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Abstract: Due to the recent advance in the industrial Internet of Things (IoT) in manufacturing,
the vast amount of data from sensors has triggered the need for leveraging such big data for fault
detection. In particular, interpretable machine learning techniques, such as tree-based algorithms,
have drawn attention to the need to implement reliable manufacturing systems, and identify the root
causes of faults. However, despite the high interpretability of decision trees, tree-based models make
a trade-off between accuracy and interpretability. In order to improve the tree’s performance while
maintaining its interpretability, an evolutionary algorithm for discretization of multiple attributes,
called Decision tree Improved by Multiple sPLits with Evolutionary algorithm for Discretization
(DIMPLED), is proposed. The experimental results with two real-world datasets from sensors showed
that the decision tree improved by DIMPLED outperformed the performances of single-decision-tree
models (C4.5 and CART) that are widely used in practice, and it proved competitive compared to the
ensemble methods, which have multiple decision trees. Even though the ensemble methods could
produce slightly better performances, the proposed DIMPLED has a more interpretable structure,
while maintaining an appropriate performance level.

Keywords: fault detection; interpretability; decision tree; evolutionary algorithm; discretization

1. Introduction

Due to recent advances in Internet of Things (IoT), the connectivity between machines
as well as the amount of data from sensors have been significantly increased. Depending
on the need to leverage data properly, transparent and interpretable machine learning (ML)
techniques are drawing particular attention amid growing interest in more reliable systems
for a digital twin [1]. In particular, in fault detection of the manufacturing process (e.g.,
semiconductor manufacturing), interpretable ML models can provide insights into which
attributes are the root causes for faults on the shop floor, so that human operators can
improve the product quality [2].

However, even though various ML techniques having black-box structures (e.g.,
neural network) have been studied and developed for more accurate fault detection,
many manufacturing companies suffer from the opaqueness of models, and costly human
efforts to enhance the interpretability of detection accordingly [3]. In this context, the
interpretability of ML models in manufacturing environments is growing in importance
for two reasons. First, human operators want a set of understandable rules to control
parameters in the manufacturing process. In addition, ML models with interpretability
enable practitioners to explain the factors that have affected the ups and downs of process
quality based on past production data [4].

Despite the fact that there is a significant need for interpretability, one of the most
widely used interpretable models, decision-tree-based algorithms, still present some issues.
The first issue is the trade-off between accuracy and interpretability. In order to improve
the accuracy for training data, the maximum tree height should be increased. However, as
the tree becomes deeper, the interpretability of the model decreases, because of the more
complicated structure. Therefore, interpretable models are preferably small in size, as well
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as of sufficient high-performance. In order to have high explanation complexity, there is a
significant need for shrinkage methods for ML models [5]. For example, a decision tree of
depth = 5 is easier to understand than one of depth = 50.

However, when limiting the tree height for interpretability, many decision-tree-based
algorithms, such as classification and regression tree (CART) and C4.5, allow trees to have
only binary splits for continuous attributes, and thus hinder the potential for improving
the performance of the decision trees within the limited tree depth.

To deal with these issues, discretization techniques for multi-point splits (decision tree
algorithms) have been proposed [6,7]. The discretization techniques enable the informa-
tion obtained from datasets to be more concise, easy to understand, and easy to use [8].
Nonetheless, efficient discretization techniques considering dependencies among attributes
while maintaining interpretability have been far less studied even though the dependencies
are important in performance [9]. In particular, for a decision tree algorithm, discretization
of all continuous attributes without consideration of those dependencies has been shown
to result in decreased accuracy [10].

In order to construct interpretable and effective models for fault detection, there is a
significant need for efficient discretization algorithms designed for decision trees while
considering dependencies between continuous attributes. Therefore, this paper proposes
a novel approach for retrieving an improved decision tree for fault detection in manufac-
turing. The proposed approach utilizes the evolutionary process with k-means clustering
to find good solutions efficiently for global discretization. In addition, to maintain high
interpretability, the proposed approach is designed to improve a decision tree under the
limitation of the maximum tree depth.

This paper is organized as follows. In Section 2, the previous research related to
interpretable ML and discretization techniques is reviewed. Section 3 proposes a new
evolutionary algorithm for discretization of continuous attributes based on k-means cluster-
ing. Section 4 defines the two datasets for fault detection in manufacturing, and Section 5
summarizes the results of experiments verifying the algorithm. Finally, Section 6 draws
conclusions, and discusses possible areas for further research.

2. Backgrounds
2.1. Fault Detection in Manufacturing

Accurate detection of faults in manufacturing has been highly involved in the devel-
opment of prediction models using data collected by sensors on the shop floor. Especially,
well-designed ML models for fault detection at an early process can prevent defectives in
the downstream, and thus significantly reduce manufacturing costs [11]. However, due
to the interactions between process variables in large-scale manufacturing processes (e.g.,
chemical plant, semiconductor factory), identification of the relationships between fault
causes and their effects is complicated [12].

While ML algorithms, such as neural network (NN) and support vector machine
(SVM), have demonstrated high accuracy on several datasets, there is a significant issue
called the “black-box” nature of their decision-making and learning processes. Because
the learning process of black-box algorithms is neither transparent nor understandable to
human operators, high accuracy on a given dataset may be misreading without a deeper
understanding of causes from machine-related sensor inputs [13]. Therefore, interpretable
ML-based models that can identify and analyze the root causes of fault detection in manu-
facturing have drawn attention from researchers.

2.2. Interpretable Machine Learning

In order to deal with the black-box issue, interpretable ML models that are able to
produce insights about their decisions have been investigated [14]. Among ML algorithms,
decision-tree-based algorithms, such as ID3 (Iterative Dichotomiser 3) and C4.5 proposed
by Quinlan [15,16], have been widely studied, due to their comprehensible nature that
resembles the human reasoning process [17]. ID3 builds a decision tree for the given data
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in a top-down fashion and one categorical attribute is tested at each node. C4.5 is the
successor to ID3 and it relaxes the restriction of ID3 that all attributes must be categorical.
In addition, CART algorithm proposed by Reference [18] can address the classification
and regression problems by creating a decision tree with binary splits of the continuous
attributes as shown in Figure 1a. Compared to CART, C4.5 have an advantage of handling
both continuous and discrete attributes [19]. These single-tree-based algorithms are easy to
understand, and the trees can be easily converted to a set of rules. However, in spite of the
high interpretability, the algorithms also have some limitations, such as overfitting, low
performance, and binary splits on continuous attributes [20].
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In order to overcome the limitations, various ensemble methods have been proposed
and broadly investigated. Ensemble methods are simple and powerful techniques that
aggregate predictions of some weak learners (such as decision trees) to provide more
accurate estimation, instead of finding a single sophisticated learner [21]. For example,
random forest introduced by Reference [22] generates many decision trees and aggregates
their result. Especially, random forest has been shown to outperform other learners for
problems with high-dimensional data.

In addition, boosting is a technique of combining a set of weak classifiers into one
strong classifier for high-performance prediction, and has been a very successful technique
for solving the two-class classification problem. The first practical boosting algorithm,
called AdaBoost, was proposed by Reference [23]. Because of its capability of generalization,
fast performance, and low implementation complexity, boosting has become one of the
most popular and effective classification tools [24]. The gradient boosting model proposed
by Reference [25] is another widely used ensemble method for classification and regression
problems. The gradient boosting algorithms use decision or regression trees as weak
classifiers, and measure the error observed in each node and split node using a test function.
Gradient boosting is similar to random forest in terms of combination of week tree leaners,
but the tree in gradient boosting is fit on the residual of the former trees so that it can
minimize the biases while random forest reduces variances [26].

On the other hand, due to the complicated structure of ensemble methods with multi-
ple trees, their power of interpretability is weaker than algorithms with a single decision
tree. However, even though decision-tree-based algorithms have better interpretability
over other ML techniques, they still have limitations such as overfitting [27]. For example,
if the training dataset is not large enough or includes some noise, the algorithms try to fit
every single instance in the training set. As a result, the size of decision tree is relatively
larger with meaningless branches and the overfitting problem leads to low interpretability.
Thus, in order to have interpretability as well as high performance, shrinkage methods for
ML models, such as discretization, are worthy for further research as a desirable property
for interpretable models [28,29].
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2.3. Discretization

Discretization, as one of the basic reduction techniques, has received attention because
it helps decision trees to yield more compact, shorter, and more accurate results than the
ones derived using numerical values [30]. Moreover, discretized attributes are easier to
comprehend, employ, and describe for researchers [31].

Assume a classification problem with C target classes with a set of N instances and M
attributes. A learning set E = {e1, e2, . . . , eN} consists of N instances. Each instance e ∈ E
is described by M attributes A1(e), A2(e), . . . , AM(e), and labeled by a class c(e) ∈ C. A
discretization algorithm partitions a continuous attribute Ai into ki discrete and disjoint
intervals as shown below:

Di =
{
[d0, d1], (d1, d2], . . . ,

(
dki−1, dki

]}
where d0 and dki

are the minimum and maximum values of Ai, respectively [32]. Finally,
Pi =

{
d1, d2, . . . , dki−1

}
denotes the complete set of cut points for each continuous at-

tribute i in M. The goal of discretization algorithms is to find the best Pi for the target
attribute i.

There are three different categories where discretization methods can be classified:
global vs. local, supervised vs. unsupervised, and static vs. dynamic [33]. Local methods
generate partitions that are applied to localized regions of the instance space while global
methods, such as binning, independently produce a mesh over the entire n-dimensional

continuous instance space. The mesh contains
M
∏
i=1

ki regions, where ki is the number of par-

titions of the ith feature. Unsupervised discretization methods, such as equal width interval
binning, do not use instance labels in the discretization process, while supervised discretiza-
tion methods utilize the class labels. Static discretization methods perform determine the
maximum number of intervals for each attribute independently, but dynamic methods
conduct a search through the space of possible values for all attributes simultaneously to
capture interdependencies.

2.4. Related Work

Discretization has been proven to improve the performance as well as the interpretabil-
ity of ML models, especially for decision tree models. Especially, discretization of multiple
attributes can be considered as an optimization problem, which finds the best Pi with
consideration of interdependencies between attributes. The previous literature related to
multivariate discretization with interpretable ML models is summarized in Table 1.

Table 1. Overview of research related to multivariate discretization with interpretable ML models.

Discretization Algorithm Classifier Reference

Minimum Description Length (MDL) C4.5 [34]
Equal Frequency Binning (EFB), Equal Width Binning (EWB), MDL, and

ChiMerge C4.5 and SVM [35]

Evolutionary Decision Rule Learner with Multivariate Discretization
(EDRL-MD) C4.5 [32]

Evolution-Strategies-based discretization Algorithms ID3, C4.5, and C4.5-rules [36]
Evolutionary algorithm for multivariate discretization based on a wrapper

fitness function C4.5 and Naive Bayes [37]

Multivariate discretization algorithm (multiCAIM) based on NSGA-II C4.5, Naive Bayes, and k-nearest
neighbors (KNN) [38]

Multivariate Evolutionary Multi-Objective Discretization (MEMOD) C4.5 [39]

Reference [34] noted that C4.5’s performance is weaker in domains with a preponder-
ance of continuous attributes than for learning tasks that have mainly discrete attributes.
In order to address the weakness, a penalty inspired by the Minimum Description Length
(MDL) principle was applied and it produced smaller DTs with higher accuracies with
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multi-interval splits. The results also showed that global discretization may degrade per-
formance more as datasets become larger. Reference [35] focused on identifying the best
combination of feature selection and discretization with four discretization methods: equal
frequency binning (EFB), equal width binning (EWB), MDL, and ChiMerge. In this research,
C4.5 was used for feature selection while SVM was used as a classifier.

Recently, as the size of data increases, finding the optimal discretization strategy with
cut points is becoming extremely complicated. In order to solve the optimization problem,
evolutionary multivariate discretizers (EMDs) have been studied for the discretization
problem. Reference [32] proposed an evolutionary algorithm for learning decision rules
with multivariate discretization called EDRL-MD (Evolutionary Decision Rule Learner
with Multivariate Discretization). EDRL-MD consists of two steps: the simultaneous
search for threshold values for all continuous attributes and the discovery of decision rules.
Reference [36] proposed an evolutionary algorithm to construct a global discretization
scheme for all continuous attributes simultaneously. The proposed algorithm was able to
improve the accuracy of DTs and generate much simpler model. Reference [37] proposed an
evolutionary algorithm to select a subset of cut points for multivariate discretization based
on a wrapper fitness function. The algorithm was compared with different discretizers with
C4.5 and Naive Bayes. Reference [38] proposed an evolutionary approach, which obtains a
set of discretization schemes guiding the search by using a discretization criterion and the
prediction accuracy of Naive Bayes. In Reference [39], classification error and number of
cut points are simultaneously reduced by using evolutionary multi-objective optimization.

In addition to improved accuracy, discretization is likely to enhance interpretability,
especially in combination with decision tree models [40]. For example, when applying
discretization in C4.5, this benefit is clear, even when the continuous attributes are simply
partitioned into ‘low’, ‘medium’, or ‘high’ values as shown in Figure 1b. Moreover, dis-
cretization can significantly increase the efficiency of decision tree induction by reducing
the required sorting step for continuous attributes at each branch [41].

However, although the above-mentioned studies have proposed various discretization
approaches, in practice, two issues persist. The first issue is the computational complexity.
As the number of sensors increases with the stream of industrial IoT in manufacturing,
the search space for global discretization has become voluminous. Accordingly, when the
number of instances and continuous attributes increases, the chromosome structure for
searching all possible cutting points may not be appropriate.

Another issue is the lack of investigation on benefits of discretization under the limita-
tion of the maximum tree depth. Although limiting the tree height for interpretability may
affect the performance, the evolutionary approach for global discretization of a decision tree
under the limitation of the maximum tree depth has been far less studied. Therefore, a new
approach for learning interpretable models that are compact in size as well as sufficiently
accurate is necessary to predict faults at the early stages and identify their root causes in an
understandable form.

3. Proposed Approach

In this section, a novel evolutionary algorithm for global discretization called De-
cision tree Improved by Multiple sPLits with Evolutionary algorithm for Discretization
(DIMPLED) is proposed. The proposed DIMPLED algorithm gradually improves the
discretization strategy for better performance while maintaining the appropriate level of
interpretability with a single decision tree. Also, in combination with k-means clustering
for global discretization, DIMPLED allows a tree to have multiple splits that can be inter-
pretable and meaningful for practitioners. The entire framework is first described, and
then its detailed procedures are explained. The proposed DIMPLED framework can be
summarized in Figure 2.
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3.1. Chromosome Design

Each chromosome consists of a given number of genes as shown in Figure 3. The length
of a chromosome represents the number of continuous attributes that can be discretized.
Each gene stores a discretization strategy Pi that partitions a continuous attribute Ai into
the number of discrete intervals ki, which is determined with consideration of the level of
interpretability.
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The initial population is generated by determining the number of classes for each
continuous attribute randomly between 2 (not to be discretized, because binary split is
the default) to the maximum number of intervals. The initial population with randomly
generated chromosomes has been widely used in EMD, because it can cover the complete
search space as much as possible and enhance the diversity as well [37–39]. For discretiza-
tion of a continuous attribute with the given number of intervals in a chromosome, k-mean
clustering algorithm partitions the values of continuous attributes into k clusters with
the objective of making the clusters as separated as possible [42]. k-mean clustering has
been used in unsupervised and global discretization to assist comprehension by grouping
together multiple values of a continuous attribute [43]. In this study, the associated cost
function is defined in terms of the distances between the cluster objects and the cluster
center, and the objective is to find the best combination of ki intervals that maximizes the
accuracy.

3.2. Reproduction

As shown in Figure 4, a set of new chromosomes for the next generation is generated
by reproduction with two operators (mutation and crossover) based on the surviving
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chromosomes after selection. To make a change in a discretization strategy, the mutation
operator randomly selects a gene in a single chromosome and reassigns it to another
number of intervals. In the case of crossover, a two-point crossover operator is applied,
and it changes only a certain part between two points.
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3.3. Evaluation

After the generation of chromosomes up to the given size of population, the chromo-
somes are evaluated by their accuracy with different discretization strategies. To calculate
the accuracy of a chromosome, the continuous attributes in the training dataset are first
discretized according to genes, which represent different number of intervals for attributes.
If the number of intervals in a gene is greater than 2, values in the corresponding at-
tribute are converted to discrete values (such as low, medium, and high), as shown in
Figure 5. As a result of the global discretization with combination of C4.5, a smaller de-
cision tree with multi-interval splits can be constructed, and it can be more accurate in
some domains [34]. Also, by dividing the continuous values into interpretable intervals,
discretization can improve the clarity of rule sets that are interpretable and meaningful to
domain experts [44,45].
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When making a set of multiple branches for an attribute, a decision tree may en-
counter missing classes at the bottom of the tree when the size of the training data is not
sufficient [19]. In order to deal with those missing values, the missing class at the bottom
is randomly labeled as one of classes as an interim measure, and the tree is reconstructed
with the updated training data when the corresponding instances are supplemented.

3.4. Selection

In order to preserve the desirable characteristics of chromosomes for the next genera-
tions, the tournament selection selects surviving chromosomes and a fitness function is
represented as the accuracy. The tournament selection has been widely used and imple-
mented in evolutionary algorithms including EMD due to its lack of stochastic noise [38,46].
The tournament selection runs several tournaments among a set of chromosomes randomly
selected from the population, and the winner of each tournament is elected for the next
survivor. The termination criterion is the maximum number of generations.

4. Experimental Design
4.1. Data Description

To validate the performance of DIMPLED with real-world datasets from sensors, two
classification datasets (CNC and Pasteurizer) of fault detection in manufacturing were used.
The datasets were collected by Korea AI Manufacturing Platform (KAMP) from sensors on
the shop floor, and they were pre-processed to eliminate noises and inadequate values [47].
The summary of the datasets is shown in Table 2. As shown in the table, the CNC dataset
has a larger number of continuous attributes with a smaller number of instances than the
Pasteurizer dataset. Attributes of two datasets were collected from sensors with binary
quality labels (“Faulty” or “Normal”). The detailed descriptions about the datasets are
presented in the following sections.

Table 2. Summary of two datasets (CNC and Pasteurizer).

Dataset Number of
Instances

Class
Distribution

(Faulty/Normal)

Number of
Categorical
Attributes

Number of
Continuous
Attributes

CNC 32,048 22,645/9403 2 46
Pasteurizer 210,794 77,784/133,010 2 2

4.2. Computerized Numerical Control (CNC) Dataset

When processing jobs in CNC Machines, the precision of products varies according
to various factors, such as the velocity of a certain axis and positions. Thus, predictive
models are necessary to prevent expected faults and schedule maintenance for achieving
higher productivity. The dataset was collected from sensors attached to CNC machines in
a factory producing automotive parts. The detailed descriptions of attributes in the CNC
dataset are shown in Table 3.
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Table 3. Description of attributes in CNC dataset.

Source (Number of Attributes) Attribute Name (Unit of Continuous Attribute or Description of Categorical Attribute)

X-axis X_ActualPosition (mm), X_ActualVelocity (mm/s), X_ActualAcceleration (mm/s/s), X_SetPosition (mm), X_SetVelocity (mm/s), X_SetAcceleration
(mm/s/s), X_CurrentFeedback (A), X_DCBusVoltage (V), X_OutputCurrent (A), X_OutputVoltage (V), X_OutputPower (kw)(11)

Y-axis Y_ActualPosition (mm), Y_ActualVelocity (mm/s), Y_ActualAcceleration (mm/s/s), Y_SetPosition (mm), Y_SetVelocity (mm/s), Y_SetAcceleration
(mm/s/s), Y_CurrentFeedback (A), Y_DCBusVoltage (V), Y_OutputCurrent (A), Y_OutputVoltage (V), Y_OutputPower (kw)(11)

Z-axis Z_ActualPosition (mm), Z_ActualVelocity (mm/s), Z_ActualAcceleration (mm/s/s), Z_SetPosition (mm), Z_SetVelocity (mm/s), Z_SetAcceleration
(mm/s/s), Z_CurrentFeedback (A), Z_DCBusVoltage (V), Z_OutputCurrent (A), Z_OutputVoltage (V)(10)

Spin S_ActualPosition (mm), S_ActualVelocity (mm/s), S_ActualAcceleration (mm/s/s), S_SetPosition (mm), S_SetVelocity (mm/s), S_SetAcceleration (mm/s/s),
S_CurrentFeedback (A), S_DCBusVoltage (V), S_OutputCurrent (A), S_OutputVoltage (V), S_OutputPower (kw), S_SystemInertia (kg·m2)(12)

Others M_CURRENT_PROGRAM_NUMBER (3 categorical values), M_sequence_number (sequence number), M_CURRENT_FEEDRATE (mm/s),
Machining_Process (9 categorical values)(4)
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4.3. Pasteurizer Dataset

In the pasteurizing process, it is important to identify the factors that may affect
the quality for final products, such as taste and flavor. Specifically, the temperature of
pasteurizer is the key element for predicting the quality. In order to analyze the factors
and predict the quality, the dataset was collected for 8.5 months from programmable logic
controllers (PLCs) that the pasteurizers were equipped with and the database management
system in a factory producing powdered dairy products. In the factory, two different
pasteurizers (A and B) are used in parallel to accelerate the process and the dataset consists
of the state and temperature of the two pasteurizers, and the quality of the final product.
The state of the pasteurizer can be categorized into two values: 1 (RUN) and 0 (STOP). The
detailed descriptions of attributes in the Pasteurizer dataset are summarized in Table 4.

Table 4. Description of attributes in Pasteurizer dataset.

Source (Number of Attributes) Attribute Name (Unit of Continuous Attribute or
Description of Categorical Attribute)

Pasteurizer A (2) MIXA_PASTEUR_TEMP (◦C),
MIXA_PASTEUR_STATE (2 categorical values)

Pasteurizer B (2) MIXB_PASTEUR_TEMP (◦C),
MIXB_PASTEUR_STATE (2 categorical values)

5. Results and Discussions

This section presents the experimental results and compares the performance of the
proposed DIMPLED algorithm to other tree-based algorithms, including ensemble learning
methods, such as Random Forest, AdaBoost, and Gradient Boosting. The maximum tree
height may impact how a tree-based algorithm attains interpretable structures, including
the logic as well as the accuracy. Thus, in order to maintain the appropriate level of
interpretability through tree-based models, the maximum tree height is determined as 3
based on the previous literature on tree-based algorithms [48,49]. Note that the level of
interpretability of the DIMPLED can be also tuned by changing the maximum tree height.
In a similar vein, the maximum number of intervals was limited to 4 for maintaining the
interpretability. The detailed parameters for the algorithms are listed in Table 5. In the case
of other tree-based algorithms, scikit-learn packages were used with the default setting,
except for the maximum tree depth. The experiments were run on an Intel i9 10,900 3.7 GHz
processor with 32 GB of RAM and GeForce RTX 2080 Ti.

Table 5. Parameters for DIMPLED and other tree-based algorithms.

Algorithm Parameter Value

DIMPLED

Population size 500
Number of generations 20

Mutation rate 0.3
Crossover rate 0.3

Tournament size 5
Survivor size 50

Maximum number of intervals 4
AdaBoost Number of trees 50

Random Forest Number of trees 100
Gradient Boosting Number of trees 100

To compare the performance of the tree-based algorithms, the performances obtained
by the five algorithms are compared in terms of the average accuracy and interpretability
using the CNC and Pasteurizer datasets described in Section 4. First, the average accuracy
was calculated by the well-known tenfold cross-validation, which divides the dataset
into 10 mutually exclusive and exhaustive partitions. In this paper, two datasets were
partitioned using the stratified tenfold cross-validation. Also, the interpretability of the
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resulting trees was evaluated by splitting each dataset into two sets such that 70% of the
data was used for training and 30% was used for testing.

5.1. Comparison Between Algorithms for Average Performance

To compare the performance of the tree-based algorithms, the average classification
accuracy obtained by DIMPLED and the other algorithms are compared in Table 6. The
table also includes the standard deviation for further comparisons. Among the tree-based
algorithms, the gradient boosting algorithm outperformed the others in terms of the
average accuracy and standard deviation for the two datasets. Also, in the case of the
Pasteurizer dataset, the performances of some ensemble methods (Random Forest and
AdaBoost) were significantly weakened compared to the result of the CNC dataset due
to the limited tree depth. However, even though ensemble methods produced better
performances than single-tree-based algorithms (C4.5, CART, and DIMPLED), the level
of interpretability for ensemble models may not be appropriate for practitioners, because
they have a lot of trees having different structures. In addition, decision trees generated
by DIMPLED showed competitive performance compared to the widely-used ensemble
methods in practice.

Table 6. Average test performances of DIMPLED and tree-based algorithms for CNC and Pasteurizer datasets in cross-
validation.

CNC Pasteurizer

Accuracy Avg.
Precision

Avg.
Recall

Avg. F1
Accuracy Avg.

Precision
Avg.

Recall
Avg. F1

Avg. S.D. Avg. S.D.

C4.5 66.66 ±19.99 0.8078 0.7439 0.6994 91.01 ±0.85 0.9211 0.9779 0.9486
CART 75.52 ±15.95 0.8276 0.836 0.818 92.77 ±0.74 0.922 0.9995 0.9592

Random Forest 81.79 ±17.09 0.8766 0.8741 0.8662 92.93 ±0.81 0.9232 1.0 0.9601
AdaBoost 80.62 ±17.35 0.8919 0.8226 0.8409 91.04 ±0.88 0.924 0.9746 0.9486

Gradient Boosting 87.03 ±12.56 0.9287 0.8946 0.9008 99.7 ±0.24 0.9979 0.9985 0.9982
DIMPLED 84.81 ±10.43 0.8862 0.9118 0.8956 95.49 ±5.18 0.9861 0.9607 0.9722

Furthermore, DIMPLED could produce significantly better performance than C4.5
and CART without loss of its interpretability. One possible explanation for this result is
that the performance and generalizability of a single decision tree could be improved by
having multiple splits with discretization.

5.2. Comparison Between Algorithms for Interpretability

To compare the interpretability of DIMPLED and the tree-based algorithms, each
dataset was split into two sets: 70% of the data was used for training and 30% was used for
testing. Based on the training and test datasets, tree-based models were generated, and
their performances were compared in terms of the training and test accuracies, which are
summarized in Table 7. In order to compare the interpretability of models in detail, the
decision trees are depicted in Figures 6–8.

Table 7. Training and test performances of DIMPLED and tree-based algorithms for CNC and Pasteurizer datasets.

CNC Pasteurizer
Train
Accr.

Test
Accr. Precision Recall F1

Train
Accr.

Test
Accr. Precision Recall F1

C4.5 75.11 74.63 1.0 0.6457 0.7847 90.68 91.23 0.9228 0.9782 0.9497
CART 81.33 81.2 0.9195 0.8981 0.8602 92.74 93.0 0.9239 0.9996 0.9603

Random Forest 90.58 90.71 0.9286 0.9427 0.9356 93.38 93.64 0.9301 1.0 0.9638
AdaBoost 92.99 93.39 0.9513 0.9566 0.9539 90.64 91.55 0.9227 0.9824 0.9516

Gradient Boosting 96.56 96.71 0.9773 0.9799 0.9771 99.92 99.47 0.9962 0.9945 0.9969
DIMPLED 91.19 91.89 0.9421 0.9448 0.9434 98.11 98.05 0.9874 0.9895 0.9885
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In terms of the training and test accuracies, the results showed that gradient boosting
algorithm outperformed the other tree-based algorithms. Similarly to the result of cross-
validation, the benefits from combining multiple classifiers in Random Forest and Adaboost
were not significant in the Pasteurizer dataset. However, in spite of its high performance,
the interpretability of gradient boosting algorithm was significantly lower than the models
based on a single decision tree as shown in Figures 6–8. In the case of single decision trees,
CART and DIMPLED are much easier to understand than the other algorithms, due to
their simple and compact structures.

Even though CART and DIMPLED have a similar power of interpretability, DIMPLED
significantly outperformed CART in terms of both the training and test accuracies as shown
in Table 6. Furthermore, DIMPLED could identify the root causes and their interdependen-
cies as shown in Figure 6. For example, in the case of Pasteurizer dataset, when Pasteurizer
B’s temperature was low-to-medium (between 41.7 and 55.2 ◦C) and Pasteurizer A’s tem-
perature was over 40.6 ◦C, faulty products were observed in the training data. Also, in
the case of CNC dataset, when the current feed rate was low-medium (between 4.8 and
13 mm/s) and the current of X output was low-to-medium (between 325.2 and 326.5 A),
faulty products were observed in the training data.

In summary, the results demonstrate that DIMPLED can offer good interpretability
compared with the other tree-based algorithms. In addition, DIMPLED appears to find an
improved decision tree with the evolutionary process for global discretization, because the
tree provides significantly better performance than does C4.5 and CART. Also, the model
and its discretized attributes are completely transparent and interpretable, which can make
the manufacturing systems more understandable, and thus reliable to human operators.
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visualizing only the first and last models.

6. Conclusions and Future Work

This paper addressed the classification model for fault detection in manufacturing.
In order to identify the root causes on the shop floor, interpretable ML models that can
provide insights as an understandable form are crucial to improving the product quality.
However, due to the recent trend of IoT, the number of sensors is exploding, and thus the
generation of ML models with high-performance and appropriate level of interpretability
is becoming more complicated. To deal with the fault detection problem effectively, a new
approach called DIMPLED for evolutionary discretization is proposed. The proposed DIM-
PLED algorithm improves the structure of a single decision tree by evolving discretization
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strategies so that it enables the tree to have multiple splits. The experimental results with
two datasets in manufacturing show that the decision tree improved by DIMPLED outper-
formed the performance of C4.5 and CART used widely in practice and it was competitive
compared to the ensemble methods, which require multiple decision trees. Even though
the ensemble methods could produce slightly better performances, the proposed DIMPLED
has more interpretable structure while maintaining the appropriate performance level.

The major contribution of this paper is the development of a new approach for
capturing insights with the appropriate level of interpretability. To improve the accuracy
with the limited tree height, the proposed DIMPLED enables a tree to have multiple splits
with automated discovery process of the best discretization strategy. Also, by the benefit of
the reduced set of rules from a simple decision tree, the models generated by DIMPLED
have the capability for fault prediction in real-time. Moreover, based on the improved tree,
human operators can improve the product quality by identifying the root causes as a set
of IF-THEN rules and thus DIMPLED is expected to be utilized to various fault detection
problems without the black-box issue.

Future work can proceed in several directions. First, considerations of other inter-
pretable algorithms are interesting and worthy for investigation. Additionally, applications
of DIMPLED to other types of classification problems can be studied. Finally, feature ex-
traction techniques can be supplemented to DIMPLED for consideration of their potential
effects.
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