and fourth-order moments of the frequency
fluctuations, by assuming that the pump light frequency was modulated by the technical noise. We
calculated S/N along the 1.35 m long optical fiber numerically using the measured power spectral
density of the frequency fluctuations, and the resulting distributions agreed with the measured
values in the 10 to 190 range. Since higher performance levels are required if the pump light source is
to maintain the S/N as the fiber length increases, we can use the formula to calculate the light source
specifications including the spectral width and rms value of the frequency fluctuations to achieve a
high S/N while testing a fiber of a given length.

Keywords: fiber optics; fiber sensing; optical interference; nonlinear optics; four-wave mixing;
Brillouin dynamic grating; optical reflectometry

1. Introduction

The Brillouin-enhanced four-wave mixing induced by counter-propagating pump
lights and one probe light produces backward Stokes light at every location in an optical
fiber under test [1], which is assumed to be the reflection of the probe light by the acoustic
wave or Brillouin dynamic grating generated in the fiber by the two pump lights. Optical
time-domain reflectometry (OTDR) has been used to detect the power of the Stokes light as
a function of distance while changing the frequency difference between the pump lights to
obtain the Brillouin spectrum distribution in the optical fiber [2–6]. A micrometer-scale spa-
tial resolution is indispensable for diagnosing planar lightwave circuits (PLCs) [7] with the
same four-wave mixing technique. Since the spatial resolution of the OTDR is determined
by the temporal width of the employed optical pulses, a picosecond optical pulse should
be launched into the optical fiber and detect return pulses without deformation by using a
high-speed optical detector. Such an attempt to increase the spatial resolution often resulted
in increased electrical noise due to the ultra-wide detection bandwidth over 10 GHz, and
this degraded the signal-to-noise ratio (S/N). To our knowledge, therefore, there have
been no reports on Brillouin dynamic grating measurement with a micrometer-scale spatial
resolution using the OTDR method.

Sensors 2021, 21, 2870. https://doi.org/10.3390/s21082870 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21082870
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21082870
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21082870?type=check_update&version=2


Sensors 2021, 21, 2870 2 of 33

To overcome the S/N degradation, we have proposed Brillouin grating-based coherent
frequency-modulated continuous-wave (FMCW) reflectometry [8], which is the frequency-
domain counterpart of optical low coherence reflectometry (OLCR) [9] and it detects the
power of the Stokes light by utilizing its interference with local oscillator (LO) light at
a detection bandwidth of less than 1 MHz. We have succeeded in incorporating a fiber
loop mechanism in conventional coherent FMCW reflectometry to generate the Stokes
light [10–12]. Since the distance to the fiber segment where the Stokes light is generated is
derived from the beat frequency, we do not have to use a mechanical stage such as that
used in OLCR and thus we can extend the available distance range much further than
can be achieved by the translation of the stage. Hereafter in this paper, the distribution of
the Stokes light power along a fiber is referred to simply as a reflectogram from the fiber.
Once we acquire reflectograms at various frequency differences, the Brillouin spectrum
distribution along the optical fiber is obtained by changing the horizontal grid from equal
distances to equal frequency intervals in the two-dimensional power data, which provides
us with the strain distribution of the fiber.

Although we succeeded in demonstrating reflection measurement from a Brillouin
dynamic grating with coherent FMCW reflectometry, we found signal-dependent mul-
tiplicative noise [13] to be the dominant noise, which meant that we could not improve
the S/N merely by increasing the powers of the tunable laser output and pump lights
and/or by narrowing the detection bandwidth. Hereafter in this paper, for convenience
such multiplicative noise is referred to as speckle-like noise. Since the reflectograms that
we derived from different measurements or made at different times had unavoidable
speckle-like noise, we had no choice but to repetitively sweep the tunable laser source and
add them to obtain a smoothed profile at every frequency difference. That is, we could
obtain the desired Brillouin spectrum distribution and thus the strain distribution only
after making a vast number of the repetitive sweeps over a long period of time. Therefore,
to reduce the number of sweeps and the measurement time it was indispensable that we
clarify the origin of the speckle-like noise and reduce it greatly.

This paper shows theoretically and experimentally that the speckle-like noise was
generated by frequency fluctuations contained in the output light wave from the distributed
feedback laser diode (DFB LD) used as the pump light source. Since the current from
the employed current source injected into the LD had components that fluctuated with
time, or technical noise, the resultant instantaneous frequency of the light output also
fluctuated, and this generated the speckle-like noise in the reflectogram. First, we describe
the experimental setup we employed for the coherent FMCW reflectometry system. Since
silica-based PLC chips are usually between few millimeters and several tens of centimeters
long, we adjusted the length of the optical fiber under test to be around 1 m. We constructed
an unbalanced Mach-Zehnder interferometer (MZI) to obtain the power spectral density
of the frequency fluctuations [14]. We employed two commercially available current
sources from different manufacturers to drive the same LD, which had different power
spectral density distributions. We used the density data to calculate the theoretical S/N
and compared it with the experimental result.

Next, we theoretically derive the S/N dependence on the power spectral density
of the frequency fluctuations on the condition that the absolute value of the complex
amplitude of the acoustic wave or Brillouin dynamic grating was constant along the fiber.
We calculated the second and fourth-order terms of the variance of the fluctuating Stokes
light signal, which depended on the moments of the instantaneous frequency deviation
of the pump light wave, and we derived the latter term as the correction of the former.
Then, we compare the theoretical results with the experimental data obtained from a 1.35 m
long optical fiber to confirm that the speckle-like noise was generated by the frequency
fluctuations of the pump light waves. We showed that the second-order term provided us
with the correct values for the S/N ranging from 10 to 190 when the coherence effect of the
pump light wave was negligible. Then we measured the S/N distributions for 10 and 40 m
long optical fibers. As the fiber length approached the coherence length of the pump light,



Sensors 2021, 21, 2870 3 of 33

the S/N values calculated with both the second and fourth-order terms no longer agreed
with the measured value. Finally, we introduced the coherence function of the pump light
wave into the second and fourth-order terms of the variance to explain the coherent effect
and compared the calculated results with the data.

2. Experiment Setup and Basic Formulation
2.1. Experimental Setup for the Reflectometer

The Brillouin grating-based coherent FMCW reflectometer comprised the conven-
tional coherent FMCW reflectometry setup [10–12] for detecting the reflection from a
device under test (DUT) and an optical fiber loop [2–6] for generating an acoustic wave
or Brillouin dynamic grating in the DUT by counter-propagating pump lights, as shown
in Figure 1. The conventional FMCW part was designed to detect the reflection whose
optical frequency was down-converted by the Brillouin dynamic grating induced in the
DUT. To achieve this detection, we incorporated a single-sideband modulator (SSBM) in
the LO arm to down-convert the LO light. The power of the probe light launched into
the DUT was 60 mW. The photocurrent output from the balanced mixer was converted
to a voltage with a transimpedance amplifier (TIA) to obtain the beat signal waveform
produced by interference between the Stokes light and the LO light. We drove the LiNbO3
phase modulators of PM1 and PM3 at f 0 = 150 kHz and f 1 = 190 kHz, respectively, with
sawtooth voltage waveforms supplied by a two-channel function generator so that the
carrier frequency of the beat signal waveform was f 1 − f 0 = 40 kHz.
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Figure 1. Schematic of Brillouin grating-based coherent FMCW reflectometry setup [15], which consisted of the conventional
coherent FMCW reflectometry setup for detecting the reflection from a device under test (DUT) and an optical fiber
loop for generating a Brillouin dynamic grating in the DUT. DFB LD: Distributed feedback laser diode, CL1 and CL2:
Optical circulators, CP1, CP2 and CP3: 3-dB optical fiber couplers, EDFA: Erbium-doped fiber amplifier, PC1 and PC2:
Polarization controllers, PBS1 and PBS2: Polarization beam splitters, SSBM: Single-sideband modulator (T.SBXH1.5-20PD-
ADC, Sumitomo Osaka Cement), FG: 2-channel function generator, PM1, PM2 and PM3: LiNbO3 phase modulators
(LN65S-FC, Thorlabs), LO: Local oscillator, TIA: Transimpedance amplifier, ωp: Pump light frequency, Ω: Up-conversion
frequency of the pump light which is equal to the down-conversion frequency of the LO light, f 0 = 150 kHz, f 1 = 190 kHz.
Picosecond pulses were launched into the fiber loop to locate the position at zc where the optical path lengths of the
counter-propagating pump light waves were equal.

Although not shown in Figure 1, some of the tunable laser output was supplied to an
auxiliary unbalanced fiber-optic MZI to change the grid of the interference fringe produced
during the frequency sweep from equal time to equal frequency increments. The time delay
between the two arms of the MZI was adjusted to 58.449 ns. We sampled the beat signal
waveform from the balanced mixer twice when the reference beat signal from the MZI
traveled one cycle. The DUT, which is shown in blue in Figure 1, consisted of four pieces of
single-mode fiber. Two of them were fiber pigtails attached to optical circulators CL1 and
CL2 and the rest were fiber patch cords with angled physical contact (APC) connectors. We
spliced each pigtail to either patch cord using fusion splicing and mated the connectors
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together with an SC/APC adapter. The total length of the DUT was L = 1.35 m and the
bases of the fiber pigtails at the CL1 and CL2 were denoted as the input and output ends
of the DUT, respectively. We used a configuration consisting of a pair of polarization
controllers (PC1 and PC2) and a polarization beam splitter (PBS2) to block the pump light
from entering the balanced mixer [15].

In the optical fiber loop, we used a DFB LD operating at 1550 nm as the pump light
source, which was driven by two commercially available current sources that we refer to
as current sources A and B. We used current source A for the reflection measurements
described in our previous papers [8,15], whereas we prepared current source B specifically
for use in this experiment. The LD was packaged in an aluminum case where a D-sub
connector was attached to supply injection current to the LD and control current to a
thermoelectric cooler installed in the LD module. We selected either current source as the
LD driver by connecting the D-sub connector at the LD case with that of the current source
via RS232 cable.

The LD output was divided into two with an optical fiber coupler (CP3) for use as two
counter-propagating pump lights. We describe the fixed frequency of the laser output as
ωp in the figure. To up-convert the frequency of the pump light by the same frequency Ω
as the down-conversion frequency of the probe light, we applied phase modulation at Ω
to the pump light with a LiNbO3 phase modulator (PM2) and extracted the up-converted
light component with an optical narrow-band filter. The resultant pump light at ωp + Ω
was amplified with an erbium-doped fiber amplifier (EDFA), combined with the probe light
at a polarization beam splitter (PBS1), and launched into the DUT after passing through
the optical circulator CL1, where the launched power was 120 mW. The other laser output
was launched into the DUT from the opposite direction for use as a pump light at ωp after
passing through the optical circulator CL2.

We drove the pump LD with the current source A and acquired 30 reflectograms from
the 1.35 m long fiber by repeatedly sweeping the tunable laser, as shown in Figure 2a, where
the up-conversion frequency was 10.861 GHz. The optical fiber had two spliced points
and one mated point where the Brillouin frequency shifts had been moved downward
so that the Stokes signals at those points decreased rapidly. With current source A, the
signal changed greatly with every sweep, and we had to obtain a smooth profile by adding
individual reflectograms. We then drove the same LD with another current source, B, while
maintaining the same measurement condition and found that the signal variations were
greatly reduced, as shown in Figure 2b. By comparing these results, we considered that the
noise contained in the current injected into the LD produced the fluctuations in the optical
frequency of the pump light, which resulted in the signal variations. We placed the optical
fiber under test straight on an optical bench in a normal laboratory environment, but the
Stokes signal changed gradually along the fiber. This was because the optical fiber was not
a polarization-maintaining fiber and the states of polarization (SOPs) of the pump lights
and the probe light changed along the fiber, resulting in changes in both the amplitude and
SOP of the Stokes light.
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Figure 2. Overwritten reflectograms from a 1.35 m long optical fiber that were obtained by 30 frequency sweeps of a tunable
laser when the pump LD was driven with (a) current source A and (b) current source B. The up-conversion frequency was
10.861 GHz.

2.2. Basic Formulation Using Instantaneous Frequency Shift

In Figure 3, the light propagation of the two pump light waves in the fiber loop is
shown with green dotted lines, and the optical fiber as the DUT is shown in blue. The
origin of the distance z is chosen at the point where the optical path lengths of the LO light
and the reflection from the point are equal. We assume that the fiber distributed from the
input end at z = zi to the output end at z = ze so that the total length was ze − zi = L = 1.35 m.
The acoustic field at time t and distance z excited by material density fluctuations in the
DUT is described as ρ(z,t) = ρ0 + {R(z)exp[i(qz − Ωt)] + c.c.} [1], where ρ0 is mean density, q
is the wavenumber of the acoustic field, Ω is the frequency difference between the counter-
propagating pump light waves, i is pure imaginary and c.c. denotes the complex conjugate.
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Figure 3. Schematic of the propagation (highlighted in green) of counter-propagating pump light
waves from the LD in the fiber loop. t5 and t6 are the propagation times of the pump light waves from
the LD to optical circulators CL1 and CL2, respectively. z is a coordinate of the distance along the
fiber under test highlighted in blue and the origin of the distance is positioned at the point where the
produced reflection has the same optical path length as the LO light at the balanced mixer. The input
and output ends of the fiber were assumed to be located at zi and ze, respectively. τ is the round-trip
time from the origin to any position at z as defined by τ = 2nz/c, where n is the refractive index of
the fiber and c is the velocity of light in a vacuum. Similarly, τi and τe are defined as τi = 2nzi/c and
τe = 2nze/c. Ap1 and Ap2 are the complex amplitudes of the electric fields of the pump light waves
propagating in the clockwise and counterclockwise directions, respectively. The center of pumping is
defined by the position where the optical path lengths of the two pump light waves are equal in the
optical fiber loop. CL1 and CL2: Optical circulators, CP3: Fiber coupler, LD: Laser diode.
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Under a steady-state condition, the amplitude of the acoustic wave is denoted as:

R(z) =
ε0γeq2 Ap1 A∗P2

Ω2
B −Ω2 − iΩΓB

, (1)

where ε0 is the vacuum permittivity, γe is the electrostrictive constant of the DUT material,
ΩB is the center frequency of the Brillouin spectrum as a function of z, which is to be
measured with the reflectometer, and ΓB is the Brillouin linewidth. When the amplitude
of the electric field of the LD output at t is denoted as A(t), the amplitudes of the counter-
propagating pump light waves at (t,z) are represented by Ap1 = c1A(t − t5 − nz/c) and
Ap2 = c2A(t − t6 − n(L − z)/c), where c1 and c2 are constants, and t5 and t6 are the times
required for these light waves to propagate from the LD to the optical circulators CL1
and CL2, respectively. It should be noted that we had already introduced parameters t1
t2, t3 and t4 as the propagation times in the reflectometer setup in our previous paper [8]
and thus in this paper we introduce new parameters t5 and t6 to avoid confusion. The
phases of both waves always agree with each other at a point z = zc = L/2 + c(t6 − t5)/2n,
which is hereafter referred to as the center of pumping. Here we introduce τ and τc as the
round-trip times from the origin to a point at z and to the center of pumping at zc, which
are given by τ = 2nz/c and τc = 2nzc/c, respectively. By shifting the origin of time t by
t5, the amplitudes of the counter-propagating pump light waves at (t, z) are denoted as
Ap1 = c1A(t − τ/2) and Ap2 = c2A(t − τc + τ/2).

If the phase of the output light wave from the LD is modulated by the technical noise
contained in the injection current, we can denote its amplitude as A(t) = A0exp(−iφ(t)) with
a constant A0, and thus Ap1Ap2* in Equation (1) is written as Ap1Ap2 * = c1c2 *A(t−τ/2)A
*(t− τc + τ/2) = c1c2 *|A0|2exp{− i[φ(t− τ/2)-φ(t− τc + τ/2)]}, where the phase difference
is expanded to φ(t − τ/2) − φ(t − τc + τ/2)= φ′(t)(τc − τ) + φ′ ′(t)(τ − τc)τc/2 + . . . That
is, the absolute value of the complex amplitude of the acoustic wave is unchanged, but its
temporal phase is modulated by the technical noise. When we make an approximation
where φ(t − τ/2) − φ(t − τc + τ/2) ≈ φ′(t)(τc − τ), the approximation error is of the
order of the product of the root-mean-square value of φ′ ′(t) and the maximum value of
|(τ − τc)τc|/2.

Since the phase induced by the current noise is generally represented by φ(t) = ∑φkcos2
πfkt, we have φ′(t) = −2π∑δνksin2πfkt and thus φ′ ′(t) = −(2π)2∑δνkfkcos2πfkt, where δνk
is the maximum frequency deviation at fk. Since φ′(t)/2π is the instantaneous frequency
deviation of the pump light wave from the center frequency, its mean square value, which
is denoted as δνrms

2, is calculated to be δνrms
2 = ∑δνk

2/2. Similarly, we have <(φ′ ′(t))2

> = (2π)4∑δνk
2fk2/2, which should be less than (2π)4f u

2∑δνk
2/2 = (2π)4f u

2δνrms
2, where f u

is the upper limit of the frequency contributing to the speckle-like noise. The result shows
that we can estimate the root mean square value of φ′ ′(t) as

√
< (φ′ ′(t))2> ≈ (2π)2f uδνrms.

On the other hand, the factor |(τ−τc)τc|/2 is of the order of τe
2/8 because τe ≈ 0 and

thus τc ≈ τe/2 and 0 < τ < τe. Therefore, we find that the approximation error is of the
order of {

√
< (φ′ ′(t))2 >}τe

2/8 = π2f uδνrmsτe
2/2. In our experiment we adopt τe = 13.5 ns,

f u ≈ 1 kHz, and δνrms ≈ 2 MHz for the current source A, as will be described in Section 4,
and thus the approximation error is estimated to be 1.8 × 10−6 rad, meaning that the
accuracy of the approximation φ(t − τ/2) − φ(t − τc + τ/2) ≈ φ′(t)(τc − τ) is very high
and the error is negligibly small.

Since φ′(t) represents the instantaneous angular frequency deviation from ωp, we
denote it as ∆(t) so that we have a good approximation of φ(t − τ/2) − φ(t − τc + τ/2)
≈ ∆(t)(τc − τ). We have already derived the expression for the power of the Stokes light
as a function of τ [8]. With this approximation, the power is obtained by calculating the
absolute square of the Fourier inverse transform of the following analytic signal I(t) with
respect to ω(t):

I(t) =

+∞∫
−∞

r(τ1)e−i∆(t)(τc−τ1)e−i(ω1+ω(t)−ωp)τ1 dτ1, (2)
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where the proportionality coefficient of the signal is included in r(τ) for simplicity so that
r(τ) is the complex function of τ which is independent of the phase modulation due to
technical noise. ω1 and ω1 + ω(t) are the start frequency and the instantaneous frequency
at time t of the tunable laser output, respectively. The phase of the analytic signal changed
with time due to ∆(t), resulted in the fluctuations of the Stokes light signal.

2.3. Experimental Setup for Measuring Power Spectral Density

We define the signal-to-noise ratio or S/N of the reflection measurement by the ratio
of the mean level of the fluctuating powers of the Stokes light signal to their standard
deviation, which is defined by the square root of the variance. Since the variance depends
on the power spectral density of the angular frequency fluctuations ∆(t), we constructed
an unbalanced fiber-optic MZI as shown in Figure 4 to measure the power spectral den-
sity [14,16–19]. Since we did not have two more LiNbO3 phase modulators for frequency
up-conversion, we installed acousto-optic frequency modulators (AOM1 and AOM2) in the
two arms of the interferometer and drove them so that the frequency difference between
the up-conversion frequencies in both arms became the same at 40 kHz. By connecting a
fiber patch cord as a fiber delay line to one arm of the interferometer, we adjusted the time
delay between the two arms to τMZI = 8.912 ns.
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Figure 4. Schematic of an unbalanced Mach-Zehnder interferometer (MZI) used to measure frequency
fluctuations of the light that was incident from the input port of the MZI. AOM1 and AOM2: Acousto-
optic frequency shifters, FG: Function generator, PC3: Polarization controller, TIA: Transimpedance
amplifier. f 2 and f 3 are up-conversion frequencies by the AMO1 and AOM2, respectively. PC3 was
adjusted for the amplitude of the beat signal to reach its maximum value. The inset shows a typical
phase change waveform, which was retrieved from the acquired beat signal waveform.

We launched the output from the DFB LD into the MZI and sampled the beat signal
from the balanced mixer at a rate of 256 k samples/s for 11.7 s. We calculated the Fourier
transform of the acquired waveform from which we removed the carrier frequency and
calculated the Fourier inverse transform of the result to obtain the analytic signal. Then we
unwrapped the phase term of the analytic signal and obtained the temporal change of the
phase, as shown by the inset in Figure 4. The overall profile of the retrieved phase change
tended to decay gradually and then remained constant mainly due to environmental
perturbations applied to the MZI during the measurement. Considering that the delay time
τMZI was shorter than τe, the phase of the analytic signal is given by ∆(t)τMZI, and so we
could obtain the actual change of ∆(t) by dividing the measured phase change by the delay
τMZI. It is noted that the temporal change of the light frequency, δν(t), is given by ∆(t)/2π.

We calculated the power spectral density H(f ) of the temporal frequency change
by applying Fourier transformation to δν(t) which was given by ∆(t)/2π, as shown in
Figure 5a,b, where the LD was driven with current sources A and B, respectively, and
the sampling interval was 0.0853 Hz. For comparison, in each figure we plotted the
spectral density, which we obtained from a low noise continuous wave diode-pumped
solid state (DPSS) laser operating at 1.34 µm. Each spectral density from the LD contained
a vast number of peaks that were superimposed on the gradually decaying background
component. Since all the components ranging from 1 Hz to 10 kHz were larger than the
background noise level of the spectral density of the DPSS laser, we concluded that they all
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originated from the frequency fluctuations of the LD itself, not from noise in the detection
system.
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Figure 5. Power spectral density (shown in red) of the frequency fluctuations of the LD output when
it was driven with (a) current source A and (b) current source B. The power spectral density obtained
from a diode-pumped solid-state (DPSS) laser is also plotted in blue in each figure.

Over a 100 Hz to 1 kHz frequency range, we observed more intense peaks in the
spectral density (a) than in (b), which we considered to be the main origin of the larger
fluctuations in the reflectograms in (a) than in (b) of Figure 2. As observed in the inset
in Figure 4, the phase changed gradually for 11.7 s mainly due to external perturbations
applied to the interferometer, and thus we concluded that the spectral components ranging
from 0.1 to 1 Hz in both Figure 5a,b arose not from the actual frequency fluctuations, but
from the environmental perturbations.

3. Calculation

In this section we derive the mean level and standard deviation of the fluctuating
power of the Stokes light signal to obtain the S/N of the reflection measurement. We
assume that the frequency of the tunable laser output sweeps from the start frequency ω1
sufficiently linearly with time to meet ω(t) = βt with a constant β. To simplify the calculation
of the Fourier inverse transform of Equation (2) with respect to ω(t), we introduce a new
variable ω̃, which is defined by ω1 + ω(t) − ωp = ω̃, so that t is a function of ω̃ represented
by t =(ω̃ + ωp − ω1)/β. By expanding the exponential function in the integrand of I(t) in
power series up to the fourth order, I(t) is approximated as:

I(t) =
4

∑
k = 0

(−i)k

k!

+∞∫
−∞

r(τ1)∆k(t)(τc − τ1)
ke−ivτ1 dτ1. (3)

The Fourier inverse transform of I(t) with respect to ω̃ is then written as:

1
2π

+∞∫
−∞

I(t1)eiv1τdv1 =
4

∑
k = 0

X(k), (4)

where X(0) = r(τ) and:

X(k) =
(−i)k

2πk!

+∞∫
−∞

+∞∫
−∞

r(τ1)∆k(t1)(τc − τ1)
keiv1(τ−τ1) dτ1dv1 (k= 1 ∼ 4), (5)

and where t1 = (ω̃1 + ωp − ω1)/β. Hereafter we abbreviate r(τ) as r when there is no
confusion.
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X(0) = r(τ) is independent of the random process, whereas X(k) (k ≥ 1) is a random
variable that contains the kth power of ∆(t) in the integrand. From Equation (4) the absolute
square is given by:

Z =

∣∣∣∣∣ 4

∑
k = 0

X(k)

∣∣∣∣∣
2

=
4

∑
k = 0

4

∑
j = 0

X(k)X(j)∗, (6)

which provides the mean value of Z as:

〈Z〉 = |r|2 +
[
r ∗
(〈

X(2)
〉
+
〈

X(4)
〉)

+ c.c.
]
+

〈∣∣∣X(1)
∣∣∣2〉+

〈∣∣∣X(2)
∣∣∣2〉. (7)

when we decompose Z into <Z> +δZ, the variance σ2 of Z is <(δZ)2 >, which is represented by:

σ2 =

〈(
Y(1) + Y(2)

1 + Y(2)
2 + Y(3) + Y(4)

1 + Y(4)
2

)2
〉

. (8)

The calculations for deriving Equations (7) and (8) are detailed in Appendix A, where
the summands in Equation (8) are defined by Equations (A5) to (A10). The superscript k in
Y(k) denotes that Y(k) contains the kth power of ∆(t) in the integral.

In accordance with the Wiener–Khinchin theorem [20,21], we introduce the power
spectral density G(χ) of ∆(t), which is defined by:

〈∆(t1)∆(t2)〉 =

+∞∫
−∞

G(χ)e−iχ(t1−t2) dχ, (9)

where G(χ) should be a real-valued and even function of the angular frequency χ. By
letting ∆(t) = 2πδν(t) and χ = 2πf, Equation (9) is changed to <δν(t1)δν(t2) > = (1/2π)

∫
−∞

+∞ G(2πf )exp[−2πif (t1 − t2)]df, where δν(t) is the instantaneous frequency deviation
of the pump light and f is frequency, and thus we find the relational expression of
G(χ) = 2πH(χ/2π) between G(χ) and the power spectral density H(f ) of δν(t). It is noted
that each plot in Figure 5 shows H(f ) measured when we drove the LD with either current
source A or current source B. The mean square value of δν(t), which we denote as δνrms

2,
is represented by the infinite integral of H(f ) with respect to f. Actually, however, the
detection bandwidth for the Stokes light signal was limited to f u = βτe/2π so that δνrms

2

must be evaluated by taking the finite integral over (−f u, f u), which is changed to the
integral over (0, f u) as:

δν2
rms = 2

fu∫
0

H( f )d f , (10)

because H(f ) is an even function of f. Equation (10) means that δνrms depends on the length
of the fiber under test and is related to ∆rms, which is the root mean square value of ∆(t)
via ∆rms = 2πδνrms.

To express <Z> using G(χ), we must calculate the following double integral at k = 2 and 4:

〈
X(k)

〉
=

(−i)k

2πk!

〈
∆k(t)

〉 +∞∫
−∞

+∞∫
−∞

r(τ1)(τc − τ1)
keiv1(τ−τ1) dτ1dv1. (11)

By assuming that ∆(t) is a zero-mean Gaussian random variable, we obtain <∆4(t)> =
3∆rms

4 with ∆rms
2 = <∆2(t)> according to the moment theorem [21–23]. In the double

integral in Equation (11), first we take the iterated integral with respect to ω̃1 to obtain
2πδ(τ − τ1), where δ(τ) is the delta function. Then we integrate the resultant integrand
including the delta function with respect to τ1 to obtain <X(2) > = − r(τ)∆rms

2(τc − τ)2/2
and <X(4)> = r(τ)∆rms

4(τc − τ)4/8. When we neglect the last two terms <|X(1)|2> +
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<|X(2)|2> in Equation (7), we have <Z> ≈ |r(τ)|2[1 − ∆rms
2(τc − τ)2 + ∆rms

4(τc − τ)4/4],
which is approximated by the Gaussian function as:

〈Z〉 ≈ |r(τ)|2e−[∆rms(τc−τ)]2 . (12)

It is noted that the actual third terms of the power series expansion of the Gaussian
function should be ∆rms

4(τc − τ)4/2.
From Equation (8), σ2 is expanded to <Y(1)2> + 2 < Y(1)(Y1

(2) + Y2
(2))> + 2 < Y(1)Y(3)>

+ <(Y1
(2) + Y2

(2))2> + higher-order terms, where the second term vanishes because the
integrand of it contains the third-order moment of ∆(t). Then the variance is approximated
by adding the second-order term σ(2) and fourth-order term σ(4) as:

σ2 = σ(2) + σ(4), (13)

where:
σ(2) =

〈
Y(1)2

〉
, (14)

σ(4) = 2
〈

Y(1)Y(3)
〉
+

〈(
Y(2)

1 + Y(2)
2

)2
〉

. (15)

σ(4) is considered to be a correction term when we estimate the variance from Equation (14).
We calculated σ(2) and σ(4) by assuming that ∆(t) obeys a Gaussian random process

as described in Appendices B and C, respectively. Because |σ(4)| < < σ(2) as long as we
measure the 1.35 m long optical fiber as will be shown in Section 4, here we describe the
result of σ(2) only:

σ(2) = 2|r(τ)|2
+∞∫
−∞

∣∣∣r(τ − χ
β

)∣∣∣2(τc − τ + χ
β

)2

G(χ) dχ

+

{
−r∗2(τ)

+∞∫
−∞

r
(

τ − χ
β

)
r
(

τ + χ
β

)[
(τc − τ)2 −

(
χ
β

)2
]

G(χ) dχ + c.c.

}
.

(16)

In general, the variance depends on the distribution r(τ), which changes along the
fiber in an actual field application, and this means that it would be rather difficult to
calculate the integrals in Equation (16). Since our aim in this paper is to clarify the origin of
the speckle-like noise that we observed in the reflection measurement, we assume that the
fiber under test is uniform and tension-free throughout the fiber and thus r(τ) is a constant
function of τ, or r(τ) = r0 in the range τi ≤ τ≤ τe and r(τ) = 0 elsewhere. The integrands
of the first and second terms in Equation (16) contain the functions of r(τ − χ/β) and
r(τ − χ/β)r(τ + χ/β), which are finite only when the variable χ satisfies the conditions of
τi ≤ τ−χ/β ≤ τe, and τi ≤ τ ± χ/β ≤ τe, respectively. Then <Z> and

√
σ(2) are calculated

to be proportional to |r0|2, which is dropped when taking the ratio of <Z> to
√

σ(2) to
obtain S/N. For this reason, we redefined σ(2) as the one which is obtained by letting
|r0| = 1 in the original expression. The explicit forms of σ(2) for τi < τ < (τi + τe)/2 and (τi
+ τe)/2 < τ < τe are given by Equations (A42) and (A43), respectively, in Appendix D. The
S/N including the fourth-order term σ(4) is calculated in Appendix E.

By introducing the variable u and parameters uc and ui, which are defined as u = τ/τe,
uc = τc/τe and ui = τi/τe, the ranges of τ for τi < τ < (τi + τe)/2 and (τi + τe)/2 < τ < τe
are changed to those of u for ui < u < (ui + 1)/2, and (ui + 1)/2 < u < 1, respectively. Then
the mean signal level described by Equation (12) is rewritten as:

〈Z〉 ≈ e−[∆rmsτe(uc−u)]2 . (17)



Sensors 2021, 21, 2870 11 of 33

By letting |r(τ)| = 1 and thus S/N for ui < u < (ui + 1)/2 is described with the variance as:

S
N

=
e−[∆rmsτe(uc−u)]2

√
σ(2)

, (18)

where:

σ(2) = 2τ3
e β

 1−u∫
u−ui

(uc − u− η)2G(βτeη) dη + 4
u−ui∫
0

η2G(βτeη) dη

, (19)

and where η = χ/(βτe) = f /f u, f u = βτe/2π and G(βτeη) = 2πH(f). To obtain the expression
for (ui + 1)/2 < u < 1, in Equation (19) we should change the interval of the first integral
to (1 − u, u − ui) and that of the second integral to (0, 1 − u), and change the sign of the
variable η in the integrand of the first term.

Since the power spectral density H(f ) of the frequency fluctuations had a vast number
of peaks due to the technical noise from the current sources, as shown in Figure 5, to
evaluate ∆rms and σ(2) we should calculate Equation (19) numerically using the measured
power spectral density. In Appendix F, we calculated σ(2) analytically on the assumption
that the noise was concentrated on a narrow region expressed by a Gaussian function
G(χ) = G0exp[− (χ/δχe)2] using δχe for the spectral half width at 1/e maximum and
that the fiber under test was sufficiently long for the fiber input end and the center of
pumping to be τi ≈ 0 and τc ≈ τe/2, respectively, so that we can let ui = 0 and uc = 1/2.
S/N at an arbitrary value of α = βτe/δχe is obtained by substituting σ(2) represented by
Equation (A78) into Equation (18) for 0 < u < 1/2, or by substituting that represented by
Equation (A80) into Equation (18) for 1/2 < u < 1.

Although the analytical solution to σ(2) had a complicated form, we could approximate
it as represented by Equation (A83) and it is valid that:(

S
N

)
∞

=

√
ln 2

2
γe−[∆rmsτe(uc−u)]2

2π fhδνrms
(20)

at α ≥ αmin = 8 within a calculation error of around 20%, as will be shown numerically
in Section 4. In Equation (20), f h and γ, respectively, are the spectral half width at a half
maximum of the Gaussian spectrum defined by f h = δχe(

√
ln2)/2π, and the sweep rate of

the tunable laser output defined by γ = β/2π.
α is denoted as (

√
ln2)γτe/f h, which should be less than αmin so that the approxima-

tion of Equation (20) holds. To meet the condition, the range allowed for f h should be:

fh ≤
√

ln 2
αmin

γτe. (21)

Because 0 < u < 1, the numerator in Equation (20) takes γ at u = uc = 1/2 and decreases
to γexp[− (∆rmsτe/2)2] at both ends, which is written as γexp[− (πδνrmsτe)2] using the
relational expression ∆rms = 2πδνrms. Thus, we impose the second condition:

δνrms ≤
1

2πτe
(22)

to regard the numerator as the constant γ so that the mean signal level is kept constant
throughout the fiber. Then, (S/N)∞ is simplified to

√
(ln2/2)γ/(2πf hδνrms), which should

be equal to or greater than the target value of (S/N)tgt, and so we found that δνrms and f h
must satisfy the third condition:

δνrms ≤
1

2π

√
ln 2

2
γ(

S
N

)
tgt

· 1
fh

(23)
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at given values of γ and (S/N)tgt.

4. Experimental Results

We fixed the up-conversion frequency of the pump light wave at 10.861 GHz, which
was the center frequency of the Brillouin spectrum of the 1.35 m long optical fiber under
test. The parameters ui and uc were originally defined by ui = τi/τe and uc = τc/τe and
were rewritten as ui = zi/ze and uc = zc/ze because of the linearity between the propagation
time and distance, or τi = 2nzi/c, τc = 2nzc/c and τe = 2nze/c. We calculated the mean
reflectogram from the 30 reflectograms shown in Figure 2a and measured the distances to
the points where the Stokes signal raised and fell to give zi = 4.11 cm and ze = 139.8 cm.
With these values, we obtained ui = 0.0294. To locate the center of pumping, we launched
a picosecond optical pulse from another input port of fiber coupler CP3 into the optical
fiber loop and measured the propagation times during which the counter-propagating
optical pulses reached the two angled-polished end faces of the optical fiber under test.
Since the center of pumping was defined by the position where the optical path lengths of
the counter-propagating pump lights were equal in the fiber loop, the distance zc to the
center of pumping could be determined by the difference between the propagation times
of the pulses. Since the distance increased by connecting a longer optical fiber delay line
between polarizer #2 and optical circulator CL2, we precisely increased the length of the
fiber delay line to shift the center of pumping to uc = −0.042, 0.45 and 0.93 in sequence
while measuring the time differences between the counter-propagating optical pulses.

We drove the DFB LD with current source A. At each uc value, we swept the tunable
laser source at a rate of 0.5 nm/s 30 times and derived the magnitude of the Stokes light
signal as a function of z. We calculated the mean value and standard deviation at every
distance from the 30 reflectograms and plotted the distribution of the S/N in Figure 6
after changing the grids of the horizontal axis from z to u, which was defined as u = z/ze.
Figure 6a–c show the S/N distributions obtained when we set uc at −0.042, 0.45 and 0.93,
respectively. Here it is noted that the Stokes light signals at the two spliced points and at
one mated point of the APC connectors decreased so rapidly that the resultant S/N values
were changed. The best S/N we achieved was only 36 at u = 0.16 and uc = 0.45, where
the fluctuations of the Stokes light signal were within 7% with respect to its mean level as
shown in Figure 2a. The most values of S/N that we obtained by setting uc at −0.042 and
0.93 ranged from 10 to 20.
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Figure 6. Distributions of S/N along a 1.35 m long optical fiber that were measured and calculated at (a) uc = −0.042,
(b) uc = 0.45 and (c) uc = 0.93, where the DFB LD was driven with current source A whose power spectral density is shown
in Figure 5a. The scale of the horizontal axis is normalized in such a way that the output end of the fiber under test was
unity. The rapid changes of S/N observed around u = 0.31, 0.53 and 0.78 were caused by fusion splicing and mating of the
pieces of the optical fiber.

Assuming that statistically independent random noise was superimposed on the
Stokes light signal, we could increase the S/N by

√
N by calculating the mean value of N

individual signals [24]. Therefore, we should acquire at least 30 beat signal waveforms by
sweeping the tunable laser 30 times and calculate the mean reflectogram of the individual
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reflectograms to achieve an S/N of the order of 200 at every up-conversion frequency. We
measured the S/N as a function of u when the DFB LD was driven with current source B.

The results are shown in Figure 7a–c when we set uc at −0.042, 0.45 and 0.93, respec-
tively. By comparing each pair in Figures 6 and 7, e.g., Figures 6a and 7a, it was clear that
we could greatly increase the S/N merely by changing the current source from A to B. For
example, the best S/N was increased to 190 at u = 0.18 and uc = 0.45. This meant that a
single sweep was sufficient to obtain a smooth reflectogram, which could be obtained only
after sweeping the laser 30 times when we used current source A.
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in Figure 5b. The scale of the horizontal axis is normalized in such a way that the output end of the fiber under test was
unity. The rapid changes of S/N observed around u = 0.31, 0.53 and 0.78 were caused by fusion splicing and mating of the
pieces of the optical fiber.

For comparison with the measured values, we calculated S/N as a function of u
numerically using Equations (18) and (19). The theoretical S/N was given by the ratio of
the Gaussian function to the square root of the variance σ(2), where the Gaussian function
could be regarded as unity when we tested the 1.35 m long optical fiber. This was concluded
by calculating the value of δνrms as follows. δνrms was given by integrating H(f ) over the
interval (0, f u) with respect to f as described in Equation (10). Here we had already
measured the power spectral density H(f ) as shown in Figure 5a, where the sampling
interval was ∆f = 0.0853 Hz and each sampling frequency was represented by fk = k∆f
(k = 0,1,2, . . . ). The upper limit of integration was f u, which was the detection bandwidth
and given by f u = τeβ/2π. We obtained τe = 13.5 ns by substituting ze = 139.8 cm and
n = 1.45 into the relational expression of τe = 2nze/c. Since we set the sweep speed of the
tunable laser source at 0.5 nm/s at 1.55 µm, we obtained β/2π = 62.5 GHz/s. With these
values we found that the upper limit of integration was f u = 844 Hz.

We performed the numerical integration to obtain the value of δνrms by approximating
the integral of H(f ) with respect to f as the sum of the areas Hk∆f of the equally-spaced
rectangles under the curve H(f ) for all values of k satisfying f L < fk < f u, where the value of
H(f ) taken at fk is denoted as Hk. In addition, we introduced the lower limit of integration at
f L = 1 Hz to avoid the effect of the environmental perturbations. Following the numerical
calculation, we obtained δνrms = 2.17 MHz and therefore we had ∆rms = 1.36 × 107 rad/s
from the relational expression of ∆rms = 2πδνrms. With the values of τe and ∆rms, we had
∆rmsτe = 0.184 and thus we found that [∆rmsτe(uc − u)]2 < 0.0368 for all values of u and uc.
The result meant that we could consider the Gaussian function as unity when we tested
the 1.35 m long optical fiber.

We calculated σ(2) as a function of u ranging from 0 to 1 in steps of 0.01, where
βτe

3 = 9.66 × 10−13 s, ui = 0.0294 and the value of G(χ) at χ was obtained from that of
2πH(f ) at f = χ/2π. That is, at each value of u for ui < u < (ui + 1)/2 and ui = 0.0294, we
approximated the first integral in Equation (19) as the sum of 2π(uc – u − ηk)2Hk∆η for all
values of k satisfying max{f L,(u − ui)f u} < fk < (1 − u)f u, where ηk = fk/f u, ∆η = ∆f /f u and
max{,} returns the greater of two values. Similarly, the second integral in Equation (19) was
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approximated as the sum of 2πηk
2Hk∆η for all values of k satisfying f L < fk < (u − ui)f u.

With the two numerical integrations we calculated the value of σ(2) and the resultant S/N
according to Equation (18), where the numerator was approximated as unity. At each value
of u for (ui + 1)/2 < u < 1, we performed the same numerical calculation of the integrals in
Equation (A45) in Appendix D to obtain σ(2) and thus S/N as a function of u.

By repeating these series of numerical integrations at uc = −0.042, 0.45 and 0.93,
we obtained S/N as a function of u as shown in Figure 6a–c, respectively. Similarly, we
calculated S/N as a function of u when the DFB LD was driven with current source
B. The results are shown in Figure 7a–c when we set uc at uc = −0.042, 0.45 and 0.93,
respectively. The calculation showed that when we set uc at 0.45 or near the center of
the optical fiber under test, the distribution of S/N had peaks on both sides of the center,
whereas one or both peaks were suppressed at uc = −0.042 and 0.93, which was consistent
with the measurement result obtained using either current source A or current source B.
We should set uc close to 0.5 to avoid the suppression of the peaks and achieve a higher
S/N throughout the fiber. It is noted that the value of uc automatically approaches 0.5 as
the length of the optical fiber under test is increased to 10 m or more. This is because the
distance to the center of the optical fiber is much longer than the distance to the original
center of pumping which is located if we connect the input end directly to the output end
of the fiber.

We plotted the difference between the calculated and measured S/N values in percent
as a function of u in Figure 8, where (a) and (b) show the distributions calculated from the
data shown in Figures 6b and 7b, respectively. The optical fiber under test consisted of four
pieces of the single-mode fiber which were fusion spliced at u = 0.31 and 0.78 and mated
with APC connectors at 0.53, where the Stokes light signal decreased and thus the deviation
changed rapidly. Excluding these parts, however, the differences were limited to within 20%
in most parts of the fiber as highlighted in yellow in each figure. We derived the theoretical
expression for S/N by imposing a condition whereby the absolute value of the complex
amplitude of the acoustic wave was constant along the fiber, whereas its temporal phase
was modulated by the frequency fluctuations of the pump light. In spite of the fact that we
could not experimentally generate the Brillouin dynamic grating uniformly throughout the
fiber, the calculated values were in good agreement with those measured in the 10 to 190
range as shown in Figures 6 and 7. Therefore, we confirmed that the theoretical expression
we derived could represent the actual S/N of the reflection measurement and that the main
source which substantially determined the S/N in our experiment was technical noise from
the current source used to drive the DFB LD. Although S/N fell rapidly to 70 at both ends
of the fiber as shown in Figure 7b even when we used current source B, we will be able
to increase it to the same level as the peak by using a different current source with much
reduced technical noise.

Since the calculated values did not exactly agree with the measured ones obtained
with either current source A or current source B, we calculated the correction term σ(4)

when using current source A at uc = 0.45 by numerically calculating the constituent terms A
through H, which are defined by Equations (A59) to (A66), while using the power spectral
density shown in Figure 5a. The calculated values of σ(2) and σ(4) as a function of u are
plotted in Figure 9 together with the change in each term. σ(2) had a minimum value
of 10−3 on both sides of the center of pumping, whereas σ(4) had a maximum value of
3 × 10−5 at 0.1 < u < 0.9. Thus, we found that the correction term was at best 3% of σ(2),
and we could not bring the calculated values very much closer to the measured ones. The
theoretical expressions for σ(2) and σ(4) were based on the expansion of the exponential
function in the integrand of I(t) in a power series of ∆(t). The result showed that σ(4) was
negligibly smaller than σ(2), and the first-order expansion was sufficient to calculate S/N
as far as the reflection measurement of the 1.35 m long optical fiber was concerned.
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Figure 8. Difference between the calculated and measured S/N values in percent as a function of
u. (a,b) were obtained from the data shown in Figures 6b and 7b, respectively, where the center of
pumping was located at uc = 0.45. The range where the deviation was within 20% was highlighted in
yellow in each figure. The rapid changes observed around u = 0.31, 0.53 and 0.78 were caused by
fusion splicing and mating of the pieces of the single-mode fiber.
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Figure 9. Numerical calculation of the constituent terms A to H of the correction term σ(4) together
with σ(2) when current source A was used, where the center of pumping was located at uc = 0.45. We
calculated σ(4) to improve the discrepancy between the measured and calculated data observed in
Figure 6b.

Since the phases of the counter-propagating pump light waves always coincide with
each other at the center of pumping, the temporal phase of the acoustic wave generated
at the center is independent of the frequency fluctuations of the pump light waves. Con-
sidering that the phase of the Stokes light that was generated there was also unaffected
by the fluctuations, it appears that the variance due to the frequency fluctuations become
negligibly small and the resultant S/N should be at its maximum exactly at the center.
Actually, however, when the center was located at uc = 0.45, the S/N value was not at its
maximum at the center and had noticeable peaks on both sides. The reflectometry method
we employed decomposed the beat signal waveform into components with different fre-
quencies and distributed the powers of the decomposed components along the fiber. When
the frequency distribution of the beat signal waveform overlapped that of ∆(t), as in our
experiment, the Stokes lights generated on either side of the center had components with
the same frequency as that produced at the center via up and down frequency conversions
by the phase modulation, which were superimposed on and recognized as the Stokes light
generated at the center. This meant that even the signal detected at the center had larger
fluctuations than we expected.

Planar lightwave circuits (PLCs) such as an 8× 8 optical matrix switch and an arrayed-
waveguide grating [7] have fiber pigtails several meters long, which are connected to
their input and output ends with adhesive for practical applications. To investigate the
possibility of using our reflectometer to diagnose them by means of strain distribution, we
tested a 5 m long polarization-maintaining (PM) fiber. To excite the fast and slow axes of



Sensors 2021, 21, 2870 16 of 33

the PM fiber with the probe light and the counter-propagating pump lights, respectively,
we spliced 250 µm buffered single-mode fibers with APC connectors to both ends of the
PM fiber with a mechanical fusion splicer and mated the APC connectors to those of the
fiber pigtails, which were attached to optical circulators CL1 and CL2. We inserted each
250 µm buffered single-mode fiber into an in-line polarization controller with a rotatable
fiber squeezer mechanism to adjust the SOPs of the probe and pump lights propagating
through the fiber.

After setting the up-conversion frequency at 10.881 GHz and changing to current
source B, we measured 30 reflectograms from the 5 m long PM fiber and calculated the S/N
distribution along the fiber as shown in Figure 10. As a result of the measurement range
being extended from 1 to 5 m, the S/N was degraded to the 20 to 45 range. Considering
that except around the center of pumping at zc = 3.8 m the measured and calculated
values agreed, we concluded that we needed to use a current source with greatly reduced
noise to increase the S/N. Although not shown in this paper, we observed a background
component in the beat signal waveform that undulated periodically during the frequency
sweep and which we did not observe when we tested the 1.35 m long single-mode fiber.
We changed to another PM fiber with a different cutoff wavelength, but we still observed
such a component. Therefore, we believe that some fraction of the launched probe and
pump lights propagated without being attenuated through the fiber in the cladding modes
such as the modes in the stress-applying parts or between it and the core. There was a
probability that the periodic change in the S/N that we observed around the center was
produced by the light component, which propagated in the cladding modes and entered
the balanced mixer to produce the fluctuated components by interference between it and
the LO light.
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maintaining (PM) fiber, where the up-conversion frequency was 10.881 GHz and the DFB LD was
driven with current source B whose power spectral density is shown in Figure 5b. Both ends of the
PM fiber were spliced to 250 µm buffered single-mode fibers with APC connectors which were mated
to those of the fiber pigtails of optical circulators CL1 and CL2. zc (= 3.8 m) is the distance to the
center of pumping. The fast and slow axes of the PM fiber were excited by the respective probe light
and counter-propagating pump lights by using in-line polarization controllers (PCs). CL1 and CL2
are optical circulators. ωp and ωp + Ω are the angular frequencies of the counter-propagating pump
light waves. APC: Angled physical contact.

We investigated the specifications of the pump light wave required for achieving the
S/N at 200 even when we tested a 5 m long PM fiber. When the power spectral density was
a Gaussian function, we obtained the analytical solution to σ(2), as detailed in Appendix F.
We calculated the ratio of S/N to (S/N)∞ as functions of α and u using Equations (A81)
and (A82) in Appendix F and plotted the result in Figure 11a. When α was close to 0, the
ratio had the same two peaks as in Figures 6b and 7b and then approached unity for almost
all values of u as α increased. To observe the precise change in the ratio around α = 10, we
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plotted the ratio as a function of u by setting α at 4 to 14 in steps of 2 in Figure 11b. It was
clear from the figure that at α = 8 the maximum deviation of the ratio from unity was only
23% in the 0.1 < u < 0.9 range and the deviation decreased rapidly as α increased from 8.
Since a difference of around 20% was unavoidable between the calculated and measured
data, as observed in Figure 8, we confirmed that we could regard the ratio as unity as long
as α ≥ 8, where we could use the simple expression given by Equation (20).
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function of u when α was changed from 4 to 14 in steps of 2. α = βτe/δχe, where β is the sweep rate
of the angular frequency of the tunable laser output, τe is the round-trip time from the origin at z = 0
to the output end of the fiber under test at z = ze and thus u = z/ze. δχe is the spectral half width at
1/e maximum of the Gaussian spectrum G(χ).

In the relational expressions of (21) and (22), τe was the round-trip time from the origin
to the output end of the fiber under test and was given by τe =2nL/c, where we assumed
that the fiber was long enough to allow zi = 0. With the values L = 5 m and n = 1.45, we
estimated τe to be 48.4 ns. By substituting τe = 48.4 ns and γ = 62.5 GHz (or 0.5 nm/s) into
the right-hand sides of expressions (21) and (22), we obtained upper limits for f h and δνrms
of 0.315 kHz and 3.3 MHz, respectively. In Figure 12 we plot red and green dotted lines,
which are upper boundaries defined by f h = 0.315 kHz and δνrms = 3.3 MHz, respectively, in
two-dimensional space with a (f h, δνrms) coordinate system. By substituting γ = 62.5 GHz
and (S/N)tgt = 200 into the right-hand side of the relational expression (23), we found that
the point (f h, δνrms) should be included in the domain located below the red solid line,
which was the boundary curve defined by δνrms = 0.0293/f h and was plotted in a log-log
scale, where the units of f h and δνrms are kHz and MHz, respectively. Therefore, when
we sweep the laser at the rate of γ = 62.5 GHz, the point (f h, δνrms) should be included in
the allowable domain surrounded by the three lines highlighted in yellow in Figure 12 to
achieve (S/N)tgt = 200.

For example, when the spectral half width is reduced to f h = 50 Hz by installing a low
pass filter in the current source circuit, the rms frequency fluctuations should be equal to or
lower than δνrms = 0.59 MHz. This is determined by drawing a vertical line at f h = 50 Hz
and finding the coordinate of the point A, which is the intersection between the vertical
line and the red solid line. When the spectral half width is much wider due to the potential
difficulty involved in installing such a low pass filter, one way to achieve (S/N)tgt is to
sweep the tunable laser faster in such a way that the point (f h, δνrms) is included in the
extended domain determined by the new sweep rate. For example, by letting γ = 625 GHz
or 5 nm/s, the domain highlighted in blue is added as the allowable one so that the range
of the spectral half width becomes ten times wider.
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5. Discussion

This section describes the effect of the coherence time of the pump light on the S/N of
the reflection measurement. When the counter-propagating pump light waves collided at z
along the 1.35 m long optical fiber, the difference between the propagation times of the two
pump light waves was given by |τc − τ| where τc = 2nzc/c and τ = 2nz/c, whose upper
limit was τe = 13.5 ns for all possible combinations of (τc, τ) satisfying 0 < τc < τe and 0 <
τ < τe. According to the data supplied by the manufacturer of the LD, the nominal spectral
linewidth was of the order of 1 MHz, and so the coherence time of the pump light waves
was estimated to be a few microseconds. That is, the coherence time was much longer than
any possible values of the time differences between the pump light waves, and they were
considered to be coherent with each other anywhere along the 1.35 m long optical fiber. In
the frequency domain, the individual spectral components in the pump light waves should
receive the same phase modulation from the technical noise and generate the same acoustic
wave along the entire length of the fiber.

To observe the change in the Stokes light signal level as the fiber length increased,
we spliced 250 µm buffered single-mode fibers with APC connectors to both ends of a
10 m long PM fiber and installed it as the DUT in the reflectometer. After testing the 10 m
long PM fiber, we prepared a 40 m long PM fiber as the DUT and tested it again. Here
we increased the carrier frequency for detecting the beat signal waveform to 300 kHz by
driving the phase modulators PM1 and PM3 at f 0 = 500 kHz and f 1 = 800 kHz, respectively.
This was because the maximum frequency of the beat signal waveform was increased
to 25 kHz. In accordance with the higher detection frequency, we increased the carrier
frequency of the unbalanced MZI, which we used to measure the power spectral density,
to the same frequency at 300 kHz. As the fiber length increased, unfortunately the number
of data needed for the numerical integration also increased, and this resulted in a longer
calculation time and a fatal memory overflow. To avoid such results, we reduced the record
length of the beat signal waveform to one-tenth and increased the sampling interval of the
power spectral density to 0.853 Hz.

We obtained 30 reflectograms from the 10 m long PM fiber and plotted them all
and their mean reflectogram in Figure 13a,b, respectively. It was clear from the figures
that all these reflectograms had peaks at the center of pumping and decayed as the po-
sition deviated from the center. In the first place, the mean Stokes light signal level <Z>
should decrease due to the technical noise according to the Gaussian function as given by
Equation (17).
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Figure 13. (a) Overwrite of 30 reflectograms from a 10 m long polarization-maintaining (PM) fiber. zc

(= 6.51 m) is the distance to the center of pumping. (b) Mean reflectogram (shown in black), which
was derived from the 30 reflectograms shown in (a). <Z> is a plot of the Gaussian function defined by
Equation (17) with ∆rms = 3.74× 106 rad/s, τe = 115 ns and uc = 0.545. <Zc> is a plot of Equation (28),
which is the product of Gaussian and exponential functions where δνL = 2 MHz.

We numerically integrated H(f ) with respect to f using Equation (10) and obtained
δνrms = 0.60 MHz and thus ∆rms = 3.74 × 106 rad/s. With the value of ∆rms, τe = 115 ns
and uc = 0.545, we calculated <Z> as a function of u as drawn by the red solid curve in
Figure 13b and found that the decay induced by the technical noise was too small to fit
the measured signal change. We employed an external-cavity tunable laser source and
a DFB LD source in our experiment and both light sources were capable of causing the
signal decay. If the finite coherence time of the output light from the former laser was the
dominant origin of the decay, each waveform in Figure 13a,b should have a peak at z = 0
and decay as the distance increases. This was because the optical path length difference
between the LO light and the Stokes light generated at z = 0 was zero and increased with
distance. Actually, we observed the peak at the center of pumping, which was consistent
with the fact that the optical path length difference between the counter-propagating pump
light waves was zero at the center and increased as the position deviated from it. Therefore,
it was clear that the decay we observed was caused by the finite coherence time of the
pump light waves.

Since we measured the frequency fluctuations due to the technical noise by using an
unbalanced MZI with a short delay of τMZI = 8.912 ns, we considered that the individual
spectral components of the pump light passed through the MZI coherently and produced
the same signal change with time, and thus the resultant power spectral density did not
contain the effect of the finite coherence time. In Section 2, we denoted the amplitude of
the electric field of the LD output as A(t) = A0exp(− iφ(t)), where A0 was a constant and
φ(t) represented the phase change due to the technical noise. To introduce the effect of the
finite coherence time, we express the amplitude as A(t) = A0Ã(t)exp(− iφ(t)) and let Ã(t) be
the amplitude fluctuation caused by the finite coherence time while keeping <|Ã(t)|2> = 1.
Then the analytic signal represented by Equation (2) should be changed to Ic(t) as follows:

Ic(t) =

+∞∫
−∞

r(τ1)Ã
(

t− τ1

2

)
Ã∗
(

t− τc +
τ1

2

)
e−i∆(t)(τc−τ1)e−ivτ1 dτ1, (24)

where t = (ω̃ + ωp − ω1)/β.
Considering that the fluctuation Ã(t) was statistically independent of the frequency

fluctuations ∆(t) due to the technical noise, a simple way to incorporate the coherence effect
into the reflection measurement is to approximate the fluctuating product Ã(t − τ1/2)Ã
*(t − τc + τ1/2) in the integrand of Equation (24) by the ensemble average <Ã(t − τ1/2)Ã
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*(t − τc + τ1/2)>, which is denoted as V(τc − τ1) using the coherence function V(τ)
defined by:

V(τ) =

+∞∫
−∞

Gp
(
ωp + v

)
e−ivτdv. (25)

Gp(ωp + ω̃) was the optical power spectrum of the pump light, and we assumed that the
spectrum was normalized in such a way that

∫
−∞

+∞Gp(ωp + ω̃)dω̃ = 1. Then the analytic
signal Ic(t) was approximated by:

〈Ic(t)〉 =

+∞∫
−∞

r(τ1)V(τc − τ1)e−i∆(t)(τc−τ1)e−ivτ1 dτ1. (26)

Equation (26) means that the mean signal level <Zc>, the variance σc
(2) and the correction

term σc
(4) including the coherence effect are obtained by replacing r(τ) with r(τ)V(τc − τ)

in Equations (12), (16), and (A31)–(A38) in Appendix C, respectively.
Supposing that the pump light has a Lorentzian spectrum with a full width at half

maximum of δνL, we obtain a real function of V(τ) = exp(− πδνL|τ|). By introducing a
new function U(u) which is defined by:

U(u) = V(τeu) = e−πδνLτe|u|, (27)

<Zc> and σc
(2) for u1 < u < (u1 + 1)/2 are denoted as:

〈Zc〉 ≈ e−[∆rmsτe(uc−u)]2U2(uc − u), (28)

σc
(2) = 2

(
τ3

e β
)
U2(uc − u)

{
1−u∫

u−ui

U2(uc − u− η)(uc − u− η)2G(βτeη) dη

+
u−ui∫

0
{U(uc − u− η)(uc − u− η)−U(uc − u + η)(uc − u + η)}2G(βτeη) dη

}
.

(29)

To obtain the expression for (ui + 1)/2 < u <1, in Equation (29) we should change
the interval of the first integral to (1 − u, u − ui) and that of the second integral to (0,
1 − u), and change the sign of the variable η in the integrands. We estimated the δνL of the
employed LD to be 2.0 MHz by fitting the theoretical curve defined by Equation (28) with
the measured mean reflectogram, as shown by an orange curve in Figure 13b.

We calculated the S/N as a function of u from 30 reflectograms which are shown
in Figure 13a and plotted the result in Figure 14a. The distribution had rapidly varying
components, but the overall profile had a peak at the center of the pumping and decayed
as the distance from the center increased. We calculated σc

(2) and σc
(4) as a function of u

numerically by using Equation (29) and Equations (A67) to (A74) in Appendix E, respec-
tively. Then we plotted the two distributions of S/N, which we obtained by substituting
σc

(2) and σc
(2) + σc

(4) into the denominator of Equation (18), as shown by the red and blue
lines, respectively, in Figure 14a. Since the calculated values differed from the measured
values by a factor of up to 2, it was clear that we could obtain the approximate S/N value
by using the theoretical expression even when the length of the optical fiber approached
the coherence length of the pump light and the resultant S/N was degraded. However,
they still had peaks on both sides of the center of pumping and there was a noticeable dis-
crepancy between the calculated and measured reflection profiles. Then we measured the
reflectograms from the 40 m long PM fiber and plotted the S/N distribution together with
those which we calculated using σc

(2) and σc
(2) + σc

(4) in Figure 14b. The best S/N value
was further degraded to 8, and the calculated distribution had still the same two peaks.
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Figure 14. Comparison of measured and calculated S/N along (a) 10 m long and (b) 40 m long
polarization-maintaining (PM) fibers. In each figure, the S/N distribution shown in black was
obtained from distributions acquired by sweeping the tunable laser 30 times. The ratio <Zc>/

√
σc

(2)

as a function of u was calculated and plotted with a red line. The correction term σc
(4) is expressed by

the sum of the eight terms A to H, which were represented by Equations (A67) to (A74) in Appendix E,
respectively. The ratio <Zc>/

√
(σc

(2) + σc
(2)) as a function of u was calculated and plotted with a

blue line. The employed parameters were (a) ∆rms = 3.74 × 106 rad/s, τe = 115 ns, uc = 0.545.
(b) ∆rms = 5.65 × 106 rad/s, τe = 402 ns, uc = 0.515.

Since the correction term σc
(4) did not lead to a fundamental solution for suppressing

the side peaks, we concluded that the discrepancy was not caused by the approximation
of the factor exp{− i∆(t)(τc−τ)} in the integrand of <Ic(t)> as the power series expansion.
In deriving the expressions for σc

(2) and σc
(2) + σc

(4), we made one more approximation
such that φ(t − τ/2) − φ(t − τc + τ/2) ≈ ∆(t)(τc − τ), where we theoretically showed that
the approximation error was of the order of π2f uδνrmsτe

2/2. When we tested the 40 m
long PM fiber, we had f u = 25 kHz, δνrms = ∆rms/2π = 0.9 MHz and τe = 402 ns, and with
these values we estimated the approximation error to be around 0.018 rad, and this meant
that the approximation was still valid. Therefore, the origin of the noticeable discrepancy
that we observed resulted not from the error due to the two kinds of approximations
that we employed but from the simple method we introduced as an effect of the finite
coherence time.

Returning to the basics of statistical averaging, therefore, we should calculate the
mean value and variance of the absolute square of the Fourier inverse transform with
two different kinds of statistically independent random processes such as Gaussian noise
due to technical noise and AM and phase noise inherent in the laser diode [25,26]. If
our reflectometry technique is to be applied to mid and long-range distributed strain
sensing, the employed optical fiber will range in length from hundreds of meters to several
kilometers. As described in our experiment, S/N will be degraded both by frequency
fluctuations due to technical noise and by the finite coherence time unless we use an
excellent DFB LD as the pump light source. Once we succeed in deriving the theoretical
formula for S/N including the finite coherence time, we will be able to obtain the detailed
specifications for the pump light source needed to achieve a high S/N even when we test
an optical fiber several kilometers in length.

6. Conclusions

Signal-dependent speckle-like noise has been a serious factor in Brillouin-grating
based coherent FMCW reflectometry. In this paper we theoretically and experimentally
showed that the noise was generated by the frequency fluctuations of the pump light
from the DFB LD. By assuming that the frequency of the pump light was modulated by
the technical noise from the employed current source, we derived theoretical formulas
for the mean value and the variance of the fluctuating power of the Stokes light, which
contained the second and fourth-order moments of the frequency fluctuations. We adopted
six experimental conditions for the reflectogram measurement where we used two current
sources with different technical noises and set the center of pumping to the center and
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both sides of a 1.35 m long optical fiber under test. Under each condition we numerically
calculated the mean value and variance along the optical fiber using the data for the
power spectral density of the frequency fluctuations, and the resulting S/N distribution
agreed with the measured distribution within 20% in most parts of the fiber. Although the
reflectometry was proposed originally for the short-range diagnosis of miniaturized optical
waveguides, our success shows that the reflectometry has a great potential for extending
its application area to the middle and long-range fiber-optic distributed strain sensing.
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Appendix A

The absolute square of the Fourier inverse transform of Equation (4) is expanded to:

Z =
∣∣∣X(0) + X(1) + X(2) + X(3) + X(4)

∣∣∣2
=
∣∣∣X(0)

∣∣∣2 (0th− order term)

+
(

X(0)∗X(1) + c.c.
)

(1st− order term)

+
∣∣∣X(1)

∣∣∣2 + (X(0)∗X(2) + c.c.
)

(2nd− order term)

+X(0)∗X(3) + X(1)∗X(2)+c.c. (3rd− order term)

+
∣∣∣X(2)

∣∣∣2 + (X(0)∗X(4) + c.c.
)

(4th− order term)

+higher− order terms,

(A1)

where the mean values of the first and third-order terms are zero because their integrands
contain odd-order moments of ∆(t) which are equal to zero. For example:

〈
X(0)∗X(1)

〉
= r∗(τ)

−i
2π

+∞∫
−∞

+∞∫
−∞

r(τ1)〈∆(t1)〉(τc − τ1)eiv1(τ−τ1) dτ1dv1= 0. (A2)

Since the mean values of the second and fourth-order terms are not zero, we add these
values with the 0th-order term so that the mean value of Z, which is denoted as <Z>, is
expressed by:

〈Z〉 =
∣∣∣X(0)

∣∣∣2 +〈∣∣∣X(1)
∣∣∣2〉+

(
X(0)∗

〈
X(2)

〉
+ c.c.

)
+

〈∣∣∣X(2)
∣∣∣2〉+

(
X(0)∗

〈
X(4)

〉
+ c.c.

)
(A3)

which is equivalent to Equation (7) by letting X(0) = r. On the other hand, the residual
component δZ in Z whose DC component is removed is represented by:

δZ = Y(1) + Y(2)
1 + Y(2)

2 + Y(3) + Y(4)
1 + Y(4)

2 , (A4)

where:
Y(1) = r ∗ X(1) + c.c., (A5)
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Y(2)
1 =

∣∣∣X(1)
∣∣∣2 −〈∣∣∣X(1)

∣∣∣2〉, (A6)

Y(2)
2 = r ∗

(
X(2) −

〈
X(2)

〉)
+ c.c., (A7)

Y(3) = r ∗ X(3) + X(1) ∗ X(2) + c.c., (A8)

Y(4)
1 =

∣∣∣X(2)
∣∣∣2 −〈∣∣∣X(2)

∣∣∣2〉, (A9)

Y(4)
2 = r∗

(
X(4) −

〈
X(4)

〉)
+ c.c. (A10)

It is noted that the variance of Z is given by <δZ2 >, which is Equation (8).

Appendix B

From Equation (A5) we have <Y(1)2> = 2|r|2 <|X(1)|2> +(r*2 <X(1)2> +c.c.), into each
term of which we substitute the original expression for X(1) given by Equation (5) at k = 1.
First, we find that:〈∣∣∣X(1)

∣∣∣2〉 =
1

4π2

∫
r(τ1)r∗(τ2)〈∆(t1)∆(t2)〉(τc − τ1)(τc − τ2)eiv1(τ−τ1)e−iv2(τ−τ2) dτ1dv1dτ2dv2, (A11)

where the domain of the quadruple integral is (−∞, +∞)4 and t1,2 = (ω̃1,2 + ωp − ω1)/β.
The second-order moment of ∆(t) in the integrand of Equation (A11) is replaced with

∫
−∞

+∞ G(χ)exp{− i(t1−t2)χ}dχ according to Equation (9), and this expression is changed to the
quintuple integral as:〈∣∣∣X(1)

∣∣∣2〉 =
1

4π2

∫
r(τ1)r∗(τ2)(τc − τ1)(τc − τ2)eiv1(τ−τ1−χ/β)eiv2(τ2−τ+χ/β)G(χ) dχdτ1dv1dτ2dv2. (A12)

In Equation (A12) we take iterated integrals with respect to ω̃1 and ω̃2 to give
2πδ(τ − τ1 − χ/β) and 2πδ(τ2 − τ + χ/β), respectively, where δ(τ) is the delta func-
tion. In the resultant triple integral including the delta functions, we repeat iterated
integrals with respect to τ1 and τ2 to finally obtain:

〈∣∣∣X(1)
∣∣∣2〉 =

+∞∫
−∞

∣∣∣∣r(τ − χ

β

)∣∣∣∣
2(

τc − τ +
χ

β

)2
G(χ) dχ. (A13)

Similarly, <X(1)2> is calculated as:〈
X(1)2

〉
= − 1

4π2

∫
r(τ1)r(τ2)〈∆(t1)∆(t2)〉(τc − τ1)(τc − τ2)eiv1(τ−τ1)eiv2(τ−τ2) dτ1dv1dτ2dv2

= −
+∞∫
−∞

r
(

τ − χ
β

)
r
(

τ + χ
β

)[
(τc − τ)2 −

(
χ
β

)2
]

G(χ) dχ.
(A14)

From Equations (A13) and (A4), we obtain Equation (16).

Appendix C

In this appendix we calculate the correction term σ(4) defined by Equation (15). First,
we substitute Y(1) and Y(3), which are defined by Equations (A5) and (A8), respectively,
into the first term in Equation (15) to give:〈

Y(1)Y(3)
〉

= r∗2
〈

X(1)X(3)
〉
+ |r|2

〈
X(1)∗X(3)

〉
+ r∗

〈∣∣∣X(1)
∣∣∣2X(2)

〉
+ r
〈

X(1)∗2X(2)
〉
+ c.c. (A15)

The first term in Equation (A15) contains the fourth-order moment of ∆(t) as:
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〈
X(1)X(3)

〉
=

1
24π2

∫
r(τ1)r(τ3)

〈
∆(t1)∆3(t3)

〉
(τc − τ1)(τc − τ3)

3eiv1(τ−τ1)eiv3(τ−τ3) dτ1dv1dτ3dv3, (A16)

where t1,3 = (ω̃1,3 + ωp − ω1)/β.
According to the moment theorem [21–23] we find that the moment in Equation (A16)

is expanded to <∆(t1)∆3(t3)> = 3<∆(t1)∆(t3)><∆2(t1)>, which is equal to 3∆rms
2
∫
−∞

+∞

G(χ)exp {− i(t1 − t3)χ}dχ with ∆rms
2 = <∆2(t1)> and thus we obtain:〈

X(1)X(3)
〉

=
1

8π2 ∆2
rms

∫
r(τ1)r(τ3)(τc − τ1)(τc − τ3)

3eiv1(τ−τ1−χ/β)eiv3(τ−τ3+χ/β)G(χ) dχdτ1dv1dτ3dv3. (A17)

We can reduce the quintuple integral to the following single one by taking the iterated
integrals with respect to ω̃1 and ω̃3 to produce delta functions, and then repeating the
iterated integrals including the delta functions with respect to τ1 and τ3:

〈
X(1)X(3)

〉
=

1
2

∆2
rms

∫
r
(

τ − χ

β

)
r
(

τ +
χ

β

)(
τc − τ +

χ

β

)(
τc − τ − χ

β

)3
G(χ) dχ. (A18)

Similarly, we obtain the expression for the second term in Equation (A15) as:

〈
X(1)∗X(3)

〉
= −1

2
∆2

rms

∫ ∣∣∣∣r(τ +
χ

β

)∣∣∣∣2(τc − τ − χ

β

)4
G(χ) dχ. (A19)

The third term in Equation (A15) is written by a sextuple integral as:〈∣∣∣X(1)
∣∣∣2X(2)

〉
= − 1

16π3

∫
r(τ1)r∗(τ2)r(τ3)

〈
∆(t1)∆(t2)∆2(t3)

〉
(τc − τ1)(τc − τ2)(τc − τ3)

2

×eiv1(τ−τ1)e−iv2(τ−τ2)eiv3(τ−τ3) dτ1dv1dτ2dv2dτ3dv3.
(A20)

According to the moment theorem, the fourth-order moment in the integrand is
expanded to:〈

∆(t1)∆(t2)∆2(t3)
〉

= 〈∆(t1)∆(t2)〉
〈

∆2(t3)
〉
+ 2〈∆(t1)∆(t3)〉〈∆(t2)∆(t3)〉, (A21)

in which each term can be represented with G(χ).
By substituting Equation (A21) into Equation (A20) we find that:〈∣∣∣X(1)

∣∣∣2X(2)
〉

= − 1
16π3

∫
r(τ1)r∗(τ2)r(τ3)(τc − τ1)(τc − τ2)(τc − τ3)

2eiv1(τ−τ1)e−iv2(τ−τ2)eiv3(τ−τ3)

×
[
∆2

rms
∫

G(χ)e−iχ(v1−v2)/βdχ + 2
∫

G(χ1)G(χ2)e−iχ1(v1−v3)/βe−iχ2(v2−v3)/βdχ1dχ2

]
dτ1dv1dτ2dv2dτ3dv3.

(A22)

By taking the iterated integrals with respect to ω̃1, ω̃2 and ω̃3 and then by repeating
the iterated integrals with respect to τ1, τ2 and τ3, in sequence, we finally obtain:〈∣∣∣X(1)

∣∣∣2X(2)
〉

= − 1
2 r(τ)(τc − τ)2∆2

rms
∫ ∣∣∣r(τ − χ

β

)∣∣∣2(τc − τ + χ
β

)2
G(χ) dχ

−
∫

r
(

τ − χ1
β

)
r∗
(

τ + χ2
β

)
r
(

τ + χ1+χ2
β

)(
τc − τ + χ1

β

)(
τc − τ − χ2

β

)(
τc − τ − χ1+χ2

β

)2

×G(χ1)G(χ2) dχ1dχ2.

(A23)

Similarly, we obtain the expression for the last term in Equation (A15) as:〈
X(1)∗2X(2)

〉
= 1

2 r(τ)(τc − τ)2∆2
rms
∫

r∗
(

τ + χ
β

)
r∗
(

τ − χ
β

)[
(τc − τ)2 −

(
χ
β

)2
]

G(χ) dχ

+
∫

r∗
(

τ + χ1
β

)
r∗
(

τ + χ2
β

)
r
(

τ + χ1+χ2
β

)(
τc − τ − χ1

β

)(
τc − τ − χ2

β

)(
τc − τ − χ1+χ2

β

)2

×G(χ1)G(χ2) dχ1dχ2.

(A24)
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Substituting Equations (A18), (A19), (A23) and (A24) into Equation (A15) provides an
explicit expression for <Y(1)Y(3) >.

Next, we calculate the second term <(Y1
(2) + Y2

(2))2> in Equation (15). From the
definitions of Y1

(2) and Y2
(2) given by Equations (A6), and (A7), respectively, we find that:

〈(
Y(2)

1 + Y(2)
2

)2
〉

=

[〈∣∣∣X(1)
∣∣∣4〉−〈∣∣∣X(1)

∣∣∣2〉2
]
+ 2|r|2

(〈∣∣∣X(2)
∣∣∣2〉− ∣∣∣〈X(2)

〉∣∣∣2)
+

[
2r∗
(〈∣∣∣X(1)

∣∣∣2X(2)
〉
−
〈∣∣∣X(1)

∣∣∣2〉〈X(2)
〉)

+ c.c.
]
+

[
r∗2
(〈

X(2)2
〉
−
〈

X(2)
〉2
)
+ c.c.

]
.

(A25)

In the same way as we derived the result for <Y(1)Y(3) >, the individual terms in
Equation (A25) are transformed into single or double integrals with respect to χ as follows:

〈∣∣∣X(1)
∣∣∣4〉−〈∣∣∣X(1)

∣∣∣2〉2

=

[∫ ∣∣∣r(τ − χ
β

)∣∣∣2(τc − τ + χ
β

)2
G(χ) dχ

]2
+

∣∣∣∣∫ r
(

τ − χ
β

)
r
(

τ + χ
β

)[
(τc − τ)2 −

(
χ
β

)2
]

G(χ) dχ

∣∣∣∣2,
(A26)

〈∣∣∣X(2)
∣∣∣2〉− ∣∣∣〈X(2)

〉∣∣∣2 =
1
2

∫ ∣∣∣∣r(τ − χ1 + χ2

β

)∣∣∣∣2(τc − τ +
χ1 + χ2

β

)4
G(χ1)G(χ2) dχ1dχ2, (A27)

〈∣∣∣X(1)
∣∣∣2X(2)

〉
−
〈∣∣∣X(1)

∣∣∣2〉〈X(2)
〉

= −
∫

r
(

τ − χ1
β

)
r∗
(

τ + χ2
β

)
r
(

τ + χ1+χ2
β

)(
τc − τ + χ1

β

)
×
(

τc − τ − χ2
β

)(
τc − τ − χ1+χ2

β

)2
G(χ1)G(χ2) dχ1dχ2,

(A28)

〈
X(2)2

〉
−
〈

X(2)
〉2

=
1
2

∫
r
(

τ − χ1 + χ2

β

)
r
(

τ +
χ1 + χ2

β

)[
(τc − τ)2 −

(
χ1 + χ2

β

)]2
G(χ1)G(χ2) dχ1dχ2. (A29)

Substituting Equations (A26) to (A29) into Equation (A25) leads to an explicit expres-
sion for the second term <(Y1

(2) + Y2
(2))2> in Equation (15).

To summarize the calculation results, the correction term σ(4) is represented by the
sum of the following eight terms A through H:

σ(4) = A + B + C + D + E + F + G + H, (A30)

A =

[∫ ∣∣∣∣r(τ − χ

β

)∣∣∣∣2(τc − τ +
χ

β

)2
G(χ) dχ

]2

, (A31)

B = −2|r(τ)|2∆2
rms

∫ ∣∣∣∣r(τ − χ

β

)∣∣∣∣2(τc − τ +
χ

β

)2
{
(τc − τ)2 +

(
τc − τ +

χ

β

)2
}

G(χ) dχ, (A32)

C =

∣∣∣∣∣
∫

r
(

τ − χ

β

)
r
(

τ +
χ

β

)[
(τc − τ)2 −

(
χ

β

)2
]

G(χ) dχ

∣∣∣∣∣
2

, (A33)

D = r∗2(τ)∆2
rms

∫
r
(

τ − χ

β

)
r
(

τ +
χ

β

)[
(τc − τ)2 −

(
χ

β

)2
][

(τc − τ)2 +

(
τc − τ − χ

β

)2
]

G(χ) dχ + c.c., (A34)

E = |r(τ)|2
∫ ∣∣∣∣r(τ − χ1 + χ2

β

)∣∣∣∣2(τc − τ +
χ1 + χ2

β

)4
G(χ1)G(χ2) dχ1dχ2, (A35)
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F =
1
2

r∗2(τ)
∫

r
(

τ − χ1 + χ2

β

)
r
(

τ +
χ1 + χ2

β

)[
(τc − τ)2 −

(
χ1 + χ2

β

)2
]2

G(χ1)G(χ2) dχ1dχ2 + c.c., (A36)

G = −4r∗(τ)
∫

r
(

τ − χ1
β

)
r∗
(

τ + χ2
β

)
r
(

τ + χ1+χ2
β

)(
τc − τ + χ1

β

)(
τc − τ − χ2

β

)
×
(

τc − τ − χ1+χ2
β

)2
G(χ1)G(χ2) dχ1dχ2 + c.c.,

(A37)

H = 2r(τ)
∫

r∗
(

τ + χ1
β

)
r∗
(

τ + χ2
β

)
r
(

τ + χ1+χ2
β

)(
τc − τ − χ1

β

)(
τc − τ − χ2

β

)
×
(

τc − τ − χ1+χ2
β

)2
G(χ1)G(χ2) dχ1dχ2 + c.c.

(A38)

Appendix D

Here we transform the expression (16) for the second-order term σ(2) into a simpler
form under the condition that r(τ) = constant = r0 at τi ≤ τ≤τe and r(τ) = 0 elsewhere.
In Figure A1, we show the domains of integration where τi ≤ τ − χ/β ≤ τe to satisfy
r(τ − χ/β) = r0 and τi ≤ τ + χ/β ≤ τe to satisfy r(τ + χ/β) = r0, in yellow and light blue,
respectively, in two-dimensional (χ, τ) space. The overlapped domain is shown in green.
For τi < τ<(τi + τe)/2, the interval of integration in the first term of Equation (16) should
be included in the yellow or green domain, or (−ξ2, ξ1), which is decomposed into (−ξ2,
−ξ1) and (−ξ1, ξ1), where ξ1 = β(τ − τi) and ξ2 = β(τe − τ). Then we can write the first
term as:

first term = 2|r0|4
 −ξ1∫
−ξ2

+

0∫
−ξ1

+

ξ1∫
0

(τc − τ +
χ

β

)2
G(χ) dχ. (A39)

We change the sign of the variable χ in the first and second integrals in Equation (A39)
to transform their intervals of integration to (ξ1, ξ2) and (0, ξ1), respectively, where G(χ) is
an even function of χ so that G(−χ) = G(χ). Then the integrand of the second integral is
(τc – τ − χ/β)2G(χ), which is added to that of the third integral to become 2{(τc − τ)2 +
(χ/β)2}G(χ). We thus find that
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By adding Equations (A40) to (A41), we have: 
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1

2
4(2)

0
0
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(A42) 

For (τi + τe)/2 < τ< τe, it is clear from Figure A1 that the interval of integration of the 
first term in Equation (16) is (−ξ2, ξ1), which is decomposed to (−ξ2, ξ2) and (ξ2, ξ1), whereas 
that of the second term is (−ξ2, ξ2). This means the desired expressions for the first and 
second terms for (τi + τe)/2 < τ< τe are obtained by changing between ξ1 with ξ2 and by 
changing the sign of χ in Equations (A40) and (A41). After performing this exchange pro-
cess and adding the results, we obtain: 

Figure A1. Domains of integration highlighted in yellow and light blue where the conditions of
r(τ − χ/β) = r0 and r(τ + χ/β) = r0 are satisfied, respectively. ξ1 = β(τ − τi) and ξ2 = β(τe − τ). Their
overlapping domain is shaded in green. β is the sweep rate of the angular frequency of the employed
tunable laser output, τi and τe are round trip times from the origin at τ = 0 to the input and output
ends of the fiber under test, respectively.
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first term = 2|r0|4


ξ2∫

ξ1

(
τc − τ − χ

β

)2

G(χ) dχ + 2

ξ1∫
0

[
(τc − τ)2 +

(
χ

β

)2
]

G(χ) dχ

. (A40)

Since the integrand of the second term in Equation (16) contains the function r(τ− χ/β)r
(τ + χ/β), the interval should be in the overlapping green domain in Figure A1, or −ξ1 < χ
< ξ1, and thus we obtain:

second term = −2× |r0|4
ξ1∫
−ξ1

[
(τc − τ)2 −

(
χ

β

)2
]

G(χ) dχ = −4|r0|4
ξ1∫

0

[
(τc − τ)2 −

(
χ

β

)2
]

G(χ) dχ. (A41)

By adding Equations (A40) to (A41), we have:

σ(2) = 2|r0|4

 ξ2∫
ξ1

(
τc − τ − χ

β

)2

G(χ) dχ + 4

ξ1∫
0

(
χ

β

)2
G(χ) dχ

. (A42)

For (τi + τe)/2 < τ< τe, it is clear from Figure A1 that the interval of integration of
the first term in Equation (16) is (−ξ2, ξ1), which is decomposed to (−ξ2, ξ2) and (ξ2, ξ1),
whereas that of the second term is (−ξ2, ξ2). This means the desired expressions for the
first and second terms for (τi + τe)/2 < τ < τe are obtained by changing between ξ1 with
ξ2 and by changing the sign of χ in Equations (A40) and (A41). After performing this
exchange process and adding the results, we obtain:

σ(2) = 2|r0|4

 ξ1∫
ξ2

(
τc − τ +

χ

β

)2

G(χ) dχ + 4

ξ2∫
0

(
χ

β

)2
G(χ) dχ

. (A43)

Finally, to facilitate the numerical calculation, we introduce a variable u and parame-
ters uc and ui, which are defined by u = τ/τe, uc = τc/τe and ui = τi/τe, change the variable
of integration from χ to η defined by η = χ/(βτe), and let |r0| = 1 in Equations (A42) and
(A43). We thus find that:

σ(2) = 2τ3
e β

 1−u∫
u−ui

(uc − u− η)2G(βτeη) dη + 4
u−ui∫
0

η2G(βτeη) dη

 for ui < u <
ui + 1

2
. (A44)

It is noted that by introducing the new variable u, the ranges defined by τi < τ < (τi
+ τe)/2 and (τi + τe)/2 < τ < τe are changed to those defined by ui < u<(ui + 1)/2, and
(ui + 1)/2 < u < 1, respectively. The expression of σ(2) for (ui + 1)/2 < u < 1 is obtained by
changing the interval of the first integral to (1 − u, u − ui) and that of the second one to (0,
1 − u), and changing the sign of the variable η in the integrand of the first term. That is, we
find that:

σ(2) = 2τ3
e β

 u−ui∫
1−u

(uc − u + η)2G(βτeη) dη + 4
1−u∫
0

η2G(βτeη) dη

 for
ui + 1

2
< u < 1. (A45)

Appendix E

In Appendix C we have shown that the general formula for the correction term σ(4) is
obtained by adding the eight terms A to H. Here we derive the expressions for the individual
terms for τe < τ < (τi + τe)/2 by imposing a condition whereby r(τ) = constant = r0 at τi
≤ τ ≤τe and r(τ) = 0 elsewhere. It is clear that the expressions of A through D for (τi +
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τe)/2 < τ < τe are obtained by changing between ξ1 and ξ2 and by changing the sign of the
variable χ in the respective expressions for τi <τ < (τi + τe)/2. Since the integrands of A
and B, which are represented by Equations (A31) and (A32), respectively, have the same
forms as the first term in Equation (16), we can straightforwardly express the results for A
and B as:

A = |r0|4


ξ2∫

ξ1

(
τc − τ − χ

β

)2

G(χ) dχ + 2

ξ1∫
0

[
(τc − τ)2 +

(
χ

β

)2
]

G(χ) dχ


2

, (A46)

B = −2|r0|4∆2
rms ×



ξ2∫
ξ1

(
τc − τ − χ

β

)2[
(τc − τ)2 +

(
τc − τ − χ

β

)2
]

G(χ) dχ

+2(τc − τ)2
ξ1∫
0

[
(τc − τ)2 +

(
χ
β

)2
]

G(χ) dχ

+
ξ1∫
0

[(
τc − τ − χ

β

)4
+
(

τc − τ + χ
β

)4
]

G(χ) dχ


, (A47)

Considering that C and D, which are expressed by Equation (A33) and (A34), respec-
tively, contain the same function r(τ + χ/β) r (τ − χ/β) in their integrands as the second
term in Equation (16), we find that:

C = 4|r0|4


ξ1∫
0

[
(τc − τ)2 −

(
χ

β

)2
]

G(χ) dχ


2

, (A48)

D = 4|r0|4∆2
rms

ξ1∫
0

[
(τc − τ)2 −

(
χ

β

)2
]
×
[

2(τc − τ)2 +

(
χ

β

)2
]

G(χ) dχ. (A49)

By introducing new variables χ3 and χ4, which are defined by χ3 = χ1 + χ2 and
χ4 = χ2, Equations (A35) and (A36) are transformed into:

E = |r(τ)|2
∫ ∣∣∣∣r(τ − χ3

β

)∣∣∣∣2(τc − τ +
χ3

β

)4
W(χ3) dχ3, (A50)

F =
1
2

r∗2(τ)
∫

r
(

τ − χ3

β

)
r
(

τ +
χ3

β

)[
(τc − τ)2 −

(
χ3

β

)2
]2

W(χ3) dχ3+c.c., (A51)

where:
W(χ3) =

∫
G(χ3 − χ4)G(χ4) dχ4. (A52)

The domain for the double integral in Equations (A35) and (A36) are |χ1| < βτe and
|χ2| < βτe in the (χ1, χ2) plane because the detection frequency at the balanced mixer is
band-limited to within βτe. Since the variable χ4 is equal to χ2, the interval of integration
for W(χ3) is (−βτe, βτe). Considering that W(χ) is a real-valued and even function of χ, we
find that Equations (A50) and (A51) are similar to Equations (A31) and (A33), respectively,
and for τi <τ < (τi + τe)/2 we obtain:

E = 2|r0|4


ξ2∫

0

(
τc − τ − χ

β

)4

W(χ) dχ +

ξ1∫
0

(
τc − τ +

χ

β

)4
W(χ) dχ

, (A53)

F = 2|r0|4
ξ1∫

0

[
(τc − τ)2 −

(
χ

β

)]2
W(χ) dχ, (A54)
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and find that the expressions for (τi + τe)/2 < τ <τe are obtained by changing between ξ1
and ξ2 and by changing the sign of the variable χ in the respective expressions for τi < τ <
(τi + τe)/2.

From Equation (A37) for G, the double integral should be taken on the domain in the
two-dimensional (χ1, χ2) plane, which satisfies the three conditions of −ξ2 ≤ χ1 ≤ ξ1, −ξ1
≤ χ2 ≤ ξ2, and −ξ1 < χ1 + χ2 < ξ2, where we have:

G = −8|r0|4
∫ (

τc − τ +
χ1

β

)(
τc − τ − χ2

β

)(
τc − τ − χ1 + χ2

β

)2
G(χ1)G(χ2) dχ1dχ2. (A55)

From Equation (A38) for H, the double integral:

H = 4|r0|4
∫ (

τc − τ − χ1

β

)(
τc − τ − χ2

β

)(
τc − τ − χ1 + χ2

β

)2
G(χ1)G(χ2) dχ1dχ2 (A56)

should be taken in the domain which is defined by –ξ1 ≤ χ1, χ2, χ1 + χ2 ≤ξ2.
In this appendix we derive the expressions for the terms A to H, which all contain the

same factor |r0|4. The correction term σ(4) is the sum of these terms so that the variance of
σ(2) + σ(4) is also proportional to |r0|4, meaning that the standard deviation is proportional
to |r0|2. Considering that the mean signal level is also proportional to|r0|2 as clearly
seen from Equation (12), S/N, which is defined by the ratio of the mean signal level to the
standard deviation, either no longer includes the factor r0, or it is independent of r0. From
this independence, we redefine the individual terms A to H as the ones that are obtained
by letting |r0| = 1 in their original expressions.

In the same way as in Appendix D, we introduce the variable u and parameters uc and
ui, which are defined by u = τ/τe, uc = τc/τe, and ui = τi/τe, respectively. By changing the
variable of integration from χ to η defined by η = χ/(βτe), S/N for ui < u < (ui + 1)/2 is
written as:

S
N

=
e−[∆rmsτe(uc−u)]2√

σ(2) + σ(4)
, (A57)

where:
σ(4) = A + B + C + D + E + F + G + H, (A58)

and where:

A =
(

τ3
e β
)2


1−u∫

u−ui

(uc − u− η)2G(βτeη) dη + 2
u−u1∫
0

[
(uc − u)2 + η2

]
G(βτeη) dη


2

, (A59)

B = −2∆2
rms

(
τ5

e β
)
×



1−u∫
u−ui

(uc − u− η)2
[
(uc − u)2 + (uc − u− η)2

]
G(βτeη) dη

+2 (uc − u)2
u−ui∫

0

[
(uc − u)2 + η2

]
G(βτeη) dη

+
u−ui∫

0

[
(uc − u− η)4 + (uc − u + η)4

]
G(βτeη) dη


, (A60)

C = 4
(

τ3
e β
)2


u−ui∫
0

[
(uc − u)2 − η2

]
G(βτeη) dη


2

, (A61)

D = 4∆2
rms

(
τ5

e β
) u−ui∫

0

[
(uc − u)2 − η2

]
×
[
2 (uc − u)2 + η2

]
G(βτeη) dη, (A62)
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E = 2
(

τ5
e β
)

1−u∫
0

(uc − u− η)4W(βτeη) dη +

u−ui∫
0

(uc − u + η)4W(βτeη) dη

, (A63)

F = 2
(

τ5
e β
) u−ui∫

0

[
(uc − u)2 − η2

]2
W(βτeη) dη, (A64)

G = −8
(

τ3
e β
)2∫

(uc − u + η1)(uc − u− η2)(uc − u− η1 − η2)
2G(βτeη1)G(βτeη2) dη1dη2, (A65)

H = 4
(

τ3
e β
)2∫

(uc − u− η1)(uc − u− η2)(uc − u− η1 − η2)
2G(βτeη1)G(βτeη2) dη1dη2. (A66)

The expressions of A through F for (ui + 1)/2 < u < 1 are obtained by changing between
1 − u and u − ui and by changing the sign of the variable η in the respective expressions
for ui < u < (ui + 1)/2. The domains for the double integral in Equation (A65) for G are
highlighted in yellow in (a) and (b) in the two-dimensional (η1, η2) plane in Figure A2 for
ui < u <(ui + 1)/2, and for (ui + 1)/2 < u < 1, respectively. On the other hand, the domain
for the double integral in Equation (A66) for H is highlighted in yellow in (c) in Figure A2,
which can be used for all values of u for ui < u < 1.
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Figure A2. Domains highlighted in yellow for double integrals in (a) G for ui < u < (ui + 1)/2, (b) G for (ui + 1)/2 < u < 1,
and (c) H for ui < u < 1. u = τ/τe, uc = τc/τe, ui = τi/τe.

The correction term σc
(4) including the coherence effect are obtained by replacing

r(τ) with r(τ)V(τc − τ) in the constituent terms represented by Equations (A31) to (A38).
Assuming that the coherence function V(τ) defined by Equation (25) is a real-valued
function, the constituent terms A to H represented by Equations (A59) to (A66) should be
changed to the following expressions for ui < u < (ui + 1)/2 using the function U(u) which
is defined by U(u) = V(τeu):

A =
(

τ3
e β
)2


1−u∫
0

U2(uc − u− η)(uc − u− η)2G(βτeη) dη

+
u−ui∫

0
U2(uc − u + η)(uc − u + η)2G(βτeη) dη


2

, (A67)

B = −2∆2
rms

(
τ5

e β
)

U2(uc − u)×


1−u∫
0

U2(uc − u− η)(uc − u− η)2
[
(uc − u)2 + (uc − u− η)2

]
G(βτeη) dη

+
u−ui∫

0
U2(uc − u + η)(uc − u + η)2

[
(uc − u)2 + (uc − u + η)2

]
G(βτeη) dη

, (A68)
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C = 4
(

τ3
e β
)2


u−ui∫
0

U(uc − u− η)U(uc − u + η)
[
(uc − u)2 − η2

]
G(βτeη) dη


2

, (A69)

D = 4∆2
rms
(
τ5

e β
)
U2(uc − u)

u−ui∫
0

U(uc − u− η)U(uc − u + η)
[
(uc − u)2 − η2

]
×
[
2(uc − u)2 + η2

]
G(βτeη) dη,

(A70)

E = 2
(

τ5
e β
)

U2(uc − u)


1−u∫
0

U2(uc − u− η)(uc − u− η)4W(βτeη) dη

+
u−ui∫

0
U2(uc − u + η)(uc − u + η)4W(βτeη) dη

, (A71)

F = 2
(

τ5
e β
)

U2(uc − u)
u−ui∫
0

U(uc − u− η)U(uc − u + η)
[
(uc − u)2 − η2

]2
W(βτeη) dη, (A72)

G = −8
(
τ3

e β
)2U(uc − u)

∫
U(uc − u + η1)U(uc − u− η2)U(uc − u− η1 − η2)

×(uc − u + η1)(uc − u− η2)(uc − u− η1 − η2)
2G(βτeη1)G(βτeη2) dη1dη2,

(A73)

H = 4
(
τ3

e β
)2U(uc − u)

∫
U(uc − u− η1)U(uc − u− η2)U(uc − u− η1 − η2)

×(uc − u− η1)(uc − u− η2)(uc − u− η1 − η2)
2G(βτeη1)G(βτeη2) dη1dη2.

(A74)

Appendix F

Here we calculate S/N when the power spectral density is Gaussian. We assume
that the fiber under test is long enough for us to approximate ui as zero. We substitute
G(χ) = G0exp[− (χ/δχe)2] into Equation (19), change the integral variable from η to t = αη
with α = βτe/δχe and let ui = 0 to find that:

σ(2) = 2G0τ2
e δχe


α(1−u)∫

αu

(uc − u− t/α)2e−t2
dt + 4

αu∫
0

(t/α)2e−t2
dt

 for 0 <u <
1
2

, (A75)

where we used t as the integral variable in this appendix only. By expanding the polynomial
function of t in the integrand of the first term, we obtain:

σ(2) = 2G0τ2
e δχe

(uc − u)2
α(1−u)∫

αu

e−t2
dt− 2(uc − u)

α

α(1−u)∫
αu

te−t2
dt +

1
α2

α(1−u)∫
αu

t2e−t2
dt+

4
α2

αu∫
0

t2e−t2
dt

. (A76)

We can easily obtain the following list for the finite integrals of the Gaussian func-
tion [27]:

x∫
0

e−t2
dt =

√
π

2
erf(x),

x∫
0

te−t2
dt =

1
2

(
1− e−x2

)
,

x∫
0

t2e−t2
dt = − x

2
e−x2

+

√
π

4
erf(x) , (A77)

where erf(x) is the error function of x. From the list we can calculate explicitly the integrals
to find that:

σ(2) = 2G0τ2
e δχe


[
(uc − u)2 + 1

2α2

]√
π

2 erf(α(1− u)) +
[
−(uc − u)2 + 3

2α2

]√
π

2 erf(αu)

+ 1
α

(
uc − u

2 −
1
2

)
e−α2(1−u)2

− 1
α

( u
2 + uc

)
e−α2u2

for 0 < u < 1
2 .

 (A78)
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when α > >1, both error functions in Equation (A49) approach unity as long as u 6= 0 and
u 6=1, and thus σ(2) at α > >1 is:

σ
(2)
∞ =

2G0τ2
e δχe
√

π

α2 . (A79)

Similarly, we obtain the expression σ(2) as:

σ(2) = 2G0τ2
e δχe

{ [
−(uc − u)2 + 3

2α2

]√
π

2 erf(α(1− u)) +
[
(uc − u)2 + 1

2α2

]√
π

2 erf(αu)

+ 1
α

(
uc +

u
2 −

3
2
)
e−α2(1−u)2

+ 1
α

( u
2 − uc

)
e−α2u2

for 1
2 < u < 1,

}
(A80)

from which σ(2) at α > >1 is proved to have the same expression as that for 0 < u < 1/2.
From Equation (16), S/N is expressed by S/N = exp{− [∆rmsτe(uc−u)]2}/

√
σ(2), whereas

S/N at α > >1 is (S/N)∞ = exp{− [∆rmsτe(uc−u)]2}/
√

σ∞
(2). Then their ratio is given as:

S
N

/
(

S
N

)
∞

=
1√

ΓSNR
, (A81)

where:

ΓSNR =
α2
√

π



[
(uc − u)2 + 1

2α2

]√
π

2 erf(α(1− u)) +
[
−(uc − u)2 + 3

2α2

]√
π

2 erf(αu)

+ 1
α

(
uc − u

2 −
1
2

)
e−α2(1−u)2

− 1
α

( u
2 + uc

)
e−α2u2

for 0 < u < 1
2 ,

[
−(uc − u)2 + 3

2α2

]√
π

2 erf(α(1− u)) +
[
(uc − u)2 + 1

2α2

]√
π

2 erf(αu)

+ 1
α

(
uc +

u
2 −

3
2
)
e−α2(1−u)2

+ 1
α

( u
2 − uc

)
e−α2u2

for 1
2 < u < 1.

(A82)

We have introduced two parameters G0 and δχe which characterize the power spectral
density of the pump light together with the parameters β and τe. These four parameters
are represented by the parameters f h, γ, α and δνrms, as follows. We denote the spectral
half width at half maximum of the Gaussian spectrum as f h and the sweep rate of the
optical frequency as γ. The relations between δχe and fh and between β and γ are given by
δχe = 2πf h/

√
ln2 and β = 2πγ, respectively and thus we have τe = αδχe/β = αf h/(γ

√
ln2)

from the definition of α. The power spectral density of the frequency deviation δν(t) is
given by H(f ) = G(2πf )/2π with G(χ) = G0exp[− (χ/δχe)2], which is substituted into
Equation (10) to obtain the mean value of δν(t) as δνrms

2 = G0δχe(
√

π)erf(α)/(2π)2, where
the upper limit was set to f u = βτe/2π. When α > >1, erf(α) approaches unity and we
have δνrms

2 = G0δχe
√

π/(2π)2 which is changed to G0f h
√

π/(2π
√

ln2) using the relation
δχe = 2πf h/

√
ln2, and thus we obtain G0 = 2π(

√
ln2)δνrms

2/(f h
√

π). By substituting these
relations into Equation (A79), we finally obtain:

σ
(2)
∞ =

2
ln 2

(
2π fhδνrms

γ

)2
. (A83)
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