
sensors

Article

Evolutionary Algorithm for Improving Decision Tree with
Global Discretization in Manufacturing

Sungbum Jun

����������
�������

Citation: Jun, S. Evolutionary

Algorithm for Improving Decision

Tree with Global Discretization in

Manufacturing. Sensors 2021, 21, 2849.

https://doi.org/10.3390/s21082849

Academic Editor:

Vassilis Plagianakos

Received: 16 March 2021

Accepted: 15 April 2021

Published: 18 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Industrial and Systems Engineering, Dongguk University, Seoul 04620, Korea; sbjun@dgu.ac.kr

Abstract: Due to the recent advance in the industrial Internet of Things (IoT) in manufacturing,
the vast amount of data from sensors has triggered the need for leveraging such big data for fault
detection. In particular, interpretable machine learning techniques, such as tree-based algorithms,
have drawn attention to the need to implement reliable manufacturing systems, and identify the root
causes of faults. However, despite the high interpretability of decision trees, tree-based models make
a trade-off between accuracy and interpretability. In order to improve the tree’s performance while
maintaining its interpretability, an evolutionary algorithm for discretization of multiple attributes,
called Decision tree Improved by Multiple sPLits with Evolutionary algorithm for Discretization
(DIMPLED), is proposed. The experimental results with two real-world datasets from sensors showed
that the decision tree improved by DIMPLED outperformed the performances of single-decision-tree
models (C4.5 and CART) that are widely used in practice, and it proved competitive compared to the
ensemble methods, which have multiple decision trees. Even though the ensemble methods could
produce slightly better performances, the proposed DIMPLED has a more interpretable structure,
while maintaining an appropriate performance level.

Keywords: fault detection; interpretability; decision tree; evolutionary algorithm; discretization

1. Introduction

Due to recent advances in Internet of Things (IoT), the connectivity between machines
as well as the amount of data from sensors have been significantly increased. Depending
on the need to leverage data properly, transparent and interpretable machine learning (ML)
techniques are drawing particular attention amid growing interest in more reliable systems
for a digital twin [1]. In particular, in fault detection of the manufacturing process (e.g.,
semiconductor manufacturing), interpretable ML models can provide insights into which
attributes are the root causes for faults on the shop floor, so that human operators can
improve the product quality [2].

However, even though various ML techniques having black-box structures (e.g.,
neural network) have been studied and developed for more accurate fault detection,
many manufacturing companies suffer from the opaqueness of models, and costly human
efforts to enhance the interpretability of detection accordingly [3]. In this context, the
interpretability of ML models in manufacturing environments is growing in importance
for two reasons. First, human operators want a set of understandable rules to control
parameters in the manufacturing process. In addition, ML models with interpretability
enable practitioners to explain the factors that have affected the ups and downs of process
quality based on past production data [4].

Despite the fact that there is a significant need for interpretability, one of the most
widely used interpretable models, decision-tree-based algorithms, still present some issues.
The first issue is the trade-off between accuracy and interpretability. In order to improve
the accuracy for training data, the maximum tree height should be increased. However, as
the tree becomes deeper, the interpretability of the model decreases, because of the more
complicated structure. Therefore, interpretable models are preferably small in size, as well

Sensors 2021, 21, 2849. https://doi.org/10.3390/s21082849 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21082849
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21082849
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21082849?type=check_update&version=1


Sensors 2021, 21, 2849 2 of 17

as of sufficient high-performance. In order to have high explanation complexity, there is a
significant need for shrinkage methods for ML models [5]. For example, a decision tree of
depth = 5 is easier to understand than one of depth = 50.

However, when limiting the tree height for interpretability, many decision-tree-based
algorithms, such as classification and regression tree (CART) and C4.5, allow trees to have
only binary splits for continuous attributes, and thus hinder the potential for improving
the performance of the decision trees within the limited tree depth.

To deal with these issues, discretization techniques for multi-point splits (decision tree
algorithms) have been proposed [6,7]. The discretization techniques enable the informa-
tion obtained from datasets to be more concise, easy to understand, and easy to use [8].
Nonetheless, efficient discretization techniques considering dependencies among attributes
while maintaining interpretability have been far less studied even though the dependencies
are important in performance [9]. In particular, for a decision tree algorithm, discretization
of all continuous attributes without consideration of those dependencies has been shown
to result in decreased accuracy [10].

In order to construct interpretable and effective models for fault detection, there is a
significant need for efficient discretization algorithms designed for decision trees while
considering dependencies between continuous attributes. Therefore, this paper proposes
a novel approach for retrieving an improved decision tree for fault detection in manufac-
turing. The proposed approach utilizes the evolutionary process with k-means clustering
to find good solutions efficiently for global discretization. In addition, to maintain high
interpretability, the proposed approach is designed to improve a decision tree under the
limitation of the maximum tree depth.

This paper is organized as follows. In Section 2, the previous research related to
interpretable ML and discretization techniques is reviewed. Section 3 proposes a new
evolutionary algorithm for discretization of continuous attributes based on k-means cluster-
ing. Section 4 defines the two datasets for fault detection in manufacturing, and Section 5
summarizes the results of experiments verifying the algorithm. Finally, Section 6 draws
conclusions, and discusses possible areas for further research.

2. Backgrounds
2.1. Fault Detection in Manufacturing

Accurate detection of faults in manufacturing has been highly involved in the devel-
opment of prediction models using data collected by sensors on the shop floor. Especially,
well-designed ML models for fault detection at an early process can prevent defectives in
the downstream, and thus significantly reduce manufacturing costs [11]. However, due
to the interactions between process variables in large-scale manufacturing processes (e.g.,
chemical plant, semiconductor factory), identification of the relationships between fault
causes and their effects is complicated [12].

While ML algorithms, such as neural network (NN) and support vector machine
(SVM), have demonstrated high accuracy on several datasets, there is a significant issue
called the “black-box” nature of their decision-making and learning processes. Because
the learning process of black-box algorithms is neither transparent nor understandable to
human operators, high accuracy on a given dataset may be misreading without a deeper
understanding of causes from machine-related sensor inputs [13]. Therefore, interpretable
ML-based models that can identify and analyze the root causes of fault detection in manu-
facturing have drawn attention from researchers.

2.2. Interpretable Machine Learning

In order to deal with the black-box issue, interpretable ML models that are able to
produce insights about their decisions have been investigated [14]. Among ML algorithms,
decision-tree-based algorithms, such as ID3 (Iterative Dichotomiser 3) and C4.5 proposed
by Quinlan [15,16], have been widely studied, due to their comprehensible nature that
resembles the human reasoning process [17]. ID3 builds a decision tree for the given data



Sensors 2021, 21, 2849 3 of 17

in a top-down fashion and one categorical attribute is tested at each node. C4.5 is the
successor to ID3 and it relaxes the restriction of ID3 that all attributes must be categorical.
In addition, CART algorithm proposed by Reference [18] can address the classification
and regression problems by creating a decision tree with binary splits of the continuous
attributes as shown in Figure 1a. Compared to CART, C4.5 have an advantage of handling
both continuous and discrete attributes [19]. These single-tree-based algorithms are easy to
understand, and the trees can be easily converted to a set of rules. However, in spite of the
high interpretability, the algorithms also have some limitations, such as overfitting, low
performance, and binary splits on continuous attributes [20].

Sensors 2021, 21, x FOR PEER REVIEW 3 of 16 
 

 

proposed by Quinlan [15,16], have been widely studied, due to their comprehensible na-
ture that resembles the human reasoning process [17]. ID3 builds a decision tree for the 
given data in a top-down fashion and one categorical attribute is tested at each node. C4.5 
is the successor to ID3 and it relaxes the restriction of ID3 that all attributes must be cate-
gorical. In addition, CART algorithm proposed by Reference [18] can address the classifi-
cation and regression problems by creating a decision tree with binary splits of the con-
tinuous attributes as shown in Figure 1a. Compared to CART, C4.5 have an advantage of 
handling both continuous and discrete attributes [19]. These single-tree-based algorithms 
are easy to understand, and the trees can be easily converted to a set of rules. However, 
in spite of the high interpretability, the algorithms also have some limitations, such as 
overfitting, low performance, and binary splits on continuous attributes [20]. 

 
Figure 1. Illustration of a decision tree generated by CART and another tree generated by C4.5 
with discretization. The discretized attributes are highlighted in yellow. 

In order to overcome the limitations, various ensemble methods have been proposed 
and broadly investigated. Ensemble methods are simple and powerful techniques that 
aggregate predictions of some weak learners (such as decision trees) to provide more ac-
curate estimation, instead of finding a single sophisticated learner [21]. For example, ran-
dom forest introduced by Reference [22] generates many decision trees and aggregates 
their result. Especially, random forest has been shown to outperform other learners for 
problems with high-dimensional data. 

In addition, boosting is a technique of combining a set of weak classifiers into one 
strong classifier for high-performance prediction, and has been a very successful tech-
nique for solving the two-class classification problem. The first practical boosting algo-
rithm, called AdaBoost, was proposed by Reference [23]. Because of its capability of gen-
eralization, fast performance, and low implementation complexity, boosting has become 
one of the most popular and effective classification tools [24]. The gradient boosting model 
proposed by Reference [25] is another widely used ensemble method for classification and 
regression problems. The gradient boosting algorithms use decision or regression trees as 
weak classifiers, and measure the error observed in each node and split node using a test 
function. Gradient boosting is similar to random forest in terms of combination of week 
tree leaners, but the tree in gradient boosting is fit on the residual of the former trees so 
that it can minimize the biases while random forest reduces variances [26]. 

On the other hand, due to the complicated structure of ensemble methods with mul-
tiple trees, their power of interpretability is weaker than algorithms with a single decision 
tree. However, even though decision-tree-based algorithms have better interpretability 
over other ML techniques, they still have limitations such as overfitting [27]. For example, 
if the training dataset is not large enough or includes some noise, the algorithms try to fit 
every single instance in the training set. As a result, the size of decision tree is relatively 
larger with meaningless branches and the overfitting problem leads to low interpretabil-
ity. Thus, in order to have interpretability as well as high performance, shrinkage methods 
for ML models, such as discretization, are worthy for further research as a desirable prop-
erty for interpretable models [28,29]. 

Figure 1. Illustration of a decision tree generated by CART and another tree generated by C4.5 with
discretization. The discretized attributes are highlighted in yellow.

In order to overcome the limitations, various ensemble methods have been proposed
and broadly investigated. Ensemble methods are simple and powerful techniques that
aggregate predictions of some weak learners (such as decision trees) to provide more
accurate estimation, instead of finding a single sophisticated learner [21]. For example,
random forest introduced by Reference [22] generates many decision trees and aggregates
their result. Especially, random forest has been shown to outperform other learners for
problems with high-dimensional data.

In addition, boosting is a technique of combining a set of weak classifiers into one
strong classifier for high-performance prediction, and has been a very successful technique
for solving the two-class classification problem. The first practical boosting algorithm,
called AdaBoost, was proposed by Reference [23]. Because of its capability of generalization,
fast performance, and low implementation complexity, boosting has become one of the
most popular and effective classification tools [24]. The gradient boosting model proposed
by Reference [25] is another widely used ensemble method for classification and regression
problems. The gradient boosting algorithms use decision or regression trees as weak
classifiers, and measure the error observed in each node and split node using a test function.
Gradient boosting is similar to random forest in terms of combination of week tree leaners,
but the tree in gradient boosting is fit on the residual of the former trees so that it can
minimize the biases while random forest reduces variances [26].

On the other hand, due to the complicated structure of ensemble methods with multi-
ple trees, their power of interpretability is weaker than algorithms with a single decision
tree. However, even though decision-tree-based algorithms have better interpretability
over other ML techniques, they still have limitations such as overfitting [27]. For example,
if the training dataset is not large enough or includes some noise, the algorithms try to fit
every single instance in the training set. As a result, the size of decision tree is relatively
larger with meaningless branches and the overfitting problem leads to low interpretability.
Thus, in order to have interpretability as well as high performance, shrinkage methods for
ML models, such as discretization, are worthy for further research as a desirable property
for interpretable models [28,29].



Sensors 2021, 21, 2849 4 of 17

2.3. Discretization

Discretization, as one of the basic reduction techniques, has received attention because
it helps decision trees to yield more compact, shorter, and more accurate results than the
ones derived using numerical values [30]. Moreover, discretized attributes are easier to
comprehend, employ, and describe for researchers [31].

Assume a classification problem with C target classes with a set of N instances and M
attributes. A learning set E = {e1, e2, . . . , eN} consists of N instances. Each instance e ∈ E
is described by M attributes A1(e), A2(e), . . . , AM(e), and labeled by a class c(e) ∈ C. A
discretization algorithm partitions a continuous attribute Ai into ki discrete and disjoint
intervals as shown below:

Di =
{
[d0, d1], (d1, d2], . . . ,

(
dki−1, dki

]}
where d0 and dki

are the minimum and maximum values of Ai, respectively [32]. Finally,
Pi =

{
d1, d2, . . . , dki−1

}
denotes the complete set of cut points for each continuous at-

tribute i in M. The goal of discretization algorithms is to find the best Pi for the target
attribute i.

There are three different categories where discretization methods can be classified:
global vs. local, supervised vs. unsupervised, and static vs. dynamic [33]. Local methods
generate partitions that are applied to localized regions of the instance space while global
methods, such as binning, independently produce a mesh over the entire n-dimensional

continuous instance space. The mesh contains
M
∏
i=1

ki regions, where ki is the number of par-

titions of the ith feature. Unsupervised discretization methods, such as equal width interval
binning, do not use instance labels in the discretization process, while supervised discretiza-
tion methods utilize the class labels. Static discretization methods perform determine the
maximum number of intervals for each attribute independently, but dynamic methods
conduct a search through the space of possible values for all attributes simultaneously to
capture interdependencies.

2.4. Related Work

Discretization has been proven to improve the performance as well as the interpretabil-
ity of ML models, especially for decision tree models. Especially, discretization of multiple
attributes can be considered as an optimization problem, which finds the best Pi with
consideration of interdependencies between attributes. The previous literature related to
multivariate discretization with interpretable ML models is summarized in Table 1.

Table 1. Overview of research related to multivariate discretization with interpretable ML models.

Discretization Algorithm Classifier Reference

Minimum Description Length (MDL) C4.5 [34]
Equal Frequency Binning (EFB), Equal Width Binning (EWB), MDL, and

ChiMerge C4.5 and SVM [35]

Evolutionary Decision Rule Learner with Multivariate Discretization
(EDRL-MD) C4.5 [32]

Evolution-Strategies-based discretization Algorithms ID3, C4.5, and C4.5-rules [36]
Evolutionary algorithm for multivariate discretization based on a wrapper

fitness function C4.5 and Naive Bayes [37]

Multivariate discretization algorithm (multiCAIM) based on NSGA-II C4.5, Naive Bayes, and k-nearest
neighbors (KNN) [38]

Multivariate Evolutionary Multi-Objective Discretization (MEMOD) C4.5 [39]

Reference [34] noted that C4.5’s performance is weaker in domains with a preponder-
ance of continuous attributes than for learning tasks that have mainly discrete attributes.
In order to address the weakness, a penalty inspired by the Minimum Description Length
(MDL) principle was applied and it produced smaller DTs with higher accuracies with



Sensors 2021, 21, 2849 5 of 17

multi-interval splits. The results also showed that global discretization may degrade per-
formance more as datasets become larger. Reference [35] focused on identifying the best
combination of feature selection and discretization with four discretization methods: equal
frequency binning (EFB), equal width binning (EWB), MDL, and ChiMerge. In this research,
C4.5 was used for feature selection while SVM was used as a classifier.

Recently, as the size of data increases, finding the optimal discretization strategy with
cut points is becoming extremely complicated. In order to solve the optimization problem,
evolutionary multivariate discretizers (EMDs) have been studied for the discretization
problem. Reference [32] proposed an evolutionary algorithm for learning decision rules
with multivariate discretization called EDRL-MD (Evolutionary Decision Rule Learner
with Multivariate Discretization). EDRL-MD consists of two steps: the simultaneous
search for threshold values for all continuous attributes and the discovery of decision rules.
Reference [36] proposed an evolutionary algorithm to construct a global discretization
scheme for all continuous attributes simultaneously. The proposed algorithm was able to
improve the accuracy of DTs and generate much simpler model. Reference [37] proposed an
evolutionary algorithm to select a subset of cut points for multivariate discretization based
on a wrapper fitness function. The algorithm was compared with different discretizers with
C4.5 and Naive Bayes. Reference [38] proposed an evolutionary approach, which obtains a
set of discretization schemes guiding the search by using a discretization criterion and the
prediction accuracy of Naive Bayes. In Reference [39], classification error and number of
cut points are simultaneously reduced by using evolutionary multi-objective optimization.

In addition to improved accuracy, discretization is likely to enhance interpretability,
especially in combination with decision tree models [40]. For example, when applying
discretization in C4.5, this benefit is clear, even when the continuous attributes are simply
partitioned into ‘low’, ‘medium’, or ‘high’ values as shown in Figure 1b. Moreover, dis-
cretization can significantly increase the efficiency of decision tree induction by reducing
the required sorting step for continuous attributes at each branch [41].

However, although the above-mentioned studies have proposed various discretization
approaches, in practice, two issues persist. The first issue is the computational complexity.
As the number of sensors increases with the stream of industrial IoT in manufacturing,
the search space for global discretization has become voluminous. Accordingly, when the
number of instances and continuous attributes increases, the chromosome structure for
searching all possible cutting points may not be appropriate.

Another issue is the lack of investigation on benefits of discretization under the limita-
tion of the maximum tree depth. Although limiting the tree height for interpretability may
affect the performance, the evolutionary approach for global discretization of a decision tree
under the limitation of the maximum tree depth has been far less studied. Therefore, a new
approach for learning interpretable models that are compact in size as well as sufficiently
accurate is necessary to predict faults at the early stages and identify their root causes in an
understandable form.

3. Proposed Approach

In this section, a novel evolutionary algorithm for global discretization called De-
cision tree Improved by Multiple sPLits with Evolutionary algorithm for Discretization
(DIMPLED) is proposed. The proposed DIMPLED algorithm gradually improves the
discretization strategy for better performance while maintaining the appropriate level of
interpretability with a single decision tree. Also, in combination with k-means clustering
for global discretization, DIMPLED allows a tree to have multiple splits that can be inter-
pretable and meaningful for practitioners. The entire framework is first described, and
then its detailed procedures are explained. The proposed DIMPLED framework can be
summarized in Figure 2.



Sensors 2021, 21, 2849 6 of 17

Sensors 2021, 21, x FOR PEER REVIEW 6 of 16 
 

 

its detailed procedures are explained. The proposed DIMPLED framework can be sum-
marized in Figure 2. 

 
Figure 2. Overall framework of DIMPLED. 

3.1. Chromosome Design 
Each chromosome consists of a given number of genes as shown in Figure 3. The 

length of a chromosome represents the number of continuous attributes that can be dis-
cretized. Each gene stores a discretization strategy 𝑃௜ that partitions a continuous attrib-
ute 𝐴௜ into the number of discrete intervals 𝑘௜, which is determined with consideration 
of the level of interpretability. 

 
Figure 3. Chromosome representation. 

The initial population is generated by determining the number of classes for each 
continuous attribute randomly between 2 (not to be discretized, because binary split is the 
default) to the maximum number of intervals. The initial population with randomly gen-
erated chromosomes has been widely used in EMD, because it can cover the complete 
search space as much as possible and enhance the diversity as well [37–39]. For discreti-
zation of a continuous attribute with the given number of intervals in a chromosome, k-
mean clustering algorithm partitions the values of continuous attributes into k clusters 
with the objective of making the clusters as separated as possible [42]. k-mean clustering 
has been used in unsupervised and global discretization to assist comprehension by 
grouping together multiple values of a continuous attribute [43]. In this study, the associ-
ated cost function is defined in terms of the distances between the cluster objects and the 
cluster center, and the objective is to find the best combination of 𝑘௜ intervals that max-
imizes the accuracy. 

Figure 2. Overall framework of DIMPLED.

3.1. Chromosome Design

Each chromosome consists of a given number of genes as shown in Figure 3. The length
of a chromosome represents the number of continuous attributes that can be discretized.
Each gene stores a discretization strategy Pi that partitions a continuous attribute Ai into
the number of discrete intervals ki, which is determined with consideration of the level of
interpretability.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 16 
 

 

its detailed procedures are explained. The proposed DIMPLED framework can be sum-
marized in Figure 2. 

 
Figure 2. Overall framework of DIMPLED. 

3.1. Chromosome Design 
Each chromosome consists of a given number of genes as shown in Figure 3. The 

length of a chromosome represents the number of continuous attributes that can be dis-
cretized. Each gene stores a discretization strategy 𝑃௜ that partitions a continuous attrib-
ute 𝐴௜ into the number of discrete intervals 𝑘௜, which is determined with consideration 
of the level of interpretability. 

 
Figure 3. Chromosome representation. 

The initial population is generated by determining the number of classes for each 
continuous attribute randomly between 2 (not to be discretized, because binary split is the 
default) to the maximum number of intervals. The initial population with randomly gen-
erated chromosomes has been widely used in EMD, because it can cover the complete 
search space as much as possible and enhance the diversity as well [37–39]. For discreti-
zation of a continuous attribute with the given number of intervals in a chromosome, k-
mean clustering algorithm partitions the values of continuous attributes into k clusters 
with the objective of making the clusters as separated as possible [42]. k-mean clustering 
has been used in unsupervised and global discretization to assist comprehension by 
grouping together multiple values of a continuous attribute [43]. In this study, the associ-
ated cost function is defined in terms of the distances between the cluster objects and the 
cluster center, and the objective is to find the best combination of 𝑘௜ intervals that max-
imizes the accuracy. 

Figure 3. Chromosome representation.

The initial population is generated by determining the number of classes for each
continuous attribute randomly between 2 (not to be discretized, because binary split is
the default) to the maximum number of intervals. The initial population with randomly
generated chromosomes has been widely used in EMD, because it can cover the complete
search space as much as possible and enhance the diversity as well [37–39]. For discretiza-
tion of a continuous attribute with the given number of intervals in a chromosome, k-mean
clustering algorithm partitions the values of continuous attributes into k clusters with
the objective of making the clusters as separated as possible [42]. k-mean clustering has
been used in unsupervised and global discretization to assist comprehension by grouping
together multiple values of a continuous attribute [43]. In this study, the associated cost
function is defined in terms of the distances between the cluster objects and the cluster
center, and the objective is to find the best combination of ki intervals that maximizes the
accuracy.

3.2. Reproduction

As shown in Figure 4, a set of new chromosomes for the next generation is generated
by reproduction with two operators (mutation and crossover) based on the surviving



Sensors 2021, 21, 2849 7 of 17

chromosomes after selection. To make a change in a discretization strategy, the mutation
operator randomly selects a gene in a single chromosome and reassigns it to another
number of intervals. In the case of crossover, a two-point crossover operator is applied,
and it changes only a certain part between two points.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 16 
 

 

3.2. Reproduction 
As shown in Figure 4, a set of new chromosomes for the next generation is generated 

by reproduction with two operators (mutation and crossover) based on the surviving 
chromosomes after selection. To make a change in a discretization strategy, the mutation 
operator randomly selects a gene in a single chromosome and reassigns it to another num-
ber of intervals. In the case of crossover, a two-point crossover operator is applied, and it 
changes only a certain part between two points. 

 
Figure 4. Illustration of mutation and crossover operations. 

3.3. Evaluation 
After the generation of chromosomes up to the given size of population, the chromo-

somes are evaluated by their accuracy with different discretization strategies. To calculate 
the accuracy of a chromosome, the continuous attributes in the training dataset are first 
discretized according to genes, which represent different number of intervals for attrib-
utes. If the number of intervals in a gene is greater than 2, values in the corresponding 
attribute are converted to discrete values (such as low, medium, and high), as shown in 
Figure 5. As a result of the global discretization with combination of C4.5, a smaller deci-
sion tree with multi-interval splits can be constructed, and it can be more accurate in some 
domains [34]. Also, by dividing the continuous values into interpretable intervals, dis-
cretization can improve the clarity of rule sets that are interpretable and meaningful to 
domain experts [44,45]. 

Figure 4. Illustration of mutation and crossover operations.

3.3. Evaluation

After the generation of chromosomes up to the given size of population, the chromo-
somes are evaluated by their accuracy with different discretization strategies. To calculate
the accuracy of a chromosome, the continuous attributes in the training dataset are first
discretized according to genes, which represent different number of intervals for attributes.
If the number of intervals in a gene is greater than 2, values in the corresponding at-
tribute are converted to discrete values (such as low, medium, and high), as shown in
Figure 5. As a result of the global discretization with combination of C4.5, a smaller de-
cision tree with multi-interval splits can be constructed, and it can be more accurate in
some domains [34]. Also, by dividing the continuous values into interpretable intervals,
discretization can improve the clarity of rule sets that are interpretable and meaningful to
domain experts [44,45].

Sensors 2021, 21, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 5. Evaluation of a chromosome with k-means clustering for discretization. 

When making a set of multiple branches for an attribute, a decision tree may encoun-
ter missing classes at the bottom of the tree when the size of the training data is not suffi-
cient [19]. In order to deal with those missing values, the missing class at the bottom is 
randomly labeled as one of classes as an interim measure, and the tree is reconstructed 
with the updated training data when the corresponding instances are supplemented. 

3.4. Selection 
In order to preserve the desirable characteristics of chromosomes for the next gener-

ations, the tournament selection selects surviving chromosomes and a fitness function is 
represented as the accuracy. The tournament selection has been widely used and imple-
mented in evolutionary algorithms including EMD due to its lack of stochastic noise 
[38,46]. The tournament selection runs several tournaments among a set of chromosomes 
randomly selected from the population, and the winner of each tournament is elected for 
the next survivor. The termination criterion is the maximum number of generations. 

4. Experimental Design 
4.1. Data Description 

To validate the performance of DIMPLED with real-world datasets from sensors, two 
classification datasets (CNC and Pasteurizer) of fault detection in manufacturing were 
used. The datasets were collected by Korea AI Manufacturing Platform (KAMP) from sen-
sors on the shop floor, and they were pre-processed to eliminate noises and inadequate 
values [47]. The summary of the datasets is shown in Table 2. As shown in the table, the 
CNC dataset has a larger number of continuous attributes with a smaller number of in-
stances than the Pasteurizer dataset. Attributes of two datasets were collected from sen-
sors with binary quality labels (“Faulty” or “Normal”). The detailed descriptions about 
the datasets are presented in the following sections. 

Table 2. Summary of two datasets (CNC and Pasteurizer). 

Dataset Number of In-
stances 

Class Distribution 
(Faulty/Normal) 

Number of Categorical At-
tributes 

Number of Continuous 
Attributes 

CNC 32,048 22,645/9403 2 46 
Pasteurizer 210,794 77,784/133,010 2 2 

4.2. Computerized Numerical Control (CNC) Dataset 
When processing jobs in CNC Machines, the precision of products varies according 

to various factors, such as the velocity of a certain axis and positions. Thus, predictive 

Figure 5. Evaluation of a chromosome with k-means clustering for discretization.



Sensors 2021, 21, 2849 8 of 17

When making a set of multiple branches for an attribute, a decision tree may en-
counter missing classes at the bottom of the tree when the size of the training data is not
sufficient [19]. In order to deal with those missing values, the missing class at the bottom
is randomly labeled as one of classes as an interim measure, and the tree is reconstructed
with the updated training data when the corresponding instances are supplemented.

3.4. Selection

In order to preserve the desirable characteristics of chromosomes for the next genera-
tions, the tournament selection selects surviving chromosomes and a fitness function is
represented as the accuracy. The tournament selection has been widely used and imple-
mented in evolutionary algorithms including EMD due to its lack of stochastic noise [38,46].
The tournament selection runs several tournaments among a set of chromosomes randomly
selected from the population, and the winner of each tournament is elected for the next
survivor. The termination criterion is the maximum number of generations.

4. Experimental Design
4.1. Data Description

To validate the performance of DIMPLED with real-world datasets from sensors, two
classification datasets (CNC and Pasteurizer) of fault detection in manufacturing were used.
The datasets were collected by Korea AI Manufacturing Platform (KAMP) from sensors on
the shop floor, and they were pre-processed to eliminate noises and inadequate values [47].
The summary of the datasets is shown in Table 2. As shown in the table, the CNC dataset
has a larger number of continuous attributes with a smaller number of instances than the
Pasteurizer dataset. Attributes of two datasets were collected from sensors with binary
quality labels (“Faulty” or “Normal”). The detailed descriptions about the datasets are
presented in the following sections.

Table 2. Summary of two datasets (CNC and Pasteurizer).

Dataset Number of
Instances

Class
Distribution

(Faulty/Normal)

Number of
Categorical
Attributes

Number of
Continuous
Attributes

CNC 32,048 22,645/9403 2 46
Pasteurizer 210,794 77,784/133,010 2 2

4.2. Computerized Numerical Control (CNC) Dataset

When processing jobs in CNC Machines, the precision of products varies according
to various factors, such as the velocity of a certain axis and positions. Thus, predictive
models are necessary to prevent expected faults and schedule maintenance for achieving
higher productivity. The dataset was collected from sensors attached to CNC machines in
a factory producing automotive parts. The detailed descriptions of attributes in the CNC
dataset are shown in Table 3.



Sensors 2021, 21, 2849 9 of 17

Table 3. Description of attributes in CNC dataset.

Source (Number of Attributes) Attribute Name (Unit of Continuous Attribute or Description of Categorical Attribute)

X-axis X_ActualPosition (mm), X_ActualVelocity (mm/s), X_ActualAcceleration (mm/s/s), X_SetPosition (mm), X_SetVelocity (mm/s), X_SetAcceleration
(mm/s/s), X_CurrentFeedback (A), X_DCBusVoltage (V), X_OutputCurrent (A), X_OutputVoltage (V), X_OutputPower (kw)(11)

Y-axis Y_ActualPosition (mm), Y_ActualVelocity (mm/s), Y_ActualAcceleration (mm/s/s), Y_SetPosition (mm), Y_SetVelocity (mm/s), Y_SetAcceleration
(mm/s/s), Y_CurrentFeedback (A), Y_DCBusVoltage (V), Y_OutputCurrent (A), Y_OutputVoltage (V), Y_OutputPower (kw)(11)

Z-axis Z_ActualPosition (mm), Z_ActualVelocity (mm/s), Z_ActualAcceleration (mm/s/s), Z_SetPosition (mm), Z_SetVelocity (mm/s), Z_SetAcceleration
(mm/s/s), Z_CurrentFeedback (A), Z_DCBusVoltage (V), Z_OutputCurrent (A), Z_OutputVoltage (V)(10)

Spin S_ActualPosition (mm), S_ActualVelocity (mm/s), S_ActualAcceleration (mm/s/s), S_SetPosition (mm), S_SetVelocity (mm/s), S_SetAcceleration (mm/s/s),
S_CurrentFeedback (A), S_DCBusVoltage (V), S_OutputCurrent (A), S_OutputVoltage (V), S_OutputPower (kw), S_SystemInertia (kg·m2)(12)

Others M_CURRENT_PROGRAM_NUMBER (3 categorical values), M_sequence_number (sequence number), M_CURRENT_FEEDRATE (mm/s),
Machining_Process (9 categorical values)(4)



Sensors 2021, 21, 2849 10 of 17

4.3. Pasteurizer Dataset

In the pasteurizing process, it is important to identify the factors that may affect
the quality for final products, such as taste and flavor. Specifically, the temperature of
pasteurizer is the key element for predicting the quality. In order to analyze the factors
and predict the quality, the dataset was collected for 8.5 months from programmable logic
controllers (PLCs) that the pasteurizers were equipped with and the database management
system in a factory producing powdered dairy products. In the factory, two different
pasteurizers (A and B) are used in parallel to accelerate the process and the dataset consists
of the state and temperature of the two pasteurizers, and the quality of the final product.
The state of the pasteurizer can be categorized into two values: 1 (RUN) and 0 (STOP). The
detailed descriptions of attributes in the Pasteurizer dataset are summarized in Table 4.

Table 4. Description of attributes in Pasteurizer dataset.

Source (Number of Attributes) Attribute Name (Unit of Continuous Attribute or
Description of Categorical Attribute)

Pasteurizer A (2) MIXA_PASTEUR_TEMP (◦C),
MIXA_PASTEUR_STATE (2 categorical values)

Pasteurizer B (2) MIXB_PASTEUR_TEMP (◦C),
MIXB_PASTEUR_STATE (2 categorical values)

5. Results and Discussions

This section presents the experimental results and compares the performance of the
proposed DIMPLED algorithm to other tree-based algorithms, including ensemble learning
methods, such as Random Forest, AdaBoost, and Gradient Boosting. The maximum tree
height may impact how a tree-based algorithm attains interpretable structures, including
the logic as well as the accuracy. Thus, in order to maintain the appropriate level of
interpretability through tree-based models, the maximum tree height is determined as 3
based on the previous literature on tree-based algorithms [48,49]. Note that the level of
interpretability of the DIMPLED can be also tuned by changing the maximum tree height.
In a similar vein, the maximum number of intervals was limited to 4 for maintaining the
interpretability. The detailed parameters for the algorithms are listed in Table 5. In the case
of other tree-based algorithms, scikit-learn packages were used with the default setting,
except for the maximum tree depth. The experiments were run on an Intel i9 10,900 3.7 GHz
processor with 32 GB of RAM and GeForce RTX 2080 Ti.

Table 5. Parameters for DIMPLED and other tree-based algorithms.

Algorithm Parameter Value

DIMPLED

Population size 500
Number of generations 20

Mutation rate 0.3
Crossover rate 0.3

Tournament size 5
Survivor size 50

Maximum number of intervals 4
AdaBoost Number of trees 50

Random Forest Number of trees 100
Gradient Boosting Number of trees 100

To compare the performance of the tree-based algorithms, the performances obtained
by the five algorithms are compared in terms of the average accuracy and interpretability
using the CNC and Pasteurizer datasets described in Section 4. First, the average accuracy
was calculated by the well-known tenfold cross-validation, which divides the dataset
into 10 mutually exclusive and exhaustive partitions. In this paper, two datasets were
partitioned using the stratified tenfold cross-validation. Also, the interpretability of the



Sensors 2021, 21, 2849 11 of 17

resulting trees was evaluated by splitting each dataset into two sets such that 70% of the
data was used for training and 30% was used for testing.

5.1. Comparison Between Algorithms for Average Performance

To compare the performance of the tree-based algorithms, the average classification
accuracy obtained by DIMPLED and the other algorithms are compared in Table 6. The
table also includes the standard deviation for further comparisons. Among the tree-based
algorithms, the gradient boosting algorithm outperformed the others in terms of the
average accuracy and standard deviation for the two datasets. Also, in the case of the
Pasteurizer dataset, the performances of some ensemble methods (Random Forest and
AdaBoost) were significantly weakened compared to the result of the CNC dataset due
to the limited tree depth. However, even though ensemble methods produced better
performances than single-tree-based algorithms (C4.5, CART, and DIMPLED), the level
of interpretability for ensemble models may not be appropriate for practitioners, because
they have a lot of trees having different structures. In addition, decision trees generated
by DIMPLED showed competitive performance compared to the widely-used ensemble
methods in practice.

Table 6. Average test performances of DIMPLED and tree-based algorithms for CNC and Pasteurizer datasets in cross-
validation.

CNC Pasteurizer

Accuracy Avg.
Precision

Avg.
Recall

Avg. F1
Accuracy Avg.

Precision
Avg.

Recall
Avg. F1

Avg. S.D. Avg. S.D.

C4.5 66.66 ±19.99 0.8078 0.7439 0.6994 91.01 ±0.85 0.9211 0.9779 0.9486
CART 75.52 ±15.95 0.8276 0.836 0.818 92.77 ±0.74 0.922 0.9995 0.9592

Random Forest 81.79 ±17.09 0.8766 0.8741 0.8662 92.93 ±0.81 0.9232 1.0 0.9601
AdaBoost 80.62 ±17.35 0.8919 0.8226 0.8409 91.04 ±0.88 0.924 0.9746 0.9486

Gradient Boosting 87.03 ±12.56 0.9287 0.8946 0.9008 99.7 ±0.24 0.9979 0.9985 0.9982
DIMPLED 84.81 ±10.43 0.8862 0.9118 0.8956 95.49 ±5.18 0.9861 0.9607 0.9722

Furthermore, DIMPLED could produce significantly better performance than C4.5
and CART without loss of its interpretability. One possible explanation for this result is
that the performance and generalizability of a single decision tree could be improved by
having multiple splits with discretization.

5.2. Comparison Between Algorithms for Interpretability

To compare the interpretability of DIMPLED and the tree-based algorithms, each
dataset was split into two sets: 70% of the data was used for training and 30% was used for
testing. Based on the training and test datasets, tree-based models were generated, and
their performances were compared in terms of the training and test accuracies, which are
summarized in Table 7. In order to compare the interpretability of models in detail, the
decision trees are depicted in Figures 6–8.

Table 7. Training and test performances of DIMPLED and tree-based algorithms for CNC and Pasteurizer datasets.

CNC Pasteurizer
Train
Accr.

Test
Accr. Precision Recall F1

Train
Accr.

Test
Accr. Precision Recall F1

C4.5 75.11 74.63 1.0 0.6457 0.7847 90.68 91.23 0.9228 0.9782 0.9497
CART 81.33 81.2 0.9195 0.8981 0.8602 92.74 93.0 0.9239 0.9996 0.9603

Random Forest 90.58 90.71 0.9286 0.9427 0.9356 93.38 93.64 0.9301 1.0 0.9638
AdaBoost 92.99 93.39 0.9513 0.9566 0.9539 90.64 91.55 0.9227 0.9824 0.9516

Gradient Boosting 96.56 96.71 0.9773 0.9799 0.9771 99.92 99.47 0.9962 0.9945 0.9969
DIMPLED 91.19 91.89 0.9421 0.9448 0.9434 98.11 98.05 0.9874 0.9895 0.9885



Sensors 2021, 21, 2849 12 of 17

In terms of the training and test accuracies, the results showed that gradient boosting
algorithm outperformed the other tree-based algorithms. Similarly to the result of cross-
validation, the benefits from combining multiple classifiers in Random Forest and Adaboost
were not significant in the Pasteurizer dataset. However, in spite of its high performance,
the interpretability of gradient boosting algorithm was significantly lower than the models
based on a single decision tree as shown in Figures 6–8. In the case of single decision trees,
CART and DIMPLED are much easier to understand than the other algorithms, due to
their simple and compact structures.

Even though CART and DIMPLED have a similar power of interpretability, DIMPLED
significantly outperformed CART in terms of both the training and test accuracies as shown
in Table 6. Furthermore, DIMPLED could identify the root causes and their interdependen-
cies as shown in Figure 6. For example, in the case of Pasteurizer dataset, when Pasteurizer
B’s temperature was low-to-medium (between 41.7 and 55.2 ◦C) and Pasteurizer A’s tem-
perature was over 40.6 ◦C, faulty products were observed in the training data. Also, in
the case of CNC dataset, when the current feed rate was low-medium (between 4.8 and
13 mm/s) and the current of X output was low-to-medium (between 325.2 and 326.5 A),
faulty products were observed in the training data.

In summary, the results demonstrate that DIMPLED can offer good interpretability
compared with the other tree-based algorithms. In addition, DIMPLED appears to find an
improved decision tree with the evolutionary process for global discretization, because the
tree provides significantly better performance than does C4.5 and CART. Also, the model
and its discretized attributes are completely transparent and interpretable, which can make
the manufacturing systems more understandable, and thus reliable to human operators.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 16 
 

 

Random For-
est 

81.79 ±17.09 0.8766 0.8741 0.8662 92.93 ±0.81 0.9232 1.0 0.9601 

AdaBoost 80.62 ±17.35 0.8919 0.8226 0.8409 91.04 ±0.88 0.924 0.9746 0.9486 
Gradient 
Boosting 87.03 ±12.56 0.9287 0.8946 0.9008 99.7 ±0.24 0.9979 0.9985 0.9982 

DIMPLED 84.81 ±10.43 0.8862 0.9118 0.8956 95.49 ±5.18 0.9861 0.9607 0.9722 

Furthermore, DIMPLED could produce significantly better performance than C4.5 
and CART without loss of its interpretability. One possible explanation for this result is 
that the performance and generalizability of a single decision tree could be improved by 
having multiple splits with discretization. 

5.2. Comparison Between Algorithms for Interpretability 
To compare the interpretability of DIMPLED and the tree-based algorithms, each da-

taset was split into two sets: 70% of the data was used for training and 30% was used for 
testing. Based on the training and test datasets, tree-based models were generated, and 
their performances were compared in terms of the training and test accuracies, which are 
summarized in Table 7. In order to compare the interpretability of models in detail, the 
decision trees are depicted in Figures 6–8. 

 
Figure 6. Illustration of two decision trees improved by DIMPLED. The decision trees contain discretized attributes high-
lighted in yellow, which have multiple branches. 
Figure 6. Illustration of two decision trees improved by DIMPLED. The decision trees contain discretized attributes
highlighted in yellow, which have multiple branches.



Sensors 2021, 21, 2849 13 of 17
Sensors 2021, 21, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 7. Illustration of decision trees generated by four tree-based algorithms (CART, Random Forest, AdaBoost, and 
Gradient Boosting) for the CNC dataset. Ensemble methods producing different decision trees are illustrated by visualiz-
ing only the first and last models. 

Figure 7. Illustration of decision trees generated by four tree-based algorithms (CART, Random Forest, AdaBoost, and
Gradient Boosting) for the CNC dataset. Ensemble methods producing different decision trees are illustrated by visualizing
only the first and last models.



Sensors 2021, 21, 2849 14 of 17
Sensors 2021, 21, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 8. Illustration of decision trees generated by four tree-based algorithms (CART, Random Forest, AdaBoost, and 
Gradient Boosting) for the Pasteurizer dataset. Ensemble methods producing different decision trees are illustrated by 
visualizing only the first and last models. 

Table 7. Training and test performances of DIMPLED and tree-based algorithms for CNC and Pasteurizer datasets. 

 
CNC Pasteurizer 

Train 
Accr. 

Test 
Accr. Precision Recall F1 Train 

Accr. 
Test 
Accr. Precision Recall F1 

C4.5 75.11 74.63 1.0 0.6457 0.7847 90.68 91.23 0.9228 0.9782 0.9497 
CART 81.33 81.2 0.9195 0.8981 0.8602 92.74 93.0 0.9239 0.9996 0.9603 

Random For-
est 90.58 90.71 0.9286 0.9427 0.9356 93.38 93.64 0.9301 1.0 0.9638 

AdaBoost 92.99 93.39 0.9513 0.9566 0.9539 90.64 91.55 0.9227 0.9824 0.9516 

Figure 8. Illustration of decision trees generated by four tree-based algorithms (CART, Random Forest, AdaBoost, and
Gradient Boosting) for the Pasteurizer dataset. Ensemble methods producing different decision trees are illustrated by
visualizing only the first and last models.

6. Conclusions and Future Work

This paper addressed the classification model for fault detection in manufacturing.
In order to identify the root causes on the shop floor, interpretable ML models that can
provide insights as an understandable form are crucial to improving the product quality.
However, due to the recent trend of IoT, the number of sensors is exploding, and thus the
generation of ML models with high-performance and appropriate level of interpretability
is becoming more complicated. To deal with the fault detection problem effectively, a new
approach called DIMPLED for evolutionary discretization is proposed. The proposed DIM-
PLED algorithm improves the structure of a single decision tree by evolving discretization



Sensors 2021, 21, 2849 15 of 17

strategies so that it enables the tree to have multiple splits. The experimental results with
two datasets in manufacturing show that the decision tree improved by DIMPLED outper-
formed the performance of C4.5 and CART used widely in practice and it was competitive
compared to the ensemble methods, which require multiple decision trees. Even though
the ensemble methods could produce slightly better performances, the proposed DIMPLED
has more interpretable structure while maintaining the appropriate performance level.

The major contribution of this paper is the development of a new approach for
capturing insights with the appropriate level of interpretability. To improve the accuracy
with the limited tree height, the proposed DIMPLED enables a tree to have multiple splits
with automated discovery process of the best discretization strategy. Also, by the benefit of
the reduced set of rules from a simple decision tree, the models generated by DIMPLED
have the capability for fault prediction in real-time. Moreover, based on the improved tree,
human operators can improve the product quality by identifying the root causes as a set
of IF-THEN rules and thus DIMPLED is expected to be utilized to various fault detection
problems without the black-box issue.

Future work can proceed in several directions. First, considerations of other inter-
pretable algorithms are interesting and worthy for investigation. Additionally, applications
of DIMPLED to other types of classification problems can be studied. Finally, feature ex-
traction techniques can be supplemented to DIMPLED for consideration of their potential
effects.

Funding: This research received no external funding

Acknowledgments: This work was supported in part by the Basic Science Research Program through
the National Research Foundation of Korea (NRF) under Grant NRF-2021R1C1C100343311 funded
by the Ministry of Education and in part by the Dongguk University Research Fund of 2021.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Kapteyn, M.G.; Knezevic, D.J.; Willcox, K. Toward predictive digital twins via component-based reduced-order models and

interpretable machine learning. In Proceedings of the AIAA Scitech 2020 Forum; Orlando, FL, USA, 6–10 January 2020, American
Institute of Aeronautics and Astronautics: Reston, VA, USA, 2020; p. 418.

2. Fan, S.-K.S.; Lin, S.-C.; Tsai, P.-F. Wafer fault detection and key step identification for semiconductor manufacturing using
principal component analysis, AdaBoost and decision tree. J. Ind. Prod. Eng. 2016, 33, 151–168. [CrossRef]

3. Wuest, T.; Weimer, D.; Irgens, C.; Thoben, K.-D. Machine learning in manufacturing: advantages, challenges, and applications.
Prod. Manuf. Res. 2016, 4, 23–45. [CrossRef]

4. Last, M.; Danon, G.; Biderman, S.; Miron, E. Optimizing a batch manufacturing process through interpretable data mining models.
J. Intell. Manuf. 2009, 20, 523–534. [CrossRef]

5. Ghose, A.; Ravindran, B. Interpretability With Accurate Small Models. Front. Artif. Intell. 2020, 3, 3. [CrossRef]
6. Mapa, J.S.; Sison, A.; Medina, R.P. A Modified C4.5 Classification Algorithm: With the Discretization Method in Calculating the

Goodness Score Equivalent. In Proceedings of the 2019 IEEE 6th International Conference on Engineering Technologies and
Applied Sciences (ICETAS), Kuala Lumpur, Malaysia, 20–21 December 2019; Institute of Electrical and Electronics Engineers
(IEEE): Piscataway, NJ, USA, 2019; pp. 1–4.

7. Cahyani, N.; Muslim, M.A. Increasing Accuracy of C4. 5 Algorithm by Applying Discretization and Correlation-based Feature
Selection for Chronic Kidney Disease Diagnosis. J. Telecommun. Electron. Comput. Eng. (JTEC), 2020; 12, 25–32.

8. Dash, R.; Paramguru, R.L.; Dash, R. Comparative analysis of supervised and unsupervised discretization techniques. Int. J. Adv.
Sci. Technol. 2011, 2, 29–37.

9. Ramírez-Gallego, S.; García, S.; Benítez, J.M.; Herrera, F. A Wrapper Evolutionary Approach for Supervised Multivariate
Discretization: A Case Study on Decision Trees. In Proceedings of the 9th International Conference on Computer Recognition Systems
CORES 2015; Springer: Cham, Switzerland, 2016; pp. 47–58.

10. Kaya, F. Discretizing Continuous Features for Naïve Bayes and C4. 5 Classifiers; University of Maryland Publications: College Park,
MD, USA, 2008.

11. Lee, K.B.; Cheon, S.; Kim, C.O. A convolutional neural network for fault classification and diagnosis in semiconductor manufac-
turing processes. Ieee Trans. Semicond. Manuf. 2017, 30, 135–142. [CrossRef]

12. Ragab, A.; El-Koujok, M.; Poulin, B.; Amazouz, M.; Yacout, S. Fault diagnosis in industrial chemical processes using interpretable
patterns based on Logical Analysis of Data. Expert Syst. Appl. 2018, 95, 368–383. [CrossRef]

http://doi.org/10.1080/21681015.2015.1126654
http://doi.org/10.1080/21693277.2016.1192517
http://doi.org/10.1007/s10845-008-0148-7
http://doi.org/10.3389/frai.2020.00003
http://doi.org/10.1109/TSM.2017.2676245
http://doi.org/10.1016/j.eswa.2017.11.045


Sensors 2021, 21, 2849 16 of 17

13. Grezmak, J.; Zhang, J.; Wang, P.; Loparo, K.A.; Gao, R.X. Interpretable convolutional neural network through layer-wise relevance
propagation for machine fault diagnosis. Ieee Sens. J. 2019, 20, 3172–3181. [CrossRef]

14. Hansen, L.K.; Rieger, L. Interpretability in intelligent systems–a new concept? In Explainable AI: Interpreting, Explaining and
Visualizing Deep Learning; Springer: Cham, Switzerland, 2019; pp. 41–49.

15. Quinlan, J.R. Unknown attribute values in induction. In Proceedings of the Sixth International Workshop on Machine Learning;
Morgan Kaufmann: Burlington, MA, USA, 1989; pp. 164–168.

16. Quinlan, J.R. C4. 5: Programs for Machine Learning; Morgan Kaufmann: Burlington, MA, USA, 1993.
17. Barros, R.C.; Basgalupp, M.P.; De Carvalho, A.C.P.L.F.; Freitas, A.A. Automatic Design of Decision-Tree Algorithms with

Evolutionary Algorithms. Evol. Comput. 2013, 21, 659–684. [CrossRef] [PubMed]
18. Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984.
19. Singh, S.; Gupta, P. Comparative study ID3, cart and C4. 5 decision tree algorithm: A survey. Int. J. Adv. Inf. Sci. Technol. (IJAIST)

2014, 27, 97–103.
20. Zhao, Y.; Zhang, Y. Comparison of decision tree methods for finding active objects. Adv. Space Res. 2008, 41, 1955–1959. [CrossRef]
21. Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [CrossRef]
22. Breiman, L. Random forests. Mach. Learn. 2008, 45, 5–32. [CrossRef]
23. Freund, Y.; Schapire, R.E. Game theory, on-line prediction and boosting. In Proceedings of the Ninth Annual Conference on

Computational Learning Theory, Desenzano del Garda, Italy, 28 June–1 July 1996; Association for Computing Machinery: New
York, NY, USA, 1996; pp. 325–332.

24. Vezhnevets, A.; Vezhnevets, V. Modest AdaBoost-teaching AdaBoost to generalize better. Graphicon 2005, 12, 987–997.
25. Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]
26. Fan, J.; Yue, W.; Wu, L.; Zhang, F.; Cai, H.; Wang, X.; Lu, X.; Xiang, Y. Evaluation of SVM, ELM and four tree-based ensemble

models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agric.
For. Meteorol. 2018, 263, 225–241. [CrossRef]

27. Zorman, M.; Štiglic, M.M.; Kokol, P.; Malčić, I. The limitations of decision trees and automatic learning in real world medical
decision making. J. Med Syst. 1997, 21, 403–415. [CrossRef] [PubMed]

28. Lakkaraju, H.; Bach, S.H.; Leskovec, J. Interpretable decision sets: A joint framework for description and prediction. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA,
USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 1675–1684.

29. Angelino, E.; Larus-Stone, N.; Alabi, D.; Seltzer, M.; Rudin, C. Learning Certifiably Optimal Rule Lists for Categorical Data. J.
Mach. Learn. Res. 2018, 18, 1–78.

30. Liu, H.; Hussain, F.; Tan, C.L.; Dash, M. Discretization: An Enabling Technique. Data Min. Knowl. Discov. 2002, 6, 393–423.
[CrossRef]

31. Garcia, S.; Luengo, J.; Sáez, J.A.; Lopez, V.; Herrera, F. A survey of discretization techniques: Taxonomy and empirical analysis in
supervised learning. Ieee Trans. Knowl. Data Eng. 2012, 25, 734–750. [CrossRef]

32. Kwedlo, W.; Krętowski, M. An evolutionary algorithm using multivariate discretization for decision rule induction. In Proceedings
of the European Conference on Principles of Data Mining and Knowledge Discovery, Prague, Czech Republic, 15–18 September
1999; Springer: Heidelberg, Germany, 1999; pp. 392–397.

33. Dougherty, J.; Kohavi, R.; Sahami, M. Supervised and unsupervised discretization of continuous features. In Machine Learning
Proceedings 1995; Morgan Kaufmann: Burlington, MA, USA, 1995; pp. 194–202.

34. Quinlan, J.R. Improved use of continuous attributes in C4.5. J. Artif. Intell. Res. 1996, 4, 77–90. [CrossRef]
35. Tsai, C.F.; Chen, Y.C. The optimal combination of feature selection and data discretization: An empirical study. Inf. Sci. 2019, 505,

282–293. [CrossRef]
36. Valdes, J.J.; Molina, L.C.; Peris, N. An evolution strategies approach to the simultaneous discretization of numeric attributes in

data mining. In Proceedings of the 2003 Congress on Evolutionary Computation, 2003. CEC’03, Canberra, ACT, Australia, 8–12
December 2003; IEEE: New York, NY, USA, 2003; Volume 3, pp. 1957–1964.

37. Ramírez-Gallego, S.; García, S.; Benítez, J.M.; Herrera, F. Multivariate discretization based on evolutionary cut points selection for
classification. Ieee Trans. Cybern. 2015, 46, 595–608. [CrossRef] [PubMed]

38. Zamudio-Reyes, R.; Cruz-Ramírez, N.; Mezura-Montes, E. A multivariate discretization algorithm based on multiobjective
optimization. In Proceedings of the 2017 International Conference on Computational Science and Computational Intelligence
(CSCI), Las Vegas, NV, USA, 14–16 December 2017; IEEE: New York, NY, USA, 2017; pp. 375–380.

39. Tahan, M.H.; Asadi, S. MEMOD: A novel multivariate evolutionary multi-objective discretization. Soft Comput. 2018, 22, 301–323.
[CrossRef]

40. Maslove, D.M.; Podchiyska, T.; Lowe, H.J. Discretization of continuous features in clinical datasets. J. Am. Med Inform. Assoc.
2013, 20, 544–553. [CrossRef]

41. Catlett, J. On changing continuous attributes into ordered discrete attributes. In European Working Session on Learning; Springer:
Berlin/Heidelberg, Germany, 1991; pp. 164–178.

42. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability; University of California: Berkeley, CA, USA, 1967; Volume 1, pp. 281–297.

http://doi.org/10.1109/JSEN.2019.2958787
http://doi.org/10.1162/EVCO_a_00101
http://www.ncbi.nlm.nih.gov/pubmed/23339552
http://doi.org/10.1016/j.asr.2007.07.020
http://doi.org/10.1111/j.1365-2656.2008.01390.x
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1016/S0167-9473(01)00065-2
http://doi.org/10.1016/j.agrformet.2018.08.019
http://doi.org/10.1023/A:1022876330390
http://www.ncbi.nlm.nih.gov/pubmed/9555627
http://doi.org/10.1023/A:1016304305535
http://doi.org/10.1109/TKDE.2012.35
http://doi.org/10.1613/jair.279
http://doi.org/10.1016/j.ins.2019.07.091
http://doi.org/10.1109/TCYB.2015.2410143
http://www.ncbi.nlm.nih.gov/pubmed/25794409
http://doi.org/10.1007/s00500-016-2475-5
http://doi.org/10.1136/amiajnl-2012-000929


Sensors 2021, 21, 2849 17 of 17

43. Gupta, A.; Mehrotra, K.G.; Mohan, C. A clustering-based discretization for supervised learning. Stat. Probab. Lett. 2010, 80,
816–824. [CrossRef]

44. Lustgarten, J.L.; Visweswaran, S.; Gopalakrishnan, V.; Cooper, G.F. Application of an efficient Bayesian discretization method to
biomedical data. BMC Bioinform. 2011, 12, 1–15. [CrossRef]

45. Vannucci, M.; Colla, V. Meaningful discretization of continuous features for association rules mining by means of a SOM. In
Proceedings of the ESANN, Bruges, Belgium, 28–30 April 2004; pp. 489–494.

46. Blickle, T.; Thiele, L. A comparison of selection schemes used in evolutionary algorithms. Evol. Comput. 1996, 4, 361–394.
[CrossRef]

47. Ministry of SMEs and Startups of Korea & Korea AI Manufacturing Platform (KAMP). CNC Machine and Pasteurizer AI Datasets.
2021. Available online: https://kamp-ai.kr/front/dataset (accessed on 15 March 2021).

48. Vandewiele, G.; Steenwinckel, B.; De Turck, F.; Ongenae, F. MINDWALC: Mining interpretable, discriminative walks for
classification of nodes in a knowledge graph. Bmc Med Inform. Decis. Mak. 2020, 20, 1–15. [CrossRef]

49. Hwang, S.; Yeo, H.G.; Hong, J.S. A new splitting criterion for better interpretable trees. IEEE Access 2020, 8, 62762–62774.
[CrossRef]

http://doi.org/10.1016/j.spl.2010.01.015
http://doi.org/10.1186/1471-2105-12-309
http://doi.org/10.1162/evco.1996.4.4.361
https://kamp-ai.kr/front/dataset
http://doi.org/10.1186/s12911-020-01134-w
http://doi.org/10.1109/ACCESS.2020.2985255

	Introduction 
	Backgrounds 
	Fault Detection in Manufacturing 
	Interpretable Machine Learning 
	Discretization 
	Related Work 

	Proposed Approach 
	Chromosome Design 
	Reproduction 
	Evaluation 
	Selection 

	Experimental Design 
	Data Description 
	Computerized Numerical Control (CNC) Dataset 
	Pasteurizer Dataset 

	Results and Discussions 
	Comparison Between Algorithms for Average Performance 
	Comparison Between Algorithms for Interpretability 

	Conclusions and Future Work 
	References

