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Abstract: High-precision and low-cost single-frequency precise point positioning (SF-PPP) has
been attracting more and more attention in numerous global navigation satellite system (GNSS)
applications. To provide the precise ionosphere delay and improve the positioning accuracy of the
SF-PPP, the dual-frequency receiver, which receives dual-frequency observations, is used. Based on
the serviced precise ionosphere delay, which is generated from the dual-frequency observations, the
high-precision SF-PPP is realized. To further improve the accuracy of the SF-PPP and shorten its
convergence time, the double-differenced (DD) ambiguity resolutions, which are generated from
the DD algorithm, are introduced. This method avoids the estimation of fractional cycle bias (FCB)
for the SF-PPP ambiguity. Here, we collected data from six stations of Shanghai China which
was processed, and the corresponding results were analyzed. The results of the dual-frequency
observations enhanced SF-PPP realize centimeter-level positioning. The difference between the
results of two stations estimated with dual-frequency observations enhanced SF-PPP were compared
with the relative positioning results computed with the DD algorithm. Experimental results showed
that the relative positioning accuracy of the DD algorithm is slightly better than that of the dual-
frequency observations enhanced SF-PPP. This could be explained by the effect of the float ambiguity
resolutions on the positioning accuracy. The data was processed with the proposed method for
the introduction of the DD ambiguity into SF-PPP and the results indicated that this method could
improve the positioning accuracy and shorten the convergence time of the SF-PPP. The results could
further improve the deformation monitoring ability of SF-PPP.

Keywords: precise point positioning; single-frequency positioning; global positioning system; iono-
sphere delay

1. Introduction

It is true that the single-frequency (SF) global navigation satellite system (GNSS) re-
ceiver is widely used, especially in the positioning, timing, and navigation (PNT) service.
With the rapid development of smart devices such as smartphones, shared bicycles, and
personal digital assistants, more and more low-cost GNSS chipsets receiving SF signals
are embedded in these advanced devices. Some researchers have carried out testing,
and quality assessments of multi-GNSS raw measurements from different types of smart
devices, and mass-market GNSS chipsets can achieve submeter- or decimeter-level po-
sitioning accuracy [1–5]. High-precision and low-cost single-frequency precise point
positioning (SF-PPP) has attracted increasing attention in the booming GNSS markets.
However, space-dependent errors, such as ionosphere delay and troposphere delay,
affect the positioning performance. These errors are generally eliminated using the
differenced algorithm or correction information. In regards to the relative positioning
of the SF receiver, two receivers at least are needed, and the relative positioning results
are easily affected by the displacement of the localized infrastructure. Therefore, the
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ability of displacement detection by relative positioning is limited [6]. Different from the
relative positioning, the service of the correction information for the ionosphere delay,
which is estimated using the GNSS geometry-free combination, is needed for single-
frequency and single-receiver-based absolute positioning. This correction information
is generally realized by modeling the ionosphere delay estimated with code geometry-
free combination formed with P1 and P2 observations from local or regional network
stations [7–9]. It is obvious that the estimated ionosphere delay is easily affected by the
noise of code observations and the density of used observations. Besides, the ionosphere
delay can be removed with the GRAPHIC (Group and Phase Ionosphere Calibration)
combination, but it makes the convergence time longer since the design matrix of the
combination is similar to that of the phase observation [10]. Wang et al. [11] compared
and evaluated the performance of the three widely used SF-PPP models; the kinematic
test results showed that the positioning accuracy and convergence of the ionosphere-
weighted SF-PPP model was better than that of the traditional ionosphere-corrected and
GRAPHIC models. The ionosphere delay error could be extracted with undifferenced
and uncombined PPP [12]. In this method, raw phase and code observations were used
to estimate the ionosphere model parameters, but the receiver differential code bias
(DCB) was just computed, and the satellite DCB was corrected using International GNSS
Service (IGS) [13] products. Beyond that, the tedious process for ionosphere modeling
complicates its application. The precise ionosphere delay was estimated and used in
the single-frequency receiver positioning based on the local network observations in
Deng et al. [14] and Zou et al. [15]. In SF-PPP, the ambiguity still needs to be processed.
The existence of the satellite fractional cycle bias (FCB) makes single-differenced (SD)
ambiguity between two satellites have no integer property [16], while the integer am-
biguity resolution is very important to shorten the convergence time and improve the
positioning accuracy of SF-PPP. The estimation of FCB and ambiguity fixing of SF-PPP
is similar to that of PPP. In processing, the FCB should be estimated and serviced. The
PPP-enabled ambiguity resolution has been studied and implemented [6,16–28], and
these studies focus on the recovering of the integer characteristic. In Li et al. [6] and
Odijk et al. [29], the double-differenced ambiguity was introduced in PPP ambiguity
processing to improve the positioning accuracy of PPP and promote the detecting ability
of the PPP in displacement monitoring. This method avoids the estimation of the FCB,
and the PPP ambiguity fixing was realized based on the introduced SD ambiguity from
reference stations and the double-differenced ambiguity fixing.

At present, with SF-PPP technology, it is difficult to meet the requirements of centimeter-
level positioning since the fast fixed ambiguity cannot be realized, and the accuracy of
the external ionosphere models is limited. Therefore, it is very important and beneficial
to introduce the double-differenced ambiguity into SF-PPP to realize high-precision po-
sitioning applications. It will promote the application of the single-frequency receiver in
displacement monitoring. The accuracy of SF-PPP is easily affected by serviced ionosphere
delay, so it is important to provide precise service for ionosphere correction. The precise
ionosphere delay can be extracted by using dual-frequency observations. Thus, a method
for the dual-frequency observations enhanced SF-PPP is presented. The method includes:
(1) Estimation of the precise ionosphere delay for single-frequency receiver; (2) Processing
of SF-PPP; (3) double-differenced ambiguities estimated based on the double-differenced
single-frequency observations; (4) undifferenced and satellite-differenced ambiguities gen-
erated based on SF-PPP computation; (5) double-differenced and satellite-differenced
ambiguities introduced in SF-PPP. After the abovementioned five steps are taken, SF-PPP is
realized based on the precise service of the ionosphere delay. The high-precision coordinate
results of SF-PPP were obtained by introducing the double-differenced ambiguity. In the
following, the “Materials and Methods” Section introduces the method for estimation of the
precise ionosphere delay and the introduction of the double-differenced integer ambiguity
resolution into SF-PPP. The “Data and Experiment” and “Discussion” Sections indicate the
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data analysis and discuss the results. Finally, the “Conclusions” Section summarizes the
main findings.

2. Materials and Methods

Here, traditional SF-PPP is discussed, and the methods for the estimation and interpo-
lation of the precise ionosphere delay are presented. With the interpolated precise iono-
sphere delay, the SF-PPP of the user could be implemented. Then the double-differenced
(DD) ambiguity was introduced into SF-PPP to fix the ambiguity.

2.1. SF-PPP

Assuming that the residual errors of satellite orbit and clock are neglected, for a single-
receiver, if the corrections for the Earth rotation, Earth tides, relativistic effects, phase center
variation (PCV), and DCB are implemented, the observed-corrected L1 and P1 observations
are written as in Equation (1):

P1 = ρ + br
1 − bs

1 + δr + Is
r + Ts

r + ω1
L1 = ρ + N1λ1 + (FCBr

1 − FCBs
1)λ1 + δr − Is

r + Ts
r + ε1

(1)

where ρ is the geometric range between the receiver and satellite, Ts
r is the slant tropospheric

delay, Is
r is the slant ionospheric delay of the L1 observation, δr is the receiver clock errors

in meter, bs
1 is the satellite hardware delay biases of the P1 observation, br

1 is the receiver
hardware delay biases of P1 observation, ε1 is the noise from the L1 observation, ω1 is
the noise from the P1 observation; FCBr

1 is the receiver FCB and FCBs
1 is the satellite FCB

of the L1 observation; N1 is the integer ambiguities of L1 and its wavelength is λ1. In
SF-PPP processing, the ionosphere delay is generally corrected with the established model
using data from ground reference stations, in which the precise satellite clock and orbit
products are used [30–33]. The commonly used models are the Klobuchar Model and Global
Ionospheric Model (GIM) provided by IGS [34,35]. However, the accuracy of the serviced
ionosphere delay is too low to meet the need for precise positioning. Thus, the precise
ionosphere delay is estimated using the regional dual-frequency observations [14,15].

2.2. Estimation and Interpolation of the Precise Ionosphere Delay

The precise ionosphere delay is estimated with dual-frequency observation [14,15].
For a dual-frequency user, the geometry-free phase and code observation can be calculated
using Equation (2)

L1 − L2 = N1λ1 − N2λ2 + (FCBr
1 − FCBs

1)λ1 − (FCBr
2 − FCBs

2)λ2 −
f 2
2− f 2

1
f 2
2

Is
r + ε1 − ε2

P1 − P2 = br
1 − br

2 − (bs
1 − bs

2) +
f 2
2− f 2

1
f 2
2

Is
r + ω1 −ω2

= DCB(P1 − P2)
r − DCB(P1 − P2)

s +
f 2
2− f 2

1
f 2
2

Is
r + ω1 −ω2

(2)

where N2 is the integer ambiguity of the L2 observation and its wavelength is λ2; FCBr
2

is the receiver FCB and FCBs
2 is the satellite FCB of the L2 observation; bs

2 is the satellite
hardware delay biases of the P2 observation; br

2 is the receiver hardware delay biases of the
P2 observation; f 1 and f 2 are the frequencies of L1 and L2 observations; ε2 is the noise of
L2 observation; ω2 is the noise of P2 observation; DCB(P1 − P2)

s is the satellite DCB and
DCB(P1 − P2)

r is the receiver DCB [36]. Equation (3) shows that when there is no cycle slip
between two adjacent epochs, the precise time-varying ionosphere delay can be computed
with geometry-free phase observation and the epoch-differenced algorithm between epoch
n and n−1:

(∆Is
r )n =

f 2
2

f 2
1 − f 2

2
∆(L1 − L2)n =

f 2
2

f 2
1 − f 2

2
((L1 − L2)n − (L1 − L2)n−1) (3)
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The cycle slip is detected using the geometry-free phase and the Hatch–Melbourne–
Wübbena observation combinations [37–39]. When the reference epoch k is selected, the
reference epoch based ionosphere delay at epoch k + m can be computed with Equation (4):

(Is
r )k+m = Is

r,k +
k+m

∑
i=k+1

(∆Is
r )i (4)

where Is
r,k is the ionospheric delay at the reference epoch of k. The reference epoch can be

selected when the satellite is tracked for the first time or the cycle slips happen. Therefore,
Is
r,k is computed for each successive period of epochs without cycle slip. When the estimated

ionosphere delay with Equation (4) is introduced in the geometry-free code observation,
the geometry-free code observation can be re-written as Equation (5):

(P1 − P2)k+m = DCB(P1 − P2)
r − DCB(P1 − P2)

s

+
f 2
2− f 2

1
f 2
2

(
Is
r,k +

k+m
∑

i=k+1
(∆Is

r )i

)
+ ω1 −ω2

(5)

Equation (5) shows that the ionosphere delay at the reference epoch of k can be
computed when the epoch-differenced ionosphere delays estimated with geometry-free
phase observation are obtained:

(Is
r,k −

f 2
2

f 2
1− f 2

2

(
DCB(P1 − P2)

r − DCB(P1 − P2)
s))

= −
k+m
∑

i=k+1
(∆Is

r )i −
f 2
2

f 2
1− f 2

2
(P1 − P2)k+m + ω1 −ω2

(6)

The accuracy of the epoch-differenced ionosphere delays estimated with geometry-
free phase observation is relatively high. The effect of the code noise on the computed
ionosphere delay at the reference epoch is deduced by averaging the observations of the
many epochs. Therefore, Equation (6) can be written as Equation (7):

(Is
r,k −

f 2
2

f 2
1− f 2

2

(
DCB(P1 − P2)

r − DCB(P1 − P2)
s))

= − 1
m+1 (

k+m
∑

i=k+1
((m + k + 1− i)(∆Is

r )i) +
f 2
2

f 2
1− f 2

2

k+m
∑

i=k+0
(P1 − P2)i) + ω1 −ω2

(7)

Equation (7) shows the ionosphere delay at the reference epoch of k absorbs the
receiver and satellite DCBs. The satellite DCBs used here are products released by CODE
at intervals of days. As for the receiver DCB, it is absorbed by the receiver clock in the
positioning processing so that it will not affect the positioning result [36]. In near-real-
time mode, the satellite DCBs can be predicted with the values of the day before since
DCB values change little between two adjacent days. The ionosphere delay is the space-
dependent error. Thus, the precise ionosphere delay at the user can be interpolated using
the inverse distance weighted method after the ionosphere delay at the reference epoch of
k and the accumulated epoch-differenced ionosphere delay computed with geometry-free
phase observation are obtained. The inverse distance weighted method [6] is calculated by
the following:

(Is
r,k)u

=
g
∑

j=1
qj(Is

r,k)j
/

g
∑

j=1

(
qj
)

(8)

qj =
1
lj

(9)

where g is the total number of reference stations; (Is
r,k)u

is the interpolated precise iono-
sphere delay at single-frequency user of u; qj is the weight; lj is the distance between the
dual- and single-frequency user stations.
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2.3. Introduction of the DD Ambiguity into SF-PPP

When the precise ionosphere delay at the user is obtained, the single-frequency user
can carry out the PPP computation. Equation (1) shows that the ambiguity of the L1
observation absorbs the satellite FCB so that it cannot be fixed to an integer value, and the
ambiguity fixing method is not suitable for implementation [6]. The ambiguity fixing is
beneficial to improve the positioning accuracy and shorten convergence time. To improve
the positioning accuracy of the SF-PPP, its ambiguity needs to be fixed by introducing the
DD ambiguity into it. The satellite-differenced (SD) L1 observation of the satellites a and b
at user is written as in [6]:

La
1,r − Lb

1,r = ∆ρ +
(

Na
1,r − Nb

1,r

)
λ1 −

(
FCBa

1 − FCBb
1

)
λ1

− (Ia
r − Ib

r ) +
(

Ta
r − Tb

r

)
−
(

δa
s − δb

s

)
+ ε1,a − ε1,b

= La,b
1,r = ∆ρ + Na,b

1,r λ1 − FCBa,b
1 λ1 − ∆Ia,b

r + ∆Ta,b
r −

(
δa

s − δb
s

)
+ εa,b

(10)

where δa
s and δb

s are satellite clock errors in meters. Equation (10) shows that the SD
algorithm cancels the receiver FCB. When a high-quality SD real-value L1 ambiguity, which
has the best performance in PPP and DD positioning, at another receiver u is introduced,
the SD satellite FCB is removed, and Equation (10) can be re-written as:

La,b
1,r = ∆ρ + Na,b

1,r λ1 − FCBa,b
1 λ1 − Ia,b

r + Ta,b
r −

(
δa

s − δb
s

)
+ εa,b

−
(

Na,b
1,uλ1 − FCBa,b

1 λ1

)
+
(

Na,b
1,uλ1 − FCBa,b

1 λ1

)
= ∆ρ + Na,b

1,r λ1 − Na,b
1,uλ1 +

(
Na,b

1,uλ1 − FCBa,b
1 λ1

)
− ∆Ia,b

r + ∆Ta,b
r −

(
δa

s − δb
s

)
+ εa,b

= ∆ρ + (Na,b
1,r − Na,b

1,u)λ1 +
(

Na,b
1,uλ1 − FCBa,b

1 λ1

)
− ∆Ia,b

r + ∆Ta,b
r −

(
δa

s − δb
s

)
+ εa,b

= ∆ρ + ∆∇Na,b
r,u λ1 +

(
Na,b

1,uλ1 − FCBa,b
1 λ1

)
− ∆Ia,b

r + ∆Ta,b
r −

(
δa

s − δb
s

)
+ εa,b

(11)

where the term of Na,b
1,uλ1 − FCBa,b

1 λ1 is the SD real-value L1 ambiguity at user u, ∆∇Na,b
r,u is

the DD integer ambiguity formed with the two users of r and u. For the determination of
the best performance and the selection of the high-quality SD real-value L1 ambiguity, the
ratio values in the DD processing can be used [6]. Equation (11) shows the ambiguity at
user has the integer characteristic and can be fixed. The generated ambiguity in Equation
(11) is obtained using the DD observation formed by the users u and r. Figure 1 indicates
the flowchart for the estimation and interpolation of the precise ionosphere delay and
the introduction of the DD ambiguity into SF-PPP. The SF-PPP processing for all users is
carried out, and the corresponding SD float ambiguity is obtained at first. Then, the DD
ambiguity is generated as shown in Equation (11), and the ambiguity processing for the
SF-PPP is converted into DD ambiguity processing, which is formed with the users of a
and b. When this DD ambiguity is fixed and then introduced into the SF-PPP processing
for the user a or b, the fixed SF-PPP ambiguity is realized.
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Figure 1. Flowchart of the estimation and interpolation of the precise ionosphere delay and the introduction of the DD
ambiguity into SF-PPP.

3. Data and Experiment

To verify the proposed method, 24 h GPS observations with the sampling interval
of 30 s from six stations of Shanghai (CMCJ, CMMZ, GTFD, JSFJ, NHSY, TJCH), China,
were used. The elevation cut-off angle is set to 9 degrees. Note that the stations TJCH and
GTFD received the dual-frequency observations. The distribution of these selected stations
is shown in Figure 2.
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According to the processing strategy, the dual-frequency observation stations TJCH
and GTFD were used to compute and interpolate the precise ionosphere delay for the
users of CMCJ, CMMZ, JSFJ, and NHSY. In the precise ionosphere delay computing, the
cycle slip is detected using the geometry-free phase and the Hatch–Melbourne–Wübbena
observation combinations [37–39]. After the single-frequency user obtained the precise
ionosphere delay, the SF-PPP is carried out. In SF-PPP processing, the final IGS products of
the satellite clock and orbit and the elevation-dependent function are used [40]:

w
(
θj
)
=

{
1/σ2 300 ≤ θj ≤ 900

2 sin
(
θj
)
/σ2 100 ≤ θj < 300

}
(12)

where θj is the satellite elevation at epoch j; σ are the standard deviations in the zenith
of phase and code observations. In this processing, the L1 ambiguity, which absorbs
the satellite FCB and does not have the integer characteristic, is resolved. Thus, this L1
ambiguity cannot be fixed to an integer value. To improve the accuracy of the SF-PPP, the
ambiguity fixing of the SF-PPP was realized based on the introduction of the DD ambiguity
into SF-PPP. The introduction of the DD ambiguity into SF-PPP is shown in Figure 1. The
corrections for the Earth rotation, Earth tides, relativistic effects, phase center variation
(PCV) and DCB were implemented in [41]. The troposphere delay is corrected using the
Saastamoinen model, and the residual wet part is estimated by setting up a Piece Wise
Constant (PWC) at an interval of 1 h. The adopted models and strategies for SF-PPP
in processing software are shown in Table 1 [41]. The 24 h observations at the users of
the CMCJ, CMMZ, JSFJ, and NHSY were split into eight 3 h sessions or six 4 h sessions,
and the corresponding sessions were processed with two methods (#1 and #2). In the #2
method, the data were processed with SF-PPP, while the DD ambiguity was introduced
into SF-PPP in method #2. The convergence time of each session for the two methods
was analyzed. Note that the convergence time was defined as the elapsed time when the
estimated coordinate errors in the North, East, and Up directions were all smaller than
10 cm.

Table 1. Adopted models and strategies for the SF-PPP.

Items Strategies

Measurements
SF code and phase observation; L1;

Adjustment; Least-squares;
Weighting. Elevation-dependent function.

Corrections

DCB (P1-C1) and DCB (P1-P2); Products provided by CODE
Tide corrections; Solid tide and Ocean tide correction [42];

PCV; Absolute IGS 08 correction mode
Relativity. Corrected.

Parameters

Station coordinates; Estimated;

Troposphere;
Ionosphere delay;

Correction: Saastamoinen model [43];
Residual: Estimated in piece-wise mode;

Correction: using the interpolated
ionosphere delay of the dual-frequency

observation;
Receiver clock error; Solved at each epoch as white noise;

L1 ambiguity. Float and fixed results.

4. Discussion

The dual-frequency observations of the stations TJCH and GTFD were used to com-
pute the precise ionosphere delay and then interpolate the ionosphere delay for the single-
frequency users of CMCJ, CMMZ, JSFJ, and NHSY. The interpolated ionosphere delay was
analyzed, and the SF-PPP is realized based on the interpolated ionosphere delay. Then the
introduction of the DD ambiguity into SF-PPP was implemented.
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4.1. Analysis of the Interpolated Ionosphere Delay

The interpolated ionosphere delay was obtained using the proposed method in
Section 2.2, and its performance was evaluated. Firstly, the reference epoch-based
ionosphere delay was computed according to Equation (7). The RMSs of the difference
between the interpolated ionosphere delay and the estimated values for all the satellites
were computed and shown in Figures 3 and 4. From Figure 3, it is observed that the
accuracies of the interpolated ionosphere delay for all tracked satellites at the reference
epoch are better than 2 cm, and the accuracies for most of the satellites reach 1.5 cm.
Figure 4 shows that the time-varying interpolated ionosphere delay was better than the
1.6 cm, and the accuracies of most satellites were better than 1.2 cm. The interpolated
ionosphere delay could be used to realize the SF-PPP.
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4.2. Dual-Frequency Observations Enhanced SF-PPP

According to the method for estimating and interpolating the precise ionosphere
delay, the high-precision ionosphere delay at the user is obtained. Figures 3 and 4 show
that the accuracy of the interpolated ionosphere delay could reach the centimeter-level.
When the precise ionosphere delay was obtained, the high-precision SF-PPP was re-
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alized. In order to obtain more results to analyze the performance of the proposed
method, the 24 h data was split into eight 3 h sessions and six 4 h sessions. The dual-
frequency observations enhanced SF-PPP results at the user CMCJ for eight sessions,
and six sessions are shown in Figures 5 and 6. The positioning results and convergence
time for all users of CMCJ, CMMZ, JSFJ, and NHSY are shown in Table 2. As shown in
Figures 5 and 6, the SF PPP converged at a stable accuracy of centimeter-level after sev-
eral minutes. These results also show that the convergence time of different observations
was different. The positioning accuracy results in Table 2 were obtained by comparing
the estimated results with that of the ground truth. The results in Table 2 show that the
SF-PPP, in which the estimated and interpolated precise ionosphere delays were used,
could reach centimeter-level positioning accuracy, although the average convergence
time was 56.0 min. The average positioning accuracies in North, East, and Up directions
reached 3.52, 3.53, and 4.11 cm, respectively.

When the DD algorithm was used, the relative positioning results were obtained. The
relative positioning results could indeed be computed with the difference between the dual-
frequency observations enhanced SF-PPP results of two stations. The relative positioning
results of the users were analyzed to validate the advantage of the SF-PPP processing.
The relative positioning results computed with two methods, the DD algorithm and the
difference between the results of two stations estimated with SF-PPP, were compared. The
relative positioning results of the two methods are shown in Table 3. The results showed
that the relative positioning results of the DD algorithm were slightly better than that of
the difference between the dual-frequency observations enhanced SF-PPP results. This
could be explained by the effect of the float ambiguity resolutions. In the dual-frequency
observations enhanced SF-PPP processing, the float ambiguity was estimated. This further
validated the importance of ambiguity fixing for improving positioning accuracy.
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Table 2. Positioning accuracy and convergence time.

Station
Positioning Accuracy (cm) Convergence

Time (min)North East Up

CMMZ
3 h session 4.31 4.01 5.21 61.0
4 h session 3.33 3.68 4.92 61.0

CMCJ
3 h session 3.76 3.82 4.01 55.0
4 h session 3.56 3.41 3.99 56.0

NHSY
3 h session 3.61 3.52 3.85 53.0
4 h session 3.26 3.12 3.67 53.5

JSFJ
3 h session 3.21 3.44 3.53 54.0
4 h session 3.10 3.23 3.68 54.0

Mean 3.52 3.53 4.11 56.0

Table 3. Relative positioning accuracy of two methods.

Station Observation
Time

DD Algorithm (cm) Difference between the
SF-PPP Results (cm)

North East Up North East Up

CMMZ CMCJ
3 h session 1.31 1.56 1.86 1.49 1.96 2.06
4 h session 1.02 1.13 1.65 1.32 1.43 1.95

CMMZ NHSY
3 h session 0.98 1.06 1.12 1.18 1.27 1.33
4 h session 0.66 0.87 0.96 0.79 0.93 1.13

CMMZ JSFJ
3 h session 0.91 1.04 1.10 1.06 1.27 1.32
4 h session 0.33 0.67 0.88 0.61 0.87 1.31

Mean 0.87 1.06 1.26 1.08 1.29 1.52

4.3. Introduction of the DD Ambiguity into SF-PPP

It is well known that ambiguity fixing is beneficial for improving positioning accu-
racy. Generally, the FCB needs to be estimated and serviced in PPP ambiguity fixing. In
Li et al. [6] and Odijk et al. [29], the DD ambiguity resolution [44,45] was introduced into
PPP to realize PPP ambiguity fixing. This method avoids the complicated procedure of
the FCB estimation. In SF-PPP fixing, the DD and PPP ambiguity resolutions are mutually
employed. Here, during data processing, the realization of the SF-PPP ambiguity fixing
was based on the DD ambiguity resolution. The quality of the SF-PPP float ambiguity result
was very important in this processing. In fact, the application of the SF-PPP float ambiguity
result was to cancel the effect of the FCB of the SF-PPP. The results of the user CMMZ for
the methods of #1 and #2 are shown in Figure 7. Obviously, the result of the first 3 h session
for method #2 was better than that of method #1 and the corresponding convergence time
was shorter than that of method #1. The improved positioning accuracy and convergence
time for all user stations and sessions are shown in Table 4. From Table 4, it can be seen that
the mean improvement of the positioning accuracy in North, East, and Up directions were
0.63, 0.62, and 0.91 cm, respectively. The average convergence time for all user stations and
sessions was 1.5 min. The improved accuracy and the convergence time validate that the
introduction of the DD ambiguity resolutions into SF-PPP was meaningful for improving
the performance of the SF-PPP. The accuracy improvement of the introduction of the DD
ambiguity resolutions into SF-PPP could further improve the deformation monitoring
ability of the SF-PPP.

To validate the meaning of the proposed method that introducing DD ambiguity
into SF-PPP and demonstrate that this method can improve the positioning accuracy, the
difference between the results of two SF-PPP stations were compared with the relative
positioning results computed with the DD algorithm. The relative positioning results of
the two methods are shown in Table 5. Table 5 shows that the relative positioning results of
the DD algorithm and the difference between the results of using the SF-PPP, in which the
ambiguity was fixed, were equal. This demonstrates that the method of the dual-frequency
observations enhanced SF-PPP, in which the introduction of the DD ambiguity into SF-
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PPP was used, could improve the accuracy of the SF-PPP and the corresponding relative
positioning results were equivalent to that of the DD algorithm.
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Table 4. Positioning accuracy and convergence time.

Station
Improved Positioning Accuracy (cm) Improved Convergence

Time (min)North East Up

CMMZ
3 h session 0.68 0.53 0.95 1.0
4 h session 0.78 0.64 1.11 1.0

CMCJ
3 h session 0.58 0.52 0.83 2.0
4 h session 0.67 0.69 0.91 2.0

NHSY
3 h session 0.42 0.55 0.87 1.0
4 h session 0.58 0.68 0.93 1.0

JSFJ
3 h session 0.61 0.63 0.77 2.0
4 h session 0.74 0.71 0.92 2.0

Mean 0.63 0.62 0.91 1.5

Table 5. Relative positioning accuracy of two methods.

Station Observation
Time

DD Algorithm (cm) Difference between the
SF-PPP Results (cm)

North East Up North East Up

CMMZ CMCJ
3 h

session 1.31 1.56 1.86 1.31 1.56 1.86

4 h
session 1.02 1.13 1.65 1.02 1.13 1.65

CMMZ NHSY
3 h

session 0.98 1.06 1.12 0.98 1.06 1.12

4 h
session 0.66 0.87 0.96 0.66 0.87 0.96

CMMZ JSFJ
3 h

session 0.91 1.04 1.10 0.91 1.04 1.10

4 h
session 0.33 0.67 0.88 0.33 0.67 0.88

Mean 0.87 1.06 1.26 0.87 1.06 1.26

5. Conclusions

The single-frequency GNSS receiver has been widely used. However, ionosphere
delay error is one of the largest error sources of single-frequency positioning; it cannot be
removed precisely and may result in range errors of several meters in the GNSS signal. It
is common that the service of the ionosphere delay for the single-frequency user is realized
by modeling the ionosphere delay estimated with code geometry-free combination formed
with P1 and P2 observations from regional network stations. The accuracy of the serviced
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ionosphere delay is easily affected by the noise of the code observations. To obtain precise
ionosphere delay, the phase observations of the dual-frequency observations are used
to compute the time-varying ionosphere delay, and the code observations of the dual-
frequency observations are used to compute the ionosphere delay at the reference epoch.
The computed precise ionosphere delay can be used to interpolate the ionosphere delay at
the user. However, the dual-frequency observations enhanced SF-PPP is still affected by
the satellite FCB, and the corresponding ambiguity does not have integer characteristics.
Thus, the ambiguity fixing for the dual-frequency observations enhanced SF-PPP was
realized based on the introduction of the DD ambiguity into SF-PPP. The method for the
introduction of the DD ambiguity into SF-PPP entails using the SF-PPP ambiguity at users
to cancel the satellite FCB and to obtain the integer ambiguity. This integer ambiguity at
SF-PPP user was the DD ambiguity formed with two user stations.

The collected data from six stations from Shanghai, China, was processed, and the
corresponding results were analyzed to validate the proposed method. The computed
and interpolated ionosphere delay reached the centimeter-level and was precise enough to
realize SF-PPP. So, the static results of the dual-frequency observations enhanced SF-PPP
reach the centimeter-level. The relative positioning results of the DD algorithm and the
difference between the results of two stations estimated with dual-frequency observations
enhanced SF-PPP showed that the results of the DD algorithm were slightly better than that
of the dual-frequency observations enhanced SF-PPP. This could be attributed to the effect
of the float ambiguity resolutions on the positioning accuracy. The data was processed
with the presented method for the introduction of the DD ambiguity into SF-PPP, and
the results indicate that this method improves the positioning accuracy and shortens the
convergence time of the SF-PPP. The results can further verify the deformation monitoring
ability of the SF-PPP. Although most of the new GNSS receivers receive multi-frequency
and multi-system observations, some old single-frequency GPS receivers are still in use.
The method proposed in this paper could be used for improving the positioning ability of
these old receivers.
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