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Abstract: Indoor localization is becoming increasingly important but is not yet widespread because
installing the necessary infrastructure is often time-consuming and labor-intensive, which drives
up the price. This paper presents an automated indoor localization system that combines all the
necessary components to realize low-cost Bluetooth localization with the least data acquisition and
network configuration overhead. The proposed system incorporates a sophisticated visual-inertial
localization algorithm for a fully automated collection of Bluetooth signal strength data. A suitable
collection of measurements can be quickly and easily performed, clearly defining which part of the
space is not yet well covered by measurements. The obtained measurements, which can also be
collected via the crowdsourcing approach, are used within a constrained nonlinear optimization
algorithm. The latter is implemented on a smartphone and allows the online determination of
the beacons’ locations and the construction of path loss models, which are validated in real-time
using the particle swarm localization algorithm. The proposed system represents an advanced
innovation as the application user can quickly find out when there are enough data collected for
the expected radiolocation accuracy. In this way, radiolocation becomes much less time-consuming
and labor-intensive as the configuration time is reduced by more than half. The experiment results
show that the proposed system achieves a good trade-off in terms of network setup complexity and
localization accuracy. The developed system for automated data acquisition and online modeling
on a smartphone has proved to be very useful, as it can significantly simplify and speed up the
installation of the Bluetooth network, especially in wide-area facilities.

Keywords: indoor localization; visual-inertial SLAM; constrained optimization; path loss model;
particle swarm optimization; Bluetooth low energy; beacon

1. Introduction

Recently, the social and commercial interest in Location-Based Services (LBS) is increas-
ing significantly. The scientific field of indoor localization and navigation has experienced
rapid development through many studies that consider advanced mobile and commu-
nication technologies [1]. The purpose of developing new localization algorithms and
navigation systems is to enable autonomous mobile systems to use these solutions in
performing a specific task or to assist people who have lost their ability to navigate [2]
(e.g., blind people, people with Alzheimer’s disease). A secure, user-friendly, and accurate
localization method that can run on a smartphone could open the door to many innovative
applications and create new businesses opportunities. The global indoor location market is
expected to reach a worth of $40.99 billion by 2022 [3]. A low-cost indoor positioning sys-
tem (IPS) is very helpful as it can guide people through airports, shopping malls, museums
etc. [1,4]. In these environments, it can be very difficult to figure out where to go without
spending a lot of time looking for directions. Accurate indoor localization represents a ma-
jor challenge, mainly due to the fact that GNSS (Global Navigation Satellite System) signals
are not available indoors [5]. The modern smartphone is increasingly used as a Personal
Navigation System (PNS) because it contains many sensors (accelerometer, gyroscope,
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magnetometer, altimeter, camera) and communication modules (Bluetooth, WiFi, NFC,
5G, ultra-wideband), and, last but not least, almost everyone has it in their pocket [1,6].
Moreover, smartphones contain increasingly powerful multicore processors that allow the
implementation of computationally intensive localization algorithms. A practical Indoor
Positioning System (IPS) should have characteristics such as ease of implementation, accept-
able localization accuracy, scalable system, feasible system cost and minimal computational
complexity [7].

There are two main approaches to indoor localization, namely infrastructure-based
and infrastructure-less approaches [8]. The latter generally uses fingerprints from environ-
mental features such as sound, light, magnetic field or smartphone sensors. Infrastructure-
based methods may use pre-installed visual sensors or wireless technologies such as
ZigBee [9], WiFi, Ultra-Wideband (UWB) [3], Radio Frequency Identification (RFID) [10]
and Bluetooth Low Energy (BLE) [1]. An infrastructure-based indoor positioning system
can be expensive, either because of the methods required or because of the expensive
hardware components. Among all these technologies, BLE is one of the most widely used
in ubiquitous computing and many Internet-of-Things (IoT) applications because it has
many advantages such as low power consumption and low cost [7,11]. BLE transmitters
or beacons are portable and easy to deploy, they have the potential to provide high po-
sitioning accuracy, and they can provide advanced services to users. ZigBee consumes
less energy than BLE, but it is not as widely supported on smartphones. WiFi is widely
supported but it has a higher energy requirement than BLE [1]. Regarding Ultra-Wideband
(UWB), which is an emerging technology (still not supported on smartphones) in the field
of indoor positioning, Dardari et al. [12] provided a detailed comparative analysis of UWB
positioning technologies.

Bluetooth low-energy transmitters are used in combination with various standards
or protocols, such as iBeacon [13] and Eddystone [14], which define how data packets
are transmitted. For localization purposes, the advertising mode, in which data packets
are sent periodically, is most established. In this mode, beacon messages are advertised
on the three primary channels 37, 38 and 39, to reduce interference with other wireless
technologies (e.g., with WiFi channels 1, 6 and 11) and increase redundancy. In addition
to broadcast transmissions, the advertising channels allow a device to be discovered and
securely connected.

Radio-based indoor positioning can generally be divided into three groups: Proximity,
Time of Flight (TOF) measurements, and Received Signal Strength Indicator (RSSI)-based
methods [15]. In some cases, these have also been supplemented with an Angle of Arrival
(AOA) localization approach [16]. Depending on the localization approach chosen to calcu-
late the current position, the following methods are most commonly used: Triangulation,
trilateration and fingerprinting. Among these, fingerprinting is perhaps the most popular
due to its simplicity: It is based on signal strength (RSSI) and its procedure is basically to
collect the signal from the transmitters and assign it to a specific position. It consists of
two phases: The offline (the calibration or training) phase [11] and the online (the position-
ing) phase [17]. The most common fingerprinting matching algorithms can be classified
as: (a) probabilistic; (b) deterministic, such as k-nearest neighbor (or weighted k-nearest
neighbor); and (c) machine learning- and sparse sampling-based [18,19]. Positioning using
BLE fingerprinting has the potential to achieve high accuracy if sufficiently dense training
data are available. However, this process is time- and labor-intensive, which is its main
drawback [20]. Another problem associated with the fingerprinting method is that the time
complexity of the execution phase increases with the size of the localization area. Moreover,
the instability of RSSI in the indoor environment forces frequent updating of the radio
map database [21]. Therefore, a better alternative to the fingerprinting approach could be
model-based methods, among which trilateration is the most popular [15]. Localization
solutions based on trilateration mostly use path loss models to estimate the range from
the RSSI of the available beacons [11]. In addition to the trilateration localization method,
weighted centroid localization also relies on the signal propagation model to estimate
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the distance from the RSSI [22]. The advantages of using models over the fingerprinting
approach are a more effortless adjustment of the radio maps as the environment changes
and better extrapolation of RSSI signals for areas where measurements have not been made.

The main challenge in fingerprinting- and model-based IPS is that accuracy is affected
by several factors, such as signal-related and environment-related factors [15]. In terms of
signal-related factors, the following can often occur: Large fluctuations, reflection, path loss,
non-line-of-sight conditions and multipath fading, and many of these factors also depend
on the type of material present in the environment [23]. For environment-related factors,
the main ones are changes in hardware or furniture, the presence of people, or ambient
humidity conditions [24].

Regardless of the localization technology used, there are several more or less labor-
intensive approaches to collect localization data in the modeling or fingerprinting calibra-
tion phase, which can be classified as follows [11,18,20]:

• A fully manual approach consisting of a calibration phase, e.g., the traditional man-
ual survey, where the user collects the signal at discrete and uniformly distributed
survey points.

• A semi-automated approach that attempts to reduce the time and effort of the cali-
bration phase, e.g., with the use of interpolation-based methods, the user attempts
to construct a signal map from a sparse set of fingerprints collected while walking
through a space.

• A fully automated approach that does not require any calibration phase. It uses only
online RSSI measurements or those that in some way merge the calibration phase and
the positioning phase, e.g., implicit or explicit crowdsourcing that involves users in
data collection.

An automated system has many advantages in various approaches to data collection,
e.g., quick and easy construction of datasets for model development or fingerprinting,
beacon parameter studies, in-depth studies of beacon location and density in a particular
environment, and rapid maintenance of the database as the environment changes [8,20].

Related Work

In this section, the works related to the study presented in this article are analyzed.
First, an overview of the most commonly used technologies in indoor positioning is given,
with a later focus on the technologies that use radio frequency signals, with a greater
emphasis on BLE technology.

Self-localization of Unmanned Ground Vehicles (UGV) in indoor environments is
already a well-developed field, as they can be equipped with more powerful hardware
and additional sensors, e.g., depth camera, stereo camera, LIDAR, ultrasonic sensors,
etc. [25]. In conjunction with the sensor LIDAR, the method of simultaneous localization
and mapping (SLAM) [26] in particular has become established, which can also process the
information obtained from the camera [27] (visual SLAM). Within the visual localization
approach, several algorithms have been developed to determine an agent’s motion (person,
vehicle, robot) to which the camera is attached. The established methods include: Simulta-
neous Localization and Mapping (SLAM) [27], Visual Odometry (VO) [28,29], Structure
From Motion (SFM) and image-to-map matching [30]. The SLAM and SFM methods are
fairly computationally demanding since they construct a 3D map of the environment in
addition to the motion estimation.

For indoor localization purposes, the Inertial Navigation System (INS) [16,31] based
on the Inertial Measurement Unit (IMU) is often used as a complementary system to
radio- or visual-based localization. The pedestrian inertial navigation system, which uses a
dead reckoning approach, usually consists of a pedometer (or step counter) and a digital
compass, which enable to calculate the current pose according to the starting point [3,32].

According to the currently existing solutions and studies [33], the most suitable smart-
phone indoor localization approach is based on the measurement of WiFi [2], Bluetooth [34]
and geomagnetic field signals [35]. However, localization methods based on only one
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technology or sensor often cannot provide the required positioning accuracy, so new ap-
proaches based on sensor fusion [3,36] are needed. Many studies show that a combination
of inertial sensors and camera-based techniques has great potential since they provide bet-
ter robustness and higher localization accuracy [37]. The fusion of data from a camera and
inertial sensors can be performed using Kalman filters as proposed by Sirtkaya et al. [38].
Since image processing places a heavy load on the processor and therefore the battery,
visual localization is not always the best choice for indoor localization. Using visual lo-
calization within a smartphone application can also be inconvenient as the user has to
constantly provide the correct direction of the camera according to the environment [39].
This is not necessary with the radiolocation, which is a significant advantage.

The disadvantage of indoor radiolocation over visual localization is that it requires
some infrastructure. From this point of view, WiFi localization takes precedence over
Bluetooth-based localization because WiFi networks are already present in most buildings.
However, WiFi localization does not enable high localization accuracy in existing networks
since WiFi access points are usually rather sparsely located [2]. Due to this disadvantage
in WiFi localization, Bluetooth Low Energy (BLE) [5,40] has been established for the
purpose of indoor localization. BLE has many advantages over WiFi: from the low price of
transmitters, low power consumption and better robustness to the smaller size of integrated
circuits [41,42]. Li and Ma [43] took a hybrid approach using BLE and WiFi. They used
BLE tags and BLE/WiFi repeaters. Their system performs position calculations based on
two values: RSSI fingerprint and cell of origin. They conducted experiments in a rest area
and an office area and obtained errors of 1.2 and 1.37 m for these areas, respectively.

In the field of radiolocation, three approaches based on an analysis of Bluetooth signal
strengths have been established: Methods that consider the strongest base station; methods
that require the construction of path loss models, i.e., models of signal strengths (and
use trilateration) [1,11,24]; and methods based on the principle of “fingerprints” [21,42].
Tosi et al. [44] reviewed in their study the main methodologies adopted to investigate BLE
performance: they provided an analysis of the maximum number of connectable sensors,
throughput, latency, power consumption and maximum achievable range, with the aim
of identifying the current limitations of BLE technology. Zue et al. [45] proposed a graph
optimization-based approach that combines fingerprinting-based methods and range-
based methods. The authors performed a test in an area of 90 m × 37 m with two different
numbers of beacons, namely 24 beacons (sparse) and 48 beacons (dense), to see the effect
of beacon density on the position estimates. They obtained errors of 2.26 and 1.27 m
with the sparse beacon environment and dense beacon environment, respectively. In [46],
the authors implemented a fingerprinting algorithm with fuzzy logic type-2 that is suitable
for use as an indoor positioning method with BLE beacons with an average localization
error of 0.43 m. Since this solution is based on fingerprinting, it requires a time-consuming
offline phase and needs several additional algorithms for support. Thus, the computational
resource consumption and algorithmic program complexity are comparatively high.

In previous studies, researchers have already focused on developing automated or
semi-automated data acquisition systems [47]. Peng et al., developed an efficient method
to create and update a fingerprint database using an Unmanned Ground Vehicle (UGV)
platform. To collect BLE and WiFi fingerprints, they used a smartphone installed on the
UGV. According to the obtained results, the root mean square error of the positioning
results was reduced by 20% compared to the traditional fingerprint collection methods.
Gao et al. [48] proposed the so-called path survey technique, in which radio maps are
created from a sparse set of BLE and WiFi fingerprints. These were collected in such a
way that a person walked through a room. With the obtained results, they showed that
with a path-survey technique (and using Gaussian processes), the created maps are of the
same quality as in the case of manual collection. The authors of [18] proposed a semi-
automated fingerprint collection system (static rotating platform) to simplify and speed
up the data collection process for 50%. Similarly, Nastac et al. [49] discussed the problem
of automated data acquisition in fingerprint-based indoor positioning. As a platform for
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collecting data, they used a robot with simple wheel encoder sensors for odometry-based
positioning. The benefit of using a robot was most evident in the time savings, as the data
acquisition time could be reduced from 16 to 2 h for 3000 observations. In the process,
the measurement accuracy could also be increased compared to the manual approach.

When setting up a BLE network, the main challenge is to mark the BLE transmitters’
locations on the map of the space and then collect the RSSI measurements for constructing
the path loss model. These tasks are rather time-consuming since the network operator
spends at least half a minute to measure the locations of each beacon (e.g., using a tape
measure) or to collect the signal strengths at each measurement point. Therefore, this paper
presents a fully automated approach for data collection and online model development on
a smartphone, which is a significant advance over state-of-the-art solutions. The latter have
one of the drawbacks, such as the requirement for manual measurement and inserting the
beacon’s locations, offline data processing, or the use of expensive accessories, such as a
wheeled robot. The proposed system allows real-time determination of in which part of the
space there is a lack of measurements or which transmitter model is not yet good enough.
With the implemented fusion of visual SLAM and inertial navigation on a smartphone,
the proposed system enables accurate localization during BLE data collection, which is
a prerequisite for good models of signal strengths. These are used for parallel online
localization with the Particle Swarm Optimization (PSO)-based method, which enables
reinitialization of the SLAM algorithm and real-time validation of the models. In the online
model development phase, the beacon’s locations and the model parameters are calculated
using the constrained nonlinear optimization method. Assume that the model construction
completion criterion is met and the BLE localization accuracy is satisfactory. In this case,
the visual SLAM algorithm can be turned off and the position is calculated using only the
PSO method, which results in a lower CPU and battery load. In contrast to fingerprinting
methods, the proposed system is quickly adaptable to changes in the room (e.g., a new
beacon or furniture layout) and supports a crowdsourcing approach to data collection.

The paper is organized as follows. Section 2 describes a fully automated data collec-
tion approach based on visual-inertial SLAM. Section 3 provides the background to the
online path loss model construction on a smartphone. In Section 4 the particle swarm
optimization (PSO) method is proposed and described in detail. Section 5 presents the
results of path loss model construction and Section 6 deals with pedestrian localization
using the proposed algorithm. A discussion and concluding remarks are presented in
Sections 7 and 8, respectively.

2. SLAM-Based Fully Automated Approach for Data Collection

When gathering measurements of BLE signal strengths, real-time localization that
enables accurate determination of reference positions in space is essential. In previous stud-
ies, we have already shown that an algorithm combining an inertial and visual navigation
system is best suited for this purpose [37,50]. We have developed a visual odometry that
can very accurately determine the position of the smartphone in the short term by tracking
incremental movements. The problem with visual odometry is that the position drifts over
time and the error accumulates [51]. To improve the localization accuracy over time using
a camera and the smartphone’s inertial sensors, we used Google’s ARCore library [52]
in our fully automated system for data acquisition and model development. The AR-
Core algorithm is based on the state-of-the-art visual-inertial SLAM [53,54] or Concurrent
Odometry and Mapping (COM) [55], which allows determining the pose of a smartphone
with a monocular camera in an unknown environment, such as ORB-SLAM [56], MIMC-
VINS [57] or LSD-SLAM [27]. Feature detection helps in calculating the relative change in
position by searching for the same unique feature between frames. Using motion tracking
capabilities, ARCore tracks the smartphone’s position relative to the world Coordinate
System (C. S.) by identifying key feature points (see Figure 1). This visual information is
combined with inertial measurements (i.e., linear acceleration and angular velocity) from
IMU to estimate the relative 6-DOF pose (position and orientation) of the smartphone with
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respect to the world coordinate system. ARCore has the ability to track up to 20 images
simultaneously, with tracking occurring on the smartphone. In addition, ARCore can store
up to 1000 reference images in an image database.
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Figure 1. The ARCore tracking algorithm calculates transformation from camera C. S. to world C. S.

ARCore’s tracking algorithm computes the 3D transformation from the world C. S. to
the camera C. S. (Figure 1). To simplify pose representation, a 3D-to-2D transformation
is required. First, to obtain the current 2D pose of a smartphone in the world C. S.,
the camera C. S. must be transformed to the current C. S. (from 3D to 2D), and second,
the transformation g2D

WP from the current C. S. to the world C. S. must be determined.
The rotation matrix RWP determines the heading and the translation vector TWP determines
the position of the smartphone in 2D space [37]. The world C. S., which is determined by
the first frame, is not movable and it represents a reference C. S. in which the final result of
the visual localization is expressed.

The concept of the ARCore COM algorithm is shown in Figure 2. The algorithm is
divided into three main modules:

• Motion tracking module;
• Mapping module;
• Localization module.

ARCore takes visual data (captured images from smartphone camera) and inertial
data (from IMU) as the main input sources. Each of the modules has a clear responsibility
for the continuous COM process and they are highly dependent on each other.

The motion tracking module, also known as the front-end module, receives input
data to compute a locally accurate pose estimate. From the visual data, it identifies good
feature points and provides the captured feature descriptors. These descriptors also define
orientation, gravity direction, scale and other aspects. The estimated pose is based on the
feature descriptor correspondences from the previous frame. This module maintains only
a limited history of tracked motion and treats any previously generated estimated feature
point pose as fixed. Inertial sensors help correlate spatial features observed in one frame
with spatial features observed in a subsequent frame to efficiently determine the change
in pose. Therefore, the estimated pose can be performed with high frequency (due to the
limited matching time) with a locally accurate pose. On the other hand, the estimated pose
has almost no control over the drift or no means to check for loop closure since only a very
limited history is stored.
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Figure 2. The concept of the ARCore concurrent odometry and mapping algorithm [55].

The mapping module, also called the back-end module, takes as input the previously
defined feature descriptors from the current frame. In this module, a 3D representation
of the environment is created based on a stored variety of maps, feature descriptors,
and estimated device location. It has an extensive history of 3D feature positions in the
environment and poses of the smartphone. Matching the newly generated features with
the fixed features in the multitude of maps is an extensive process. Therefore, the updating
is done with a relatively low frequency. The 3D representation is sent to the localization
module. Within the mapping module, ARCore provides spatial understanding based on
plane detection in the depth map. Using the same feature points used for motion tracking,
ARCore looks for clusters of points that appear to lie on common surfaces. These can
be anything, such as floors, tables, or walls. These surfaces are stored as planes with a
specific boundary.

The localization module identifies discrepancies between stored and observed feature
descriptors. It performs loop closure by minimizing these discrepancies (e.g., with a least
squares adjustment or bundle adjustment [58]) to output a localized pose. If the error
(difference between estimated pose and matched pose) is greater than a certain threshold,
the localized pose snaps to the pose from the descriptor matching. This can happen for a
variety of reasons (e.g., significant drift). Difficulties occur for real-world surfaces without
texture (e.g., white wall) because ARCore uses feature points to detect surfaces. No useful
features can be found in textureless regions. In case the SLAM algorithm fails, inertial
navigation based on a pedometer and a digital compass becomes crucial. Inertial navigation
is combined with visual localization using an extended Kalman filter (as described in our
previous work [37]).

In summary, the ARCore algorithm performs two types of outputs from the input data
(see Figure 2). First, it provides a locally accurate and high frequency estimated pose with
no control segment such as loop closure or drift correction. Second, it provides a localized
pose with a lower update frequency due to extensive steps such as descriptor matching
(with the full history) or an adaptation process.

Suppose path loss models for the current space do not already exist on the server.
In that case, the visual-inertial localization method described above allows any smartphone
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application user to begin collecting BLE signal strength data for online path loss model
construction and subsequent radiolocation. The smartphone user only needs to walk
through the room while the visual-inertial localization system simultaneously determines
their current pose and creates a visual and radio map of the environment. While using
the smartphone application, it collects the following data into the database: BLE signal
strengths with time and pose (position and orientation of the smartphone) where individual
RSSI of a beacon with a unique ID is captured. The local data stored on the smartphone are
used for online model construction, as described in the next section. The collected data,
along with the path loss model parameters, are also sent to the server, where they are used
for further post-processing and realization of the crowdsourcing approach.

3. Online Path Loss Model Construction

Measurements of BLE signal strengths can be described using a path loss (or path
attenuation) model that determines a reduction in signal strength as the receiver moves
away from the transmitter. The model has the general form of a nonlinear equation with
three parameters:

d = K1 · ratioK2 + K3, (1)

where ratio = R/TXP = R/−59 (TXP = −59 dBm represents a signal strength at distance
of d = 1 m). From Equation (1) the signal strength R can be expressed:

R = TXP · (d− K3

K1
)K−1

2 , (2)

where the distance d is equal to:

d =
√
(x− x0)2 + (y− y0)2 + h2. (3)

Equation (3) contains the position (x, y) at which the signal strength R is measured,
the location of the beacon in space (x0, y0) and the distance h, which represents the height
difference between the smartphone and the known height at which the beacon is fixed.
Constrained nonlinear optimization (in which a trust-region method [59,60] is used) can
be used to determine the model parameters K1, K2, K3 and the position of the beacon in
space (x0, y0) in a way that model (2) fits the measurements well. Since the optimization
problem has multiple solutions, it is very important to strictly set the boundaries of model
parameters and limit the space of beacons’ locations.

Constrained Nonlinear Optimization

Constrained nonlinear minimization [61–63] involves finding the vector x, representing
the local minimum of the scalar function f (x), taking into account the given constraints on
the vector x. These constraints can be given as: A linear constraint (A · x ≤ b, Aeq · x = beq),
a nonlinear constraint (c(x) ≤ 0 or ceq(x) = 0) or a constraint with given bounds (box
constraints) l ≤ x ≤ u. In the following, the emphasis will be on nonlinear optimization
with box constraints l (vector of lower bounds) and u (vector of upper bounds). In this case,
we solve the following problem:

min{ f (x) such that l ≤ x ≤ u}. (4)

In the vector of lower and upper bounds, some of the components may be uncon-
strained (equal to ±∞). In the optimization process, the method returns a sequence of
strictly feasible points. With the goal of preserving feasibility while achieving robust
convergence behavior, the following techniques are used. In the first technique, the un-
constrained Newton step is substituted with a scaled modified Newton step. In this way,
the two-dimensional subspace S is defined using the preconditioned conjugate gradient
method [64]. The latter ensures global convergence. In the second technique, reflec-
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tions [61] are used to increase the step size. The scaled modified Newton step is obtained
by considering the Kuhn–Tucker necessary conditions for Equation (4):

(D(x))−2g = 0, (5)

where D(x) is a diagonal scaling matrix:

D(x) = diag(|rk|−1/2). (6)

The vector r(x) is defined below according to the gradient g = ∇ f (x) and bounds,
for each 1 ≤ i ≤ n:

• If ui < ∞ and gi < 0 then ri = xi − ui;
• If li > −∞ and gi > 0 then ri = xi − li;
• If ui = ∞ and gi < 0 then ri = −1;
• If li = −∞ and gi > 0 then ri = 1.

It is important to point out that the nonlinear system in Equation (5) is not differentiable
when ri = 0. However, by taking into account the restriction l < x < u and main-
taining strict feasibility, such points can be avoided. According to the nonlinear system
of Equation (5), the scaled modified Newton step sk is computed as the solution of the
linear system:

M̂kDksN
k = −ĝk, (7)

at the kth iteration, where:

ĝk = D−1
k gk = diag(|rk|1/2)gk (8)

and:
M̂k = D−1

k HkD−1
k + diag(gk)Jr

k . (9)

In Equation (9), Jr(x) represents the Jacobian matrix of |r(x)| and H is the Hessian
matrix. The Jacobian matrix Jr is diagonal, where each element is equal to 0, −1 or 1.
For the case where all elements of l and u are finite, the Jacobian matrix is equal to
Jr = diag(sign(g)). If there is a point at which gi = 0, then ri might not be differentiable.
However, at such a point the Jacobian Jr

ii = 0 is determined. Such non-differentiability is
not a problem, since it is not important which value ri takes. Indeed, the function |ri| · gi is
continuous, although |ri| is discontinuous at this point.

Equation (7) considers the use of the affine transformation x̂ = Dkx (the matrix
Dk is a symmetric matrix: Dk = DT

k ). This transformation converts the constrained
nonlinear optimization problem into an unconstrained nonlinear optimization problem,
minimizing the function in the new x̂ coordinates. This means that in this case the following
minimization problem is solved:

min{ψ̂k(ŝ) =
1
2

ŝT M̂k ŝ + ĝT
k ŝ such that ‖ŝ‖ ≤ ∆k} (10)

or, if s = D−1
k ŝ is considered, then the following minimization problem can be solved in

the original space:

min{ψk(s) =
1
2

sT Mks + sT gk such that ‖Dks‖ ≤ ∆k}, (11)

where:
Mk = Hk + Ck (12)

and:
Ck = Dkdiag(gk)Jr

k Dk. (13)
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In Equation (10) ∆k is a positive scalar representing confidence interval width. During the
optimization, it is adjusted according to the rules of the trust-region method [59,60].

The second technique of the constrained nonlinear optimization provides feasibility
with the following condition l ≤ x ≤ u to be satisfied. Within this technique, so-called
reflections are used, which have the purpose of increasing the step size. A single reflection
step can be described as follows. If p represents a step that exceeds the first bound
constraint (the ith upper or ith lower bound), then the reflection step is defined as pR = p
and pR

i = −pi for the ith element for which a constraint is required.

4. Localization with Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an optimization method that was initially de-
scribed by Kennedy, Eberhart and Shi [65,66]. In a practical application [67], they showed
that the PSO method could be used to simulate social behavior within a school of fish or a
flock of birds. PSO is a stochastic optimization method that robustly solves a given prob-
lem in successive iterations according to the selected objective function. This determines
whether the candidate solutions of the problem are appropriately improved at each step.
The candidate solutions are represented by particles forming a particle swarm. The solution
to the optimization problem can be achieved by moving these particles within a constrained
region using simple mathematical formulas. These determine a new position and velocity
of the particles in each iteration. In the case where all particles converge to a common
position, the global optimum of the objective function is found.

Let the position of the particle be denoted by xi ∈ Rn and its velocity by vi ∈ R. In the
swarm with S elements, the best position of each particle is denoted by pi and the best
position of the whole swarm is denoted by g. The number of all required particles S can
be inferred from the experimental results or calculated using the suggested formulas (e.g.,
S = 2

√
n + 10, where n is the search area’s dimension).

In the PSO method [66] a new position of particle xk+1
i is determined by the model

of particle movement that takes into account its current current velocity vk
i , position xk

i ,
the distance dk

pi
between the particle’s best known position pk

i and the particle’s current
position xk

i and the distance dk
gi

between the best position of the whole swarm gk at a given
time and the particle’s current position xk

i :

xk+1
i = xk

i + vk+1
i , (14)

where:
vk+1

i = ωvk
i + ∆vk

i , (15)

∆vk
i = ϕgrg(gk − xk

i ) + ϕprp(pk
i − xk

i ) = ϕgrgdk
gi
+ ϕprpdk

pi
. (16)

The parameter ω can be used to determine whether accurate local exploration
(a low value) or faster convergence (a high value) is preferred. The parameter repre-
sents the remembering rate or inertia weight [66], which determines to what extent the
previous direction of the particle is preserved. The parameter ϕg is a swarm confidence
factor (or a social learning factor) and the parameter ϕp is a self confidence factor (or cog-
nitive learning factor). The parameters rg and rp, which change randomly in the interval
[0, 1], represent random accelerations in the directions of the best position of the particle
pi and the best position of the whole swarm g. In the process of the PSO configuration,
according to a given optimization problem, great emphasis should be put on the choice of
parameters ω, ϕp and ϕg, which have the most significant impact on the performance of
the method [68–71].

The goal of PSO-based localization is to find a particle (i.e., the position of the smart-
phone) (x, y) in two-dimensional space for which the corresponding vector of signal
strengths RP = [ fR1(d1), fR2(d2), ..., fRm(dm)], obtained by the constructed path loss mod-
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els Ri = fRi (di) (for i = 1, ..., m), is the most similar to the vector of current measurements
of signal strengths RM according to the objective function:

fc =
m

∑
i=1
|RMi − RPi |, (17)

where m is the number of BLE transmitters considered for the calculation of the current
position. The distance di (for i = 1, ..., m) represents the Euclidean distance between
the current position of the smartphone (x, y) and the position of the ith BLE transmitter
(x0i , y0i ).

Using the path loss models, the PSO localization method generates fingerprints for
all particles in the swarm that represent the local radio map. The particles are uniformly
distributed in the grid of the chosen size at the beginning of each optimization.

5. Online Path Loss Model Construction Results

In order to evaluate the proposed system for automated localization data collection,
online modeling and real-time PSO localization on a smartphone (Samsung Galaxy S9),
an experiment was performed in am ∼80 m2 laboratory, where ten Bluetooth beacons from
Kontakt.io [72] were installed. The beacons were distributed around the room (taking
into account certain constraints due to the layout of walls, doors, pillars and windows),
as shown in Figure 3 (green squares). To reduce the influence of the presence of human
bodies on the measurements of the signal strengths, the transmitters were mounted at the
height of 2 m above the floor.
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Figure 3. Locations of BLE beacons (green squares) and walked path (determined with the visual-
inertial SLAM) during automated measurement capture. The ground truth path is marked with the
red dashed line. The white pixels represent empty space and grey pixels represent occupied space.

The measurements of the signal strengths from all ten beacons were collected in a
way that a pedestrian repeatedly walked the path that is shown in Figure 3 while the
smartphone recorded the data. The current position of the smartphone (calculated every
50 ms) was tracked by the algorithm combining the SLAM and the inertial navigation
system (see Section 2). All of the positions where the measurements of the signal strengths
were performed can be seen in Figure 3. This figure shows that the obtained position points
deviate slightly from the intended route (the lines were marked on the ground). Part of this
error is due to the visual-inertial localization algorithm (strong magnetic interference affects
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the digital compass) determining the position relative to the starting point, and part is due
to the inaccurate walking of pedestrians along the line. Our results on visual localization
include that under optimal environmental conditions, the errors are at most of a few tens of
centimeters in a typical room-sized environment (without significant drift errors). However,
as the speed of movement increases and in low light conditions, the overall performance
may decrease.

Using the constrained nonlinear optimization and the signal strengths measurements
from all Bluetooth beacons distributed in the room, the path loss models are constructed
online on the smartphone. Figure 4 shows the fitting of the models to the measurements
of the signal strengths after 30, 70 and 150 s of walking (for the BLE beacon with MAC
address DA:57:30:EC:6A:D1 and position (−0.7, 11.10)) to demonstrate the influence of the
amount of the collected measurements. After 30 s of walking, the pedestrian covered a
distance of about 10 m along the corridor. After 70 s, half a T-shaped path was covered,
and after 150 s, the pedestrian covered the entire T-shaped path (i.e., 36 m) from the
start and back. The online construction of the path loss models and the determination of
the beacons’ locations are performed in iterations every 10 s when enough new data are
collected. The constrained nonlinear optimization runs in parallel to the real-time PSO
localization on the smartphone, which means that they do not affect each other when
individual CPU cores are fully utilized.
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Figure 4. Fitting the online constructed path loss models (2) to the measurements of the signal
strengths after 30, 70 and 150 s of walking (for the BLE beacon with MAC address DA:57:30:EC:6A:D1).
Since the data contain a lot of noise, the coefficient of determination for all models is quite low:
R2 = 0.5.

In the laboratory where the experiment was conducted, there were many obstacles
(walls, wooden barriers, pillars) between the transmitters and the receiver (smartphone),
while the pedestrian walked along the path shown in Figure 3. Due to absorption and
reflection from the obstacles, the signal strength measurements were very noisy and
scattered at the same distance from the beacon (see Figure 4).

During data collection and online model development, the measurements and the path
loss models shift left and right according to the distance d (see Figure 4) since the positions
of the beacons are estimated with the constrained nonlinear optimization algorithm in
addition to the model parameters. With more available data, the positions of the beacons
converge towards the correct position (see the upper part of Figure 5). Still, after a certain
number of iterations, they do not improve any more because the measurements contain
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a lot of noise. For model improvement, it is crucial to collect measurements at different
distances (from 1 m to 10 m) from the beacon because, in this way, the whole RSSI signal
range is covered (e.g., from −59 to −100 dBm). The lower part of Figure 5 shows the BLE
signal range (the difference between maximum and minimum signal strength) as a function
of the travelled distance. As the signal range increased, the error of the beacon’s location
decreased. When the signal range reached values close to 40 dBm, the error entered the
steady-state. After 30 s of data acquisition, the amount of data was still too small or the
measurements are not well distributed throughout the room, which is reflected in the
transmitter’s inaccurate position and a worse model 1 in Figure 4. After 70 s, the signal
range and the beacon’s location were satisfactory and the path loss model was also close to
the optimum. With the additional data, the models and beacons’ locations can be improved
only slightly.
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Figure 5. The upper part of the figure shows the error between the beacon’s actual location (with MAC
address DA:57:30:EC:6A:D1) and the position calculated by the constrained nonlinear optimization
method. The error depends on the time or the travelled distance. The lower part of the figure shows
the BLE signal range (the difference between maximum and minimum signal strength) as a function
of time or the travelled distance.

In the online data collection process and model development, it is essential to know
when there is enough data for a given beacon. For this purpose, two (stopping) criteria can
be used, first, when the beacon’s location changes less than the selected threshold during
two consecutive iterations (in our case 0.1 m) and second, when the signal range is large
enough (in our case 35 dBm). The duration of collecting the measurements and the path
length are worse for estimating whether there are enough measurements. Namely, if the
measurements are collected only in the same position (for a long time) or at a long distance
from the transmitter, they are not useful for the model construction.

Once the positions of all beacons and the path loss models are computed, the goal
of the proposed system is achieved. However, if there are any changes to the space (e.g.,
change in the position of the beacons), the whole process can be repeated very quickly.
The data and models can be created by one user or by multiple users of the smartphone
application. With the crowdsourcing approach, large amounts of data can be collected
on the server, which means that the models created online can definitely be improved
offline using more sophisticated and computationally intensive methods (e.g., using the
SUHICLUST algorithm that creates fuzzy path loss models with confidence intervals [50]),
if necessary.
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6. Particle Swarm Localization Results

In order to evaluate the online developed path loss models and the PSO-based local-
ization algorithm, the measurements of signal strengths were collected with a smartphone
along the same path used to construct the models and determine the beacons’ locations
(see Figure 3). As the pedestrian walked along the path, each time the smartphone receiver
measured at least one new signal strength that was greater than−95 dBm, a vector of signal
strengths RM was created from which the current position was determined. In our exper-
iment, this happened on average every 30 ms, with each beacon sending a packet every
100 ms. For each beacon, the measurements of the signal strengths were independently fil-
tered using the Savitzky–Golay filter (with frame length 99) [73] to reduce variability. Each
vector of current measurements (or fingerprint) consists of at least three signal strengths
from different beacons. In our experiment, the fingerprints contained five elements, as this
is optimal according to our previous study [50]. To determine the accuracy of the PSO
localization algorithm in real time, the visual-inertial SLAM algorithm was used to record
the positions where the vectors RM were created.

During the experiment, the pedestrian walked for 5 minutes in the laboratory. Their
current location (see Figure 6) was determined in real time using the PSO localization
method on a smartphone (Samsung Galaxy S9), where the latest path loss models were
used. These were created online from the latest available data and they were further
improved with new data if the stopping criteria were not yet met (see previous subsection).
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Figure 6. The indoor positioning results (after 5 min of walking) obtained using the online constructed
path loss models and the PSO localization method.

When selecting the PSO search area, the current position of the receiver (i.e., the
smartphone) must be approximately known. During PSO initialization, the position can
be calculated using the location of the nearest beacon (with the highest signal strength) or
using the fast linear trilateration method. In this case, the room-level accuracy is acceptable.
Thereafter, when PSO provides the first positioning results, the current position of the
receiver can be used in the next iteration to determine the PSO search area (all particles are
arranged around the current position).

With the aim of obtaining the optimal parameters of the PSO method, the offline sim-
ulation experiments were performed in the Matlab environment. In this way, the following
parameters were obtained: ω = 0.06, ϕp = 0.1 and ϕg = 0.1. The optimal size of the search
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area with a square shape is 0.8 m × 0.8 m. By choosing the boundaries of the search area,
a filtering effect is achieved in addition to reducing the computational complexity.

Since the PSO algorithm must operate in real-time on a smartphone, the parame-
ters were chosen as a trade-off between computational speed and localization accuracy.
By running simulations, the number of particles and iterations needed was also determined.
The use of eight particles and twenty iterations within the PSO optimization proved to
be optimal, as a larger number of particles or iterations only increases the computational
complexity and does not improve the result.

As path loss models and beacons’ locations were more accurately determined with
more available data, the localization error decreased. The graph of the cumulative distribu-
tion function (Figure 7) shows that after 310 s of walking in 70 % of the position estimates,
the error was less than 1 m and the average error was less than 0.8 m. For comparison,
when incomplete models built with a smaller dataset were used, the results show that after
30 s of walking in 44 % of the position estimates the error was smaller than 1 m and after
70 s there were 52 % of the position estimates where the error was smaller than 1 m.
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Figure 7. The cumulative distribution functions for the positioning errors in determining the positions
by the PSO method after 30, 70 and 310 s of walking.

The results of the online construction of the path loss model show that in the first 80 s
after data collection began, the models and the beacons’ locations changed drastically. Con-
sequently, the positioning errors obtained with the PSO localization method (see Figure 8)
were substantially larger in the first 80 s (or for the first eight model series). Thereafter,
the mean positioning error decreased more slowly. The decrease of error can be described
by an exponential model e = 0.35 exp(−0.04t) + 0.98 exp(−0.0006t) (where t is time) with
the coefficient of determination R2 = 0.8. In the first evaluation of the mean error, about
150 positions and in the last evaluation, about 5500 positions were used for error estimation.
The number of calculated positions (with PSO method) used for estimating the mean
error increased practically linearly with time. Since path loss model construction and PSO
localization can run simultaneously on a smartphone, the comparison of the current radio
and visual-inertial localization results can be used as a real-time criterion to determine in
which part of space additional signal strength data need to be collected to improve the
latest online computed models and consequently the localization accuracy.
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Figure 8. The mean localization error as a function of time or the travelled distance. The decrease of
error can be described by an exponential model e = 0.35 exp(−0.04 t) + 0.98 exp(−0.0006 t) with the
coefficient of determination R2 = 0.8.

When comparing the computational complexity, the localization algorithm based on
the PSO method turns out to be better than the one based on the nonlinear trilateration [74],
as it is 20 times faster for the same localization accuracy (on the smartphone, it spends
about 5 ms computing a position). The experiment was performed on a Samsung Galaxy
S9 smartphone (with a Samsung Exynos 9810 processor) using offline signal strength
measurements and prebuilt path loss models. Average execution time for both localization
methods was calculated from 5000 repetitions of the different position calculations.

7. Discussion

With the implementation of an automated system for BLE data collection, online path
loss model construction, and real-time PSO localization on a smartphone, radiolocation
becomes significantly less time- and labor-intensive by reducing configuration time (i.e., the
time from the start of data collection to the moment when Bluetooth localization becomes
operational) by more than 90%. With the manual collecting of signal strength data in the
∼80 m2 laboratory, where at least 80 measurement points are needed (previous studies
showed that at least one measurement point per square meter is required), the network
operator would spend about 40 min (half a minute to manually measure each location in the
room and collect the signal strengths). To measure ten beacons’ locations in our laboratory,
the network operator would spend an additional 5 min. A non-automated localization
system also requires some time to transfer the data to the computer and compute the path
loss models or create the map of fingerprints. For comparison, the proposed automated
system required 5 min for collecting all signal strength data (more than 5000 measurement
points), calculating path loss models, and determining all beacons’ locations.

Compared to our previous study [37,50,74], in which a visual odometry algorithm was
developed to determine the reference positions during the collection of signal strengths,
the new proposed automated system has many advantages. The visual-inertial SLAM
does not require an initial camera calibration with a checkerboard to obtain intrinsic and
extrinsic parameters describing the transformation between the camera and base coordinate
systems. Therefore, the smartphone does not need to be at the same height above the
ground during the walk. The visual-inertial SLAM also includes loop closure, which is very
important to reduce position drift and error accumulation. Therefore, the proposed system
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can be used for data collection in wide area facilities such as airports, hospitals, museums,
etc. The visual localization system based on SLAM is very accurate, but it can also fail,
especially in dark places and places where the surfaces are without texture. In such a case,
the fusion with inertial sensors and methods becomes crucial. The visual-based localization
system has proven to be less suitable to be used as a primary localization system, as the
image processing puts a heavy load on the processor, which drains the battery quickly.
During the experiment, the two big cores of the Samsung Exynos 9810 processor (with four
big cores operating at 2.9 GHz and four small cores operating at 1.9 GHz) were loaded
more than 90% on average while using visual localization. By contrast, PSO localization is
computationally much less demanding and can run on a small core (loaded less than 60%
on average), saving energy.

In addition to the visual-inertial SLAM, another important component of the proposed
system is the constrained nonlinear optimization, which allows constructing path loss
models and determining the beacons’ locations online on a smartphone. The results of the
experiment show that the beacons’ locations can be determined fairly accurately, as the
final average errors are less than half a meter for all the beacons. These errors are not
problematic since the obtained beacons’ locations can also be represented as virtual beacons’
locations that best fit the corresponding path loss models with the constrained parameters.
In this way the deviations (due to the obstacles) in the path loss model can be partially
compensated for with the virtual beacon’s location and consequently the model can better
fit the measurements. It has been found that the constraints on the parameters of the
path loss model can be quite stringent, since the same beacons located in open space have
very similar path loss models. The constraints on the beacons’ locations do not impose an
additional burden since the dimensions of the area where the transmitters are located are
usually known. When implementing algorithms on a smartphone, the main concern is that
they can run in real time or in limited time. Therefore, a trade-off between the accuracy and
speed of the algorithms is required. Since the proposed system is designed to support the
crowdsourcing approach, all the collected data are transferred to the server database where
the models already created online can be additionally improved if needed. The proposed
solution is suitable for both BLE network operators and end users. Anyone who enables
visual localization on a smartphone can start simultaneous localization and data collection.
Based on the proposed criteria (signal range, beacons’ location stability and accuracy
of radiolocation compared to visual-inertial localization), the following information is
available to the user collecting data: For which beacon in the room there are not enough
measurements yet or in which part of the room the radiolocation is still poor and additional
measurements are needed.

For real-time radiolocation on a smartphone, the PSO-based method was chosen
instead of nonlinear trilateration. The reason is that PSO localization has been shown to be
much faster. However, in order to achieve good localization accuracy, the parameters of the
PSO optimization method must be carefully chosen, otherwise the algorithm may become
slow and inefficient. The PSO localization is more flexible in the sense of a small temporary
radio map generation, which consumes very little memory for the same accuracy as the
fingerprinting method. The obtained localization results are slightly worse (with an average
error of 0.8 m) than in the case where the locations of the beacons are known and the path
loss models are constructed offline using more sophisticated methods [50] (with an average
error of 0.5 m). Since most location applications (for large facilities such as airports) do
not require high localization accuracy, the obtained results represent a good compromise
according to the complexity of the network deployment and the localization accuracy.

The proposed system is not limited to collecting BLE signal strengths and PSO radi-
olocation. Depending on the needs, it can be modified to collect data about the WiFi, UWB
or geomagnetic field signals and perform localization based on these signals.
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8. Conclusions

This paper presents a sophisticated indoor localization system that combines visual-
inertial positioning for accurate data collection and Bluetooth positioning for real-time
smartphone tracking with low power consumption. The visual-inertial SLAM algorithm,
which is part of the ARCore library, successfully fuses information from the camera and
inertial sensors to provide accurate localization in large spaces over a long period of
time. In this way, a suitable collection of measurements of signal strengths can be made
quickly and easily, clearly defining which part of the space is not yet well covered by
measurements. The path loss models and the beacons’ locations are determined online on a
smartphone using the constrained nonlinear optimization, which is the main contribution.
The constrained nonlinear optimization considers all the necessary bounds on the model
parameters and the map of the space when constructing the path loss models. The obtained
beacons’ locations are determined fairly accurately (with an average error of 0.5 m) and
the models fit the measurements well, although they contain a lot of noise. From the
obtained radiolocation results, it can be seen that the proposed PSO-based localization
algorithm (with an average error of 0.8 m) combined with online constructed models can
meet most localization requirements in smartphone applications. The developed system
for automated data collection and online modeling on a smartphone has proven to be very
useful as it can greatly simplify and speed up the installation of the Bluetooth network,
especially in wide-area facilities such as airports, hospitals, museums etc., where the
configuration time can be reduced by more than 90%. Further development of the system
will focus on the more sophisticated fusion of the radiolocation and inertial system.
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