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Abstract: The development of deep learning has achieved great success in object detection, but small 
object detection is still a difficult and challenging task in computer vision. To address the problem, 
we propose an improved single-shot multibox detector (SSD) using enhanced feature map blocks 
(SSD-EMB). The enhanced feature map block (EMB) consists of attention stream and feature map 
concatenation stream. The attention stream allows the proposed model to focus on the object regions 
rather than background owing to channel averaging and the effectiveness of the normalization. The 
feature map concatenation stream provides additional semantic information to the model without 
degrading the detection speed. By combining the output of these two streams, the enhanced feature 
map, which improves the detection of a small object, is generated. Experimental results show that 
the proposed model has high accuracy in small object detection. The proposed model not only 
achieves good detection accuracy, but also has a good detection speed. The SSD-EMB achieved a 
mean average precision (mAP) of 80.4% on the PASCAL VOC 2007 dataset at 30 frames per second 
on an RTX 2080Ti graphics processing unit, an mAP of 79.9% on the VOC 2012 dataset, and an mAP 
of 26.6% on the MS COCO dataset. 

Keywords: object detection; SSD; attention mechanism; feature map concatenation 
 

1. Introduction 
Object detection is currently used in various applications, such as autonomous vehi-

cles [1], face detection [2], medical imaging [3], and security [4]. Recently, the develop-
ment of the convolutional neural networks (CNNs) concept [5–8] and the availability of 
large-scale datasets [9,10] have considerably improved the performance of object detec-
tion [11–16]. Researchers have expended numerous efforts to boost performance in vari-
ous ways, such as optimizer design [17–19], modification of architecture [20], and scale 
variations [21,22] for computer vision. A fundamental approach used to effectively boost 
performance is based on the design of a good network. Since the introduction of the first 
deep neural network AlexNet [5] in 2012, various architectures have emerged, including 
the visual geometry group network (VGGNet) [6], GoogLeNet [7], and residual neural 
network (ResNet) [8]. With the development of graphics processing unit (GPU) power, 
these networks have yielded significant performance boosts by stacking the convolutional 
layers deeper, depending on their design choices. This allows us to obtain high-level se-
mantic features that are extracted from the deep convolutional layers. These networks are 
being used in several computer vision models for applications such as object tracking [23], 
domain adaptation [24], and object detection. 

The single-shot multibox detector (SSD) [15] has achieved high performance in de-
tection accuracy and speed. The SSD algorithm was proposed to solve the problem of low-
detection accuracy of the you-only-look-once (YOLO) model [14]. In SSD, the main goal 
is to detect multiple objects in an image. When detecting the objects, the object bounding 
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box is predicted by prior boxes at different scales and aspect ratios followed by the gen-
eration of the feature map by CNN and the classification and regression of the objects in 
an image. The input image enters the network and then goes through the convolutional 
layers. Detection is performed using feature maps of different sizes in each of the six layers. 
The main idea of the SSD is to detect large objects based on the low-resolution feature 
maps of the deep layers, and detect small objects using the high-resolution feature maps 
of the shallow layers. The SSD detects large objects accurately, but its accuracy of small 
object detection is lower. We inferred that this problem is caused by two reasons, as de-
scribed below. 

First, in deep learning, the high-resolution feature maps of the shallow layers tend to 
contain fewer semantic information compared with the feature maps of the deep layers. 
This is attributed to the fact that the high-resolution feature maps pass through fewer con-
volutional layers compared with the feature maps of the deep layers. The methods em-
ployed to solve this problem in previous studies [25,26] involved the generation of a fea-
ture fusion module or the modification of the feature extraction network to develop an 
improved model. One of these studies [25] created the trident feature and squeeze and 
excitation feature fusion modules to add semantic information to the feature maps of the 
shallow layers. Another study [26] changed the network to DenseNet and used the resid-
ual prediction block. However, the problem associated with these methods relates to the 
detection speed degradation owing to the use of the complex network and the addition of 
complicated feature fusion modules. In order to extract more semantic information while 
concurrently maintaining the detection speed, we propose a lightweight feature map con-
catenation stream that splits the channels of the input feature map in half and performs 
three convolution operations on one of the half maps. Low-rank approximation is a rep-
resentative method of compressing feature maps, which simplifies the network by reduc-
ing the parameter dimensions. Most methods [27,28] minimize the reconstruction error of 
original parameters to approximate a tensor. However, since these methods utilize the 
weight sparsity, they are useful when was applied to a limited resource environment such 
as a mobile platform, and the output feature map deviates far from the original values 
because errors tend to accumulate when multiple layers are compressed sequentially. 
Low-rank approximation has greatly improved the speed of CNNs, but it tends to de-
crease the accuracy. Also, the model cannot get a big gain in speed unless we apply it to 
the backbone of the SSD. However, our approach is to insert a module called enhanced 
map block (EMB) between the layers of the SSD, leaving the backbone of the SSD intact, 
therefore the low-rank approximation is not applied in our approach. Instead, we only 
use half of the weights of the feature map for convolutional layers to suppress the number 
of parameters increased by convolution. In this manner, the amount of learning is halved, 
compared to general convolution. Finally, the feature map that passed through the con-
volutional layers and the other feature map are concatenated with each other using skip 
connection. 

Second, low-level features extracted from the shallow layers activate edges or back-
ground in an image. At this point, we have concluded that if the model can focus on an 
object, it can detect the region where small objects are captured. To execute this approach, 
we propose an efficient attention mechanism stream that employs the importance map. 
The importance map is produced by channel-wise average pooling and a sigmoid activa-
tion function. In this way, the pixels of the input feature map are averaged and then nor-
malized to (0, 1). When generating the importance map, the model does not perform con-
volution operations. In this stream, the model only performs two simple operations with 
no additional learning. Therefore, it prevents degradation in the detection speed. Finally, 
we multiply the importance map and concatenated map element-wise, and add it to the 
input feature map. In this way, we propose the enhanced map block (EMB), which effi-
ciently and effectively detects small objects.  

In this study, an improved single-shot multibox detector (SSD) is proposed that em-
ploys novel and effective EMBs, called SSD-EMB. Although we used ideas from other 
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methods, we created a new type of block, called the EMB, and applied it to the network 
to improve the accuracy without decreasing the detection speed. Object detectors using 
other types of feature map blocks have been studied. In [29], the feature extraction capa-
bility of the model was improved by integrating four inception blocks in an SSD. Each 
inception block consists of eight convolutional layers and a concatenation layer. Ding et 
al. [30] used four dense blocks in their SSD to enhance the features by integrating the fea-
tures of the shallow layer and the features of the deep layer. These dense blocks contain 
eight convolutional layers and four concatenation layers, and they increase the network 
complexity and detection time. However, the proposed EMB is constructed more simply 
than other feature map blocks. We evaluate the efficiency of EMB on the detection task. 
Experimental datasets are the PASCAL visual object classes (VOC) 2007, the PASCAL 
VOC 2012 [31], and the MS COCO [10]. Our model is compared with the conventional 
object detection models, such as the faster region-based CNN (R-CNN) [13], YOLO [14], 
and SSD [15]. The overall architecture of SSD-EMB is shown in Figure 1. A detailed block 
diagram of the EMB is shown in Figure 2. The main contributions of this study are as 
follows: 
• We propose a lightweight feature map concatenation stream, which consists of fea-

ture map split, three convolutional layers, and feature map concatenation. 
• We present an efficient attention mechanism stream that applies channel-wise aver-

age pooling and sigmoid activation function on the input feature map. 
• Combining the above two streams, the proposed model, SSD-EMB, solves the chal-

lenges associated with both small object detection and detection speed degradation. 
We verify the effectiveness of the proposed model compared with various models 

(Faster R-CNN [13], YOLO [14], SSD [15], etc.) based on the PASCAL VOC 2007, PASCAL 
VOC 2012, and MS COCO datasets. Our model detects objects with high accuracy and 
speed, and moreover, it effectively captures small objects. 

 
Figure 1. Overall architecture of the single-shot multibox detector with the enhanced map block (SSD-EMB). The input of 
the EMB is a feature map produced from convolutional layers. The EMB is applied after the Conv4_3, Conv7, and Conv8_2 
layers. The output of the EMB is used as an input of the next convolutional layer. Please note that this figure presents the 
case in which the detector is the SSD300. If the SSD512 detector is used, an additional EMB is applied after Conv9_2. 
Similar to the original SSD, the 8732 bounding boxes include 5776 (38 × 38 × 4) boxes from Conv4_3, 2166 (19 × 19 × 
6) boxes from Conv7, 600 (10 × 10 × 6) boxes from Conv8_2, 150 (5 × 5 × 6) boxes from Conv9_2, 36 (3 × 3 × 4) 
boxes from Conv10_2, and 4 (1 × 1 × 4) boxes from Conv11_2. 
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The rest of this study is organized as follows: Section 2 is a description of the related 
research. Section 3 describes the proposed approach. Section 4 shows the results of con-
ducted experiments with the datasets and compares them to other models. The conclu-
sions are listed in Section 5. 

2. Related Work 
2.1. Attention Mechanism 

The attention mechanism has recently been actively used in various fields, such as 
machine translation [32], image inpainting [33], image captioning [34], and generative 
models [35]. Attention is a technique that allows an artificial model to focus on semantic 
features rather than the entire features equally. In general, it is called self-attention, and 
its purpose is to effectively learn the meaningful representation of the data to perform 
certain tasks. 

Recently, various studies [36–40] have used the self-attention mechanism to improve 
the classification accuracy. Hu et al. [36] proposed the squeeze-and-excitation (SE) block 
that increased the accuracy of the classification model based on the use of a one-dimen-
sional (1D) channel self-attention map. Wang et al. [37] formulated self-attention as a non-
local operation, covering the entire image region in one operation to model spatial-tem-
poral dependencies in video sequences. Park et al. [38] and Choe et al. [40] proposed the 
bottleneck attention module (BAM) and attention-based dropout layer (ADL) that respec-
tively produced spatial self-attention and importance maps with auxiliary convolutional 
layers. The produced self-attention map is applied to the input feature map to emphasize 
the object region. Similarly, the proposed method generates the importance map for cap-
turing the important region. 

There are several studies that have used the attention mechanism for object detection. 
Gao et al. [41] proposed the instance-centric attention network (iCAN), which generates 
an attention map using the appearances of humans and objects and applied it to the fea-
ture map to obtain attention-based contextual features. Carion et al. [42] proposed a de-
tection transformer, called DETR, that employs an encoder and decoder for object detec-
tion. They used it to remove redundant predictions through the self-attention layers of the 
encoder–decoder structure of the transformer. Ning et al. [43] used an attention mecha-
nism for person re-identification. To identify high value features and eliminate interfer-
ence caused by background information, they designed a multibranch attention network 
to select valuable fine-grained features. 

2.2. Single-shot Multibox Detector (SSD) 
The models that have been extensively used as one-stage detectors include the YOLO 

[14] and SSD [15]. YOLO considers the bounding boxes and class probability in an image 
as a single regression problem. By looking at the image once, it predicts the class and the 
location of the object simultaneously. This model has low accuracy as it is designed to 
perform detection using only the last layer. Since the introduction of the first version of 
YOLO, YOLO:9000 [44], YOLOv3 [45], and YOLOv4 [46] have also been proposed. 
YOLO:9000 introduced an optimal anchor box by clustering bounding boxes to detect ob-
jects. YOLOv3 improved the performance by changing the feature extractor and matching 
of the bounding box with the highest intersection-over-union (IoU) with the ground-truth 
box. YOLOv4 can be used on a single GPU and was designed for implementation in real-
time tasks. The authors utilized various state-of-the-art methods, such as weighted-resid-
ual connection (WRC) and cross-stage-partial connection (CSP), to balance speed and ac-
curacy. 

The SSD uses VGG [6] as the backbone network and some auxiliary convolutional 
layers are added. Based on SSD300 with the input size of 300 × 300, a total of six feature 
maps with the layers of Conv4_3, Conv7, Conv8_2, Conv9_2, Conv10_2, and Conv_11_2 
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are independently employed to predict the object class and coordinates. Finally, it em-
ploys a non-maximum suppression (NMS) method for final detection. In this way, it is 
possible to detect objects at various scales using the feature map of each layer, thereby 
achieving better accuracy compared with the conventional methods. However, this model 
has a problem in detecting small objects because the feature maps of the shallow layers 
do not contain abundant high-level semantic information. 

2.3. SSD-based Object Detectors 
To solve the above problem, several researchers have proposed the following mod-

els. The deconvolutional SSD (DSSD) [16] was proposed, which adds deconvolution op-
erations to the end of SSD to utilize contextual information. Through the deconvolutional 
layer, contextual information can be passed to the shallow layer, which leads to an accu-
racy improvement in small object detection as the size of the feature map increases. How-
ever, the addition of the DSSD’s deconvolutional layers leads to computational complex-
ity and additional parameter overhead. 

Zhai et al. [26] proposed an SSD based on DenseNet and feature fusion (DF-SSD). 
The proposed model changes the backbone network for feature extraction from VGG to 
DenseNet-S-32-1 and uses a front-end-network, including a feature fusion module and a 
residual prediction module for object detection. In this way, DF-SSD uses a more powerful 
backbone and improves the accuracy by replacing the feature maps of Conv4_3, Conv7, 
Conv8_2, and Conv9_2 with Conv4_Fu, Conv7_Fu, Conv8_Fu, and Conv9_Fu. 

The SSD using trident and squeeze and extraction feature fusion (SSD-TSEFFM) [25], 
which adds the trident feature module (TFM) and the squeeze and excitation feature fu-
sion module (SEFFM), detects small objects effectively. TFM applies dilated convolution 
to make the proposed model robust to scale changes based on the consideration of the 
scale diversity. SEFFM is used to provide more semantic information to the model. 
Through these two modules, a new feature map is created with a focus on the important 
features. However, this model has a problem in that the detection speed is slowed down 
owing to an increase in the computational workload because of the use of additional mod-
ules. Unlike these methods, the proposed method not only improves the detection accu-
racy with fewer operations, but it also maintains the detection speed. 

2.4. Other Object Detectors 
Recently, various object detectors, apart from SSD-based detectors, have been stud-

ied. Among them, one-stage object detectors are of interest here. Tan et al. [47] proposed 
EfficientDet, which combines the weighted bidirectional feature network (BiFPN) with 
EfficientNet and compound scaling proposed in their previous work. Thus, they designed 
an efficient model by allowing the network to learn the valuable features of different input 
feature maps. 

Dai et al. [48] proposed a new customized loss function and object detection model 
for power line area recognition and risk object detection in smart power surveillance sys-
tems. A loss function was designed by introducing a self-adaptive weight and a global 
weight as an object size factor to improve the accuracy for small objects, and an object 
detection model with competitive processing speed was proposed using a concise deep 
neural network model. 

Qayyum et al. [49] acquired spatial data for high voltage power poles, urban areas, 
and vegetation near power lines using unmanned aerial vehicles (UAVs) and proposed a 
fuzzy-based classifier to classify small objects in the data. For object classification, they 
produced three decision rules based on the spectrum and color in UAV images. 

2.5. Low-rank Approximation of Feature Map 
Several studies have been conducted to speed up the network by compressing the 

convolutional layers. Denton et al. [27] compressed each convolutional layer by finding a 
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suitable low-rank approximation and then fine-tuned the upper layers until the prediction 
accuracy was restored. They considered some basic tensor decomposition based on sin-
gular value decomposition and the filter clustering method to utilize the similarity be-
tween learned features. Thus, the parameter redundancy of the network was exploited 
with linear compression, resulting in significant speedups of the trained network. 

Jaderberg et al. [28] approximated a combination of a low rank basis of rank-1 filters 
in the spatial domain by exploiting the redundancy of cross-channel or the filter. They 
have drastically speeded up the convolutional layers, regardless of the architecture. 

Ciccone at el. [50] reconstructed the sparse plus low-rank approximation problem for 
cases where only the sample covariance is available and the difference between the sample 
covariance and the actual covariance is not negligible. This has alleviated the problem of 
rapid degradation of results when the covariance matrix must be estimated from the ob-
served data and is affected by certain degrees of uncertainty. 

However, when low-rank approximation methods are applied, reconstruction errors 
due to compression occur, resulting in a loss of accuracy. To achieve a large speed boost, 
it should be applied to the backbone and extra convolutional layers of the original SSD. 
Our goal is to prevent the reduction in speed while improving the accuracy through a 
module, called the EMB, without modifying the backbone of the SSD. Therefore, we em-
ployed a feature map split and skip connection without low-rank approximation to reduce 
the learning parameters and prevent the degradation of detection speed of the original 
SSD. 

 
Figure 2. EMB block diagram. The self-attention map is produced by channel-wise average pool-
ing on the input feature map generated by convolutional layers. Based on the self-attention map, 
we generate the importance map using a sigmoid activation function. The concatenation stream 
splits the feature map in half, performs three convolution operations on one of the half maps, and 
concatenates it with the other half. 

3. Materials and Methods 
In this section, we describe the proposed method in detail and introduce the evalua-

tion datasets, metrics, and implementation details of the proposed model. The overall ar-
chitecture of SSD-EMB and block diagram of EMB are shown in Figures 1 and 2, respec-
tively. Given an image, features are extracted by VGG [6] and are sent to auxiliary convo-
lutional layers. The six feature maps of different resolutions are generated in the layers of 
Conv4_3, Conv7, Conv8_2, Conv9_2, Conv10_2, and Conv11_2. The SSD utilizes these 
features independently to predict the classes and locations of objects. We add an EMB to 
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the Conv4_3, Conv7, and Conv8_2 feature maps of the SSD300 to detect small objects, as 
shown in Figure 1, and one more EMB to the Conv9_2 on the SSD512. Based on this ap-
proach, the feature maps, which applied the EMB, are used to obtain the final detection 
results by NMS. In this way, the feature map of the shallow layer includes the more se-
mantic features, and small objects are accurately captured. The proposed method is con-
structed based on the attention stream and feature map concatenation stream. The former 
compresses the n-dimensional input feature map by channel-wise average pooling to pro-
duce the 1D self-attention map. The latter divides the channels of the input feature map 
in half, and executes the convolutions, and performs concatenation through skip connec-
tion. Feature maps enhanced by EMB are used as inputs to the subsequent convolutional 
layers of the network. By applying our block, we can efficiently detect small objects which 
can improve detection performance. 

3.1. Attention Stream 
In general, the high-resolution feature map of the shallow layer contains low-level 

features, as shown in the top of Conv3_1 of Figure 3. However, the low-resolution feature 
map of the deep layer has high-level semantic features as shown in the top of the Conv5_3 
of Figure 3. The SSD employs three low-resolution feature maps and three high-resolution 
feature maps for object detection. In our model, the attention mechanism is used to focus 
the region of the object of the high-resolution feature maps activated by low-level features. 

 
Figure 3. Original feature map and importance map at each visual geometry group-16 (VGG-16) 
layer. At the shallow layers, the Figure 0. is white. Please note that the self-attention map has a 
similar distribution to the importance map. Thus, we do not show it. 

Specifically, in SSD300, EMB is applied to the feature map 𝑓 ∈ ℝ𝐻×𝑊×𝐶  on the 
Conv4_3, Conv7, Conv8_2 layers, as shown in Figure 1. Note that 𝐶 is the number of 
channels, and 𝐻  and 𝑊  are the height and width, respectively. First, the attention 
stream compresses all the channels of 𝑓 by channel-wise average pooling, which sums 
all the pixels in the channels, and divides them by the number of channels to generate the 
self-attention map 𝑚௔௧௧௡  ∈  ℝு×ௐ×ଵ. By averaging the pixel values of channels of the in-
put feature map, a pixel with a high value is regarded as a high-level semantic feature. 
The produced map activates the object and the region around it. The importance map 𝑚௜௠௣  ∈  ℝு×ௐ×ଵ is then produced by calculating a sigmoid activation function as shown 
in Figure 2. In this way, the pixels in the importance map are normalized to (0, 1), smooth-
ing out the transition of the pixel values of the feature map. Each pixel of the importance 
map close to 1 is regarded as the most discriminative part (foreground), while the pixel 
values close to 0 correspond to the less discriminative part (background). With these op-
erations, the detector focuses on the object region. In brief, the importance map is com-
puted as follows: 𝑚௜௠௣ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑓)). (1)
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This component is inspired by [40]. The attention stream simply averages pixels of 
channels and computes a sigmoid activation function. The importance map increases the 
localization accuracy of the model by a broader activation of the region where the object 
is located. 

3.2. Feature Map Concatenation Stream 
In general, the choice used to obtain more semantic information in the CNN-based 

models is to stack the convolutional layers deeper. Convolutional operation requires a lot 
of computation as the number of weights increases, which leads to the network complex-
ity and to a slower detection speed. To address this problem, we propose to extract se-
mantic features using only half weights of the input feature map, as shown in Figure 2. To 
suppress the number of parameters increased via convolution, we split the input feature 
map in half to reduce the computational features and utilized a skip connection structure 
of ResNet. Therefore, the feature map concatenation stream splits the dimensions of the 
input feature map in half. One of the split feature maps 𝑓భమ ∈ ℝு×ௐ×಴మ  passes through 
three convolutional layers to extract more semantic features. Because the model uses half 
of the weights, the computational amount is reduced compared with the general convo-
lutional operation. During this operation, there is no change in the feature map size. In 
the convolution operation, batch normalization and ReLU activation function are also per-
formed. Finally, the other 𝑓ᇱభమ ∈ ℝு×ௐ×಴మ  is concatenated with the feature map 𝑓భమ that 
has passed through the convolutional layers, as shown in Figure 2. In brief, the concate-
nated feature map 𝑚௖௢௡௖௔௧ ∈ ℝு×ௐ×஼ is computed as follows: 𝑚௖௢௡௖௔௧ = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐶ଶଵ×ଵ(𝐶ଵଷ×ଷ(𝐶଴ଵ×ଵ(𝑓భమ))), 𝑓ᇱభమ), (2)

where 𝐶 denotes a convolutional operation, 𝑐𝑜𝑛𝑐𝑎𝑡 denotes a concatenation operation, 𝑓భమ, 𝑓ᇱభమ are the split feature maps, respectively, and the superscripts denote the convolu-
tional filter sizes. Generating a feature map in this stream is possible using half of the 
original convolution operation. We experimentally verified that splitting the input feature 
map in half is the most efficient approach, considering the trade-off between accuracy and 
speed. In this way, the model can efficiently detect small objects with preventing degra-
dation in the detection speed. 

3.3. Combination of Two Maps 
After acquiring the importance map 𝑚௜௠௣ and feature map concatenation 𝑚௖௢௡௖௔௧, 

we combine them to produce the final enhanced feature map 𝑓ᇱ ∈ ℝு×ௐ×஼ . The im-
portance map 𝑚௜௠௣ acts as an object-aware mask and is element-wise multiplied by the 
concatenated feature map 𝑚௖௢௡௖௔௧ to generate an object-aware feature map. The final en-
hanced map 𝑓ᇱ is created by adding the object-aware feature map and the original input 
feature map according to Equation (3). Note that the enhanced feature map 𝑓ᇱ is used as 
an input of the next convolutional layer to share higher-level features compared with the 
existing model: 𝑓ᇱ = 𝑓 + (𝑚௖௢௡௖௔௧⨂𝑚௜௠௣) (3)

In this way, the SSD-EMB efficiently and effectively captures small objects. The EMB 
improves the detection accuracy and averts the detection speed of the model with simple 
extra computations. In addition, the proposed method can be plugged independently into 
each of the convolutional feature maps of the shallow layers. 
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3.4. Datasets and Evaluation Metrics 
Two challenging and extensively used benchmark datasets in object detection, i.e., 

PASCAL VOC 2007 and 2012, are chosen to evaluate the proposed model. The PASCAL 
VOC datasets include 20 object categories. The PASCAL VOC 2007 and 2012 consist of 
9,963 and 22,531 images, respectively. For PASCAL VOC 2007, we used the VOC 2007 and 
2012 trainval split (5,011 images for 2007 and 11,540 images for 2012) to train our network 
and employed the test split (4,952 images) for testing. To evaluate our model in VOC 2012, 
the model was trained with a total of 21,503 images of VOC 2007 trainval + test (9,963 
images) and VOC 2012 trainval (11,540 images). The proposed model was tested with the 
VOC 2012 test set (10,991 images). 

We adopted the mean average precision (mAP) as the standard metric for object de-
tection to evaluate our model in the test set. The metrics were obtained in accordance with 
the PASCAL VOC criterion in which the bounding box of a positive detection had an IoU 
>0.5 with the ground truth annotation. 

Finally, our model was tested on the MS COCO dataset. MS COCO consists of a total 
of 80 object categories and includes 118k train images, 5k validation images, and 20k test 
images (test-dev). We used the train set for training and evaluated the detection results 
on test-dev 2015. Compared with PASCAL VOC, the MS COCO dataset contains more 
objects (small or general) in a single image. Therefore, COCO detection is a more difficult 
task. 

3.5. Implementation Details 
We adopted the SSD as our baseline detector. To evaluate the effectiveness in the 

same environment as the original SSD, our model also used the pre-trained VGG [6] as a 
backbone. In this study, most training strategies, including data augmentation and opti-
mization, follow the ones in [15]. We plugged the EMB behind the convolutional layers. 
Our model was trained with 120,000 iterations for PASCAL VOC 2007. The batch size was 
set to 32 for SSD300 and SSD512 for PASCAL VOC 2007 and VOC 2012 based on consid-
eration of our GPU specifications. The learning rate was 10ିଷ in the first 80,000 iterations, 10ିସ in the next 20,000 iterations, and 10ିହ in the remaining iterations in VOC 2007. In 
the VOC 2012 dataset, the number of training iterations increased to 150,000 because the 
amount of training images increased. The learning rate was 10ିଷ in the first 60,000 itera-
tions, 10ିସ in the next 60,000 iterations, and 10ିହ in the remaining iterations. In the MS 
COCO dataset, the number of training iterations increased to 300,000 and the learning rate 
was 10ିଷ in the first 160,000 iterations, 10ିସ in the next 40,000 iterations, 10ିହ in the 
next 40,000 iterations, and 10ି଺ in the remaining iterations. 

The entire network was optimized using stochastic gradient descent (SGD) with a 
momentum of 0.9 and a weight decay of 0.0005. In the training process, the proposed EMB 
was applied to the output of the three convolutional layers to capture small objects well, 
and other methods, such as data augmentation, were applied in the same manner as the 
original SSD. Other than those, there is no special treatment for small object detection 
alone. The loss function is a weighted sum of the localization loss (loc) and the confidence 
loss (conf). In object detection, the neural network must perform two tasks. We organize 
the two losses into a weighted sum so that one loss function does not wield too much 
influence. This means that if the localization loss is too large, the learning will be focused 
on localizing the object and the classification task will be vulnerable. We adjust this situ-
ation by defining the loss function as the form of a weighted sum. The weight term 𝛼 is 
set to 1 by cross-validation. As in the other object detection literatures [15,26], the locali-
zation loss calculates the error between the predicted bounding box by our model and the 
ground-truth bounding box to determine how much the two boxes match, and the confi-
dence loss calculates the error between the predicted object class and the ground-truth 
object class to determine how well our model classifies the object class. The equations 
below also adhere to the formulation described in [15]: 
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𝐿(𝑥, 𝑐, 𝑙, 𝑔) =  ଵ୒ (𝐿௖௢௡௙(𝑥, 𝑐) + 𝛼𝐿௟௢௖(𝑥, 𝑙, 𝑔)), (4)

where 𝑁 is the number of positives of the default boxes, that is, it is the default box that 
can be matched with a ground-truth box. If objects are accurately predicted, it is treated 
as positives and the rest as negatives. Default boxes refer to boxes extracted from multiple 
feature layers of different scales. If 𝑁 = 0, we set the loss to 0. The localization loss was 
Smooth L1 loss between the predicted box (𝑙) and the ground-truth box (𝑔) parameters; 
thus, it is a curve when |𝑥| < 1. Therefore, if the error is small enough, it is judged to be 
almost correct and the loss decreases quickly. Similar to Faster R-CNN, we regressed to 
offsets for the center (𝑐𝑥, 𝑐𝑦) of the default bounding box (𝑑) and for its width (𝑤) and 
height (ℎ): 

𝐿௟௢௖(𝑥, 𝑙, 𝑔) = ෍ ෍ 𝑥௜௝௞ 𝑠𝑚𝑜𝑜𝑡ℎ୐ଵ(𝑙௜௠ − 𝑔ො௝௠)௠∈ሼ௖௫,௖௬,௪,௛ሽ
ே

௜∈௉௢௦  (5)

𝑔ො௝௖௫ = ൫𝑔௝௖௫ − 𝑑௜௖௫൯/𝑑௜௪       𝑔ො௝௖௬ = ൫𝑔௝௖௬ − 𝑑௜௖௬൯/𝑑௜௛ (6)

𝑔ො௝௪ = 𝑙𝑜𝑔 ൬௚ೕೢௗ೔ೢ ൰    𝑔ො௝௛ = 𝑙𝑜𝑔 ൬௚ೕ೓ௗ೔೓൰, (7) 

where 𝑠𝑚𝑜𝑜𝑡ℎ୐ଵ(𝑥) = ൜ 0.5(𝑥)ଶ            |𝑥| < 1|𝑥| − 0.5        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (8)

The confidence loss is the softmax loss over multiple classes confidences (𝑐) given by: 

𝐿௖௢௡௙(𝑥, 𝑐) = − ෍ 𝑥௜௝௣ 𝑙𝑜𝑔൫𝑐̂௜௣൯ − ෍ 𝑙𝑜𝑔௜∈ே௘௚ (𝑐̂௜଴)ே
௜∈௉௢௦ , (9) 

where 𝑐̂௜௣ = exp൫𝑐௜௣൯ ∑ exp൫𝑐௜௣൯௣ൗ . (10) 

In SSD300, EMB was added after the Conv4_3, Conv7, Conv8_2 layers. In SSD512, 
EMB was added after the Conv4_3, Conv7, Conv8_2, Conv9_2 layers. Our model was im-
plemented using the PyTorch deep learning framework [51] and executed on an Intel 
Xeon E5-2620V, Nvidia RTX 2080Ti GPU (Santa Clara, CA, USA). The source code is 
available at https://github.com/HTCho1/SSD-EMB.Pytorch/ (accessed on 14 April 2021 ) 

4. Results and Discussion 
4.1. Results on PASCAL VOC 2007 test set 

The results of our method on PASCAL VOC 2007 are presented in Table 1. The input 
sizes of the proposed model are 300 × 300 and 512 × 512, respectively. In the model 
with an input size of 300 × 300, the SSD-EMB achieved a mAP of 78.4%, which is 1.2% 
points higher than the original SSD300. The models with the higher mAP were DSSD321 
and SSD300-TSEFFM, but the detection speed dropped owing to the operation of addi-
tional modules as presented in Table 2. In the case of the model with the input size raised 
to 512 × 512, our model improved by 0.9% point compared with the SSD512. The overall 
of our model is 1.6% and 1.4% less than RefineDet [52] at input sizes 300 and 500, respec-
tively. It is because the original SSD’s inherent structure is inferior to that of these models. 
Although the overall mAP of SSD-EMB is lower than that of RefineDet, SSD-EMB300 
achieves a better accuracy on the following object classes: “bus,” “diningtable,” and “sofa”, 
and SSD-EMB512 is superior on “boat,” “chair,” “diningtable,” and “dog”. The subse-
quent version RefineDet++ [53] is better than RefineDet. However, the detailed mAP of 
each object was not mentioned in the paper; thus, it is excluded from Table 1. 
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Table 1. Average precision (in %) for our method and others on PASCAL VOC 2007 test set. Values in bold refer to the 
highest average precision for each class (SSD300: single-shot multibox detector, DSSD321: deconvolutional SSD, TSEFFM: 
trident and squeeze and extraction feature fusion, EMB: enhanced feature map block). 

Model mAP Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person Plant Sheep Sofa Train TV 

SSD300 77.2 83.4 85.2 75.0 71.2 50.8 85.1 86.1 87.0 61.4 80.9 76.5 84.1 87.1 83.6 78.3 47.8 73.5 77.1 83.2 76.1 

DSSD321 78.6 81.9 84.9 80.5 68.4 53.9 85.6 86.2 88.9 61.1 83.5 78.7 86.7 88.7 86.7 79.7 51.7 78.0 80.9 87.2 79.4 

SSD300-TSEFFM 78.6 81.6 94.6 79.1 72.1 50.2 86.4 86.9 89.1 60.3 85.6 75.7 85.6 88.3 84.1 79.6 54.6 82.1 80.2 87.1 79.0 

RefineDet320 80.0 83.9 85.4 81.4 75.5 60.2 86.4 88.1 89.1 62.7 83.9 77.0 85.4 87.1 86.7 82.6 55.3 82.7 78.5 88.1 79.4 

SSD300-EMB 78.4 83.6 85.5 75.9 71.9 54.2 87.4 86.8 87.2 62.8 82.8 78.8 85.4 86.4 85.8 80.2 51.5 76.9 81.9 85.7 77.3 

SSD512 79.5 84.8 85.1 81.5 73.0 57.8 87.8 88.3 87.4 63.5 85.4 73.2 86.2 86.7 83.9 82.5 55.6 81.7 79.0 86.6 80.0 

DSSD513 81.5 86.6 86.2 82.6 74.9 62.5 89.0 88.7 88.8 65.2 87.0 78.7 88.2 89.0 87.5 83.7 51.1 86.3 81.6 85.7 83.7 

SSD512-TSEFFM 80.4 84.9 86.7 80.6 76.2 59.4 87.8 88.9 89.2 61.7 86.9 78.3 86.2 88.8 85.6 82.7 55.4 82.7 79.4 84.7 81.3 

RefineDet512 81.8 88.7 87.0 83.2 76.5 68.0 88.5 88.7 89.2 66.5 87.9 75.0 86.8 89.2 87.8 84.7 56.2 83.2 78.7 88.1 82.3 

SSD512-EMB 80.4 85.9 86.2 81.3 76.8 59.6 87.1 88.4 88.2 67.5 85.3 76.8 87.1 89.3 84.9 83.0 54.2 81.6 78.7 87.8 78.3 

The proposed model achieved an accuracy of > 80% in classes such as “bus,” “car,” 
“cat,” and “dog.” Conversely, it yielded accuracies less than 60% for objects such as “bot-
tle,” and “plant.” We can see that our method is higher than the original SSD300 in most 
object classes and exceeds by 1.2% on the overall mAP. Our model improved the accuracy 
by more than 2% on rigid objects (e.g., 50.8% vs. 54.2% mAP for “bottle,” 85.1% vs. 87.4% 
mAP for “bus,” 83.2% vs. 85.7% mAP for “train,” etc.), and on some nonrigid objects (e.g., 
80.9% vs. 82.8% mAP for “cow” and 73.5% vs. 76.9% mAP for “sheep”). This is the result 
obtained by creating the object-aware mask in EMB to capture more accurate object re-
gions and improve the detection accuracy, as shown in Figure 3. SSD300-EMB improves 
the accuracy of small objects because EMB focuses on the object regions and yields more 
semantic features. However, it is difficult for the detector to predict the object when part 
of an object is occluded. If only part of the object is visible in the image, the detector has a 
low accuracy. 

Table 2. Detection results on the PASCAL visual object classes (VOC) 2007 test set (GPU: graphics processing unit, mAP: 
mean average precision, FPS: frames per second). 

Model Data Backbone Network Input Size GPU Framework #Parameters mAP FPS 
SSD300* 07 + 12 VGG 300 × 300 2080Ti PyTorch 26.3M 77.2 30 
SSD300*1 07 + 12 VGG 300 × 300 Titan X Caffe 26.3M 77.2 46 
DSSD321 07 + 12 ResNet-101 321 × 321 Titan X Caffe -2 78.6 9.5 

SSD300-TSEFFM 07 + 12 VGG 300 × 300 2080Ti PyTorch - 78.6 7 
DF-SSD300 07 + 12 DenseNet-S-32-1 300 × 300 Titan X Caffe 15.2M 78.9 11.6 

RefineDet320 07 + 12 VGG 320 × 320 Titan X Caffe - 80.0 40.3 
RefineDet320++ 07 + 12 VGG 320 × 320 Titan X PyTorch - 81.1 27.8 

SSD300-EMB 07 + 12 VGG 300 × 300 2080Ti PyTorch 30.6M 78.4 30 
1 SSD300 was tested with the PyTorch deep learning framework and RTX 2080Ti GPU, while SSD300* was tested with the 
Caffe deep learning framework and Titan X GPU. 2 All data not mentioned in their papers are marked with ‘- ‘. 

Unlike other methods based on the SSD, SSD300-EMB has improved detection accu-
racy and preserved the FPS of the original SSD300. As listed in Table 2, the SSD300 
achieved an mAP of 77.2% and 30 frames per second (FPS), and SSD300-EMB surpassed 
an mAP of 1.2% and maintained a rate of 30 FPS. SSD300*, achieved an mAP of 77.2% and 
46 FPS, and the DF-SSD300 improved the accuracy by 1.4% and reduced the speed by 
more than four times. The SSD-based methods, such as DF-SSD300, SSD300-TSEFFM, 
DSSD321 improve the detection accuracies but the detection speeds are significantly 
slower than their baseline. However, we emphasize that the SSD300-EMB yields a similar 
improvement in detection accuracy to the SSD300-TSEFFM [25], DSSD321 [16] and DF-
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SSD300, but detection speed remains the same as SSD300. Therefore, the SSD-EMB can be 
used in real-time detection. 

The detection accuracy and speed distribution of different object detection algo-
rithms on the VOC 2007 test set are shown in Figure 4. It can be observed that the SSD300-
EMB yields a similar detection accuracy but a significantly faster speed than other SSD-
based models. Compared with SSD300, the detection accuracy is improved while the 
speed does not decrease. In addition, some examples of the predicted bounding boxes 
generated by the SSD300 and SSD300-EMB are presented in Figure 5. 

 
Figure 4. Distribution of speed and accuracy with object detection algorithms. 

4.2. Results on PASCAL VOC 2012 test set 
We conducted experiments on the PASCAL VOC 2012 dataset. The results are pre-

sented in Table 3. The proposed model was also tested using input images with sizes of 300 × 300 and 512 × 512. For the input size of 300 × 300, SSD300-EMB achieved an 
mAP of 77.0%, which is 1.2% points higher than the original SSD300. The accuracy of 
SSD300-EMB is 0.7% higher than DSSD321 and 0.5% higher than DF-SSD300. In the case 
of the model with an input size increased to 512 × 512, the SSD512-EMB was 79.9%, 
which was 1.4% points higher than the SSD512. 

The SSD300-EMB and SSD512-EMB achieved accuracies of >80% in 11 and 12 classes, 
respectively. The SSD300-EMB showed improved accuracy in all classes except the “dog” 
class compared with the original SSD300. The “bicycle,” “bottle,” “table,” and “sofa” clas-
ses improved by more than 2% (e.g., 82.9% vs. 85.4% mAP, 47.6% vs. 50.3% mAP, 64.1% 
vs. 66.2% mAP, 73.6% vs. 75.6% mAP, respectively). For the input size of 512 × 512, the 
SSD512-EMB also achieved a higher mAP in most classes compared with the original 
SSD512. We designed the EMB to efficiently detect small objects. This led to an improved 
detection accuracy and preserved speed response compared with the original SSD. As 
shown in Table 3, the model with the highest accuracy is RefineDet. However, our model 
achieved better results for some rigid object classes such as “bicycle,” “bus,” “chair,” “din-
ingtable,” “motorbike,” and “sofa” (e.g., 86.8% vs 88.5% mAP, 84.9% vs 86.2% mAP, 62.0% 
vs 62.7% mAP, 64.9% vs 67.1% mAP, 87.2% vs 89.5% mAP, and 72.5% vs 73.0% mAP re-
spectively) and some non-rigid object classes such as “cat,” “dog,” and “horse” (e.g., 92.2% 
vs 93.1% mAP, 90.6% vs 91.3% mAP, and 88.3% vs 88.9% mAP, respectively). 
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Table 3. Average precision (in %) for our method and others on the PASCAL VOC 2012 test set. Bold indicates the highest 
average precision for each class. 

Model mAP Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person Plant Sheep Sofa Train TV 
SSD300 75.8 88.1 82.9 74.4 61.9 47.6 82.7 78.8 91.5 58.1 80.0 64.1 89.4 85.7 85.5 82.6 50.2 79.8 73.6 86.6 72.1 

DSSD321 76.3 87.3 83.3 75.4 64.6 46.8 82.7 76.5 92.9 59.5 78.3 64.3 91.5 86.6 86.6 82.1 53.3 79.6 75.7 85.2 73.9 

DF-SSD300 76.5 89.5 85.6 72.6 65.8 51.3 82.9 79.9 92.2 62.4 77.5 64.5 89.5 85.4 86.4 85.7 51.9 77.8 72.6 85.1 71.6 

SSD300-TSEFFM 77.1 88.6 85.9 76.0 65.4 46.2 84.0 79.9 92.7 58.6 81.9 65.3 91.5 87.8 88.8 82.9 52.6 79.1 75.4 87.1 73.8 

RefineDet320 78.1 90.4 84.1 79.8 66.8 56.1 83.1 82.7 90.7 61.7 82.4 63.8 89.4 86.9 85.9 85.7 53.3 84.3 73.1 87.4 73.9 

SSD300-EMB 77.0 88.8 85.4 75.4 63.6 50.3 83.5 79.4 92.1 59.5 81.4 66.2 88.9 86.6 86.3 83.3 51.5 80.5 75.6 88.1 73.3 

SSD512 78.5 90.0 85.3 77.7 64.3 58.5 85.1 84.3 92.6 61.3 83.4 65.1 89.9 88.5 88.2 85.5 54.4 82.4 70.7 87.1 75.6 

DSSD513 80.0 92.1 86.6 80.3 68.7 58.2 84.3 85.0 94.6 63.3 85.9 65.6 93.0 88.5 87.8 86.4 57.4 85.2 73.4 87.8 76.8 

SSD512-TSEFFM 80.2 90.1 88.2 81.5 68.4 59.1 85.6 85.5 93.7 63.0 86.1 64.0 90.9 88.6 89.1 86.4 59.2 85.9 73.3 87.8 75.9 

RefineDet512 80.1 90.2 86.8 81.8 68.0 65.6 84.9 85.0 92.2 62.0 84.4 64.9 90.6 88.3 87.2 87.8 58.0 86.3 72.5 88.7 76.6 

SSD512-EMB 79.9 90.2 88.5 78.4 67.7 59.5 86.2 84.7 93.1 62.7 84.5 67.1 91.3 88.9 89.5 86.1 58.1 84.3 73.0 87.8 76.3 

4.3. Results on Microsoft Common Objects in Context (MS COCO) 
Finally, the proposed model was evaluated on the MS COCO dataset. Since a large 

number of COCO objects tend to be smaller than PASCAL VOC, we set smaller prior 
boxes for all layers. The test results of SSD-EMB on test-dev 2015 are presented in Table 4. 
Our model, which improved the original SSD, achieved 26.6 / 45.2%. We note that our 
[0.5:0.95] result is 1.5% points higher than SSD300 (26.6% vs 25.1%) and small object de-
tection result is 0.7% point higher than SSD300 (7.3% vs 6.6%). 

However, the proposed model achieved lower accuracy than DSSD321 and DF-
SSD300 (1.4% and 2.9% on [0.5:0.95] result, respectively). The reason why our model’s 
accuracy improvement is lower than both models is as follows. Because MS COCO images 
are more similar to the actual environment than PASCAL VOC (many small objects and 
general objects in a single image), it is difficult for the network to capture important re-
gions. In this reason, the classification accuracy of the backbone network affects the per-
formance improvement range. We used VGG, which achieved a lower classification accu-
racy than ResNet-101 and DenseNet-S-32-1, as the backbone; thus, the performance im-
provement is insufficient compared to other SSD-based models. Unlike the VOC dataset, 
RefineDet and RefineDet++ achieved high accuracies by changing the backbone from VGG 
to ResNet-101. However, we experimentally demonstrated that our model achieved faster 
detection speed as shown in Table 2. 

Comparing DETR and EfficientDet with the SSD-based models including our model, 
the results are fairly unsatisfactory. DETR scales the input image such that the shortest 
side is at least 480 and at most 800 pixels, the longest side at most 1333 pixels, and  
EfficientDet scales to 1536 × 1536. Owing to the limitation of SSD’s inherent architecture, 
it is inferior to the state-of-the-art models. In particular, EfficientDet considerably im-
proved the performance by utilizing an effective backbone called EfficientNet. 
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Table 4. Average precision (in %) for our method and others on MS COCO test-dev 2015. Bold indicates the highest value 
for each column. Avg. Precision, IoU corresponds to the average APs for IoU (0.5~0.95, 0.5, 0.75). AP@[0.5:0.95] is per-
formed with a step size of 0.05. Avg. Precision, Area means the average APs for the object area size (S, M, L). Avg. Recall, 
#Dets means the average ARs for the number of detections (1, 10, 100). Avg. Recall, Area indicates the average ARs for the 
object area size (S, M, L). 

Model Data Network 
Avg. Precision, 

IoU: 
Avg. Precision, 

Area: Avg. Recall, #Dets: Avg. Recall, Area: 

0.5:0.95 0.5 0.75 S M L 1 10 100 S M L 
SSD300 trainval35k VGG 25.1 43.1 25.8 6.6 25.9 41.4 23.7 35.1 37.2 11.2 40.4 58.4 

DSSD321 trainval35k ResNet-101 28.0 46.1 29.2 7.4 28.1 47.6 25.5 37.1 39.4 12.7 42.0 62.6 
DF-SSD300 trainval DenseNet-S-32-1 29.5 50.7 31.3 9.8 31.1 46.5 27.1 41.5 42.7 17.3 46.8 64.4 

RefineDet320 trainval35k ResNet-101 32.0 51.4 34.2 10.5 34.7 50.4 28.0 44.0 47.6 20.2 53.0 69.8 
RefineDet320++ trainval35k ResNet-101 33.2 53.4 35.1 13.1 35.5 51.0 28.3 44.5 47.8 20.9 53.1 70.1 

DETR trainval ResNet-101 44.9 64.7 47.7 23.7 49.5 62.3 -1 - - - - - 
EfficientDet train EfficientNet 55.1 74.3 59.9 - - - - - - - - - 

SSD300-EMB train VGG 26.6 45.2 27.8 7.3 29.3 43.5 25.4 36.4 38.6 12.0 41.7 60.3 
1 All data not mentioned in their papers are marked with ‘- ‘. 
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Figure 5. Examples of predicted bounding boxes generated by the baseline model and our pro-
posed model tested on the PASCAL visual object classes (VOC) dataset. Left column images (a, c, 
e, g, i, k, m, o) show the results of SSD (i.e., choosing the highest score proposal as the pseudo-
ground truth). Right column images (b, d, f, h, j, l, n, p) show some bounding boxes produced by 
our method (i.e., applying EMBs). Applying EMB to SSD to detect objects yields better outcomes 
than the original SSD in almost all cases. However, as shown in (n), objects with similar colors and 
appearances are sometimes incorrectly predicted. 
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4.4. Ablation Studies 
We conducted ablation experiments to compare the effectiveness on the number of 

EMBs applied to the SSD and effectiveness on each stream. In the experiments, the detec-
tion accuracy of the model was compared according to the number of EMBs and the use 
of two streams using the PASCAL VOC 2007 test set. EMB was added after each of the 
Conv4_3, Conv7, and Conv8_2 layers. The experimental results are presented in Table 5 
and Figure 6. 

Table 5. Influences of EMB when applied on the PASCAL VOC 2007 test set. 

Model Conv4_3 Conv7 Conv8_2 Attention stream Concatenation stream mAP 
SSD300      77.2 

SSD300-EMB_1        77.8 
SSD300-EMB_2        77.9 
SSD300-EMB_3        78.1 
SSD300-EMB_4        77.8 

SSD300-Attn       77.7 
SSD300-Concat       77.9 
SSD300-EMB_5        78.4 

Based on Table 5 and Figure 6, the model (SSD300-EMB_5) that added three EMBs 
and employed both the attention and concatenation streams achieved the highest mAP. 
We applied EMB only on the feature maps of the shallow layers that contained low-level 
semantic features. In this way, the highest improvement of 1.2% was achieved. In addition, 
the performance achieved when the attention and feature map concatenation streams 
were removed one-by-one from SSD300-EMB_5 was compared. The SSD300-Attn with the 
use of the attention stream only achieved a mAP of 77.7%; the SSD300-Concat which ap-
plied only the concatenation stream achieved 77.9% mAP. In other words, when only one 
stream was used, the performance was decreased. The highest performance was achieved 
when the two streams were used together. Therefore, the SSD300-EMB_5 was selected as 
the best model based on the comparison of the detection accuracy. 

 
Figure 6. Average precision (in %) of each class for different EMBs on the PASCAL VOC 2007 test 
set. For SSD-EMB_1, EMB was applied to Conv4_3. For SSD-EMB_2, EMB was applied to Conv4_3 
and Conv7. For SSD-EMB_3, EMB was applied to Conv7. For SSD-EMB_4, EMB was applied to 
Conv8_2. For SSD-EMB_5, EMB was applied to Conv4_3, Conv7, and Conv8_2. 
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In addition, we conducted an ablation experiment to compare the selection rule for 
the feature map split. In the feature map concatenation stream, we split the input feature 
map into 1/4, 2/4, 3/4, and 4/4, respectively (4/4 means that the feature map was not split), 
and applied three convolutions to it. The accuracy of each model was evaluated using 
PASCAL VOC 2007 test set. As in the above experiment, EMB was applied to Conv4_3, 
Conv7, and Conv8_2 layers. We presented the experimental results in Table 6. 

Table 6. Influences of feature map split on the PASCAL VOC 2007 test set. 

Model 1/4 2/4 3/4 4/4 FPS mAP 
SSD300-EMB_1/4     30.7 77.9 
SSD300-EMB_2/4     30.4 78.4 
SSD300-EMB_3/4     30.2 78.1 
SSD300-EMB_4/4     30.0 78.3 

The highest accuracy was achieved when the input feature map was split in half. 
Since the difference in decimal point of FPS was meaningless, we determined the selection 
rule that splits the input feature map in half, considering only the mAP. All EMBs applied 
to the model contain an attention stream and a feature map concatenation stream. 

5. Conclusions and Future Work 
The proposed EMB method used two streams, namely, attention and feature map 

concatenation streams. In the attention stream, we produced the 1D importance map by 
compressing the input feature map. In this way, the model focuses on the region wherein 
the small objects (or the whole objects) could exist without additional learning, and the 
localization accuracy was improved. In the feature map concatenation stream, one of the 
input feature maps (cut in half) was passed through three convolutional layers and was 
concatenated with the other. Based on this stream, the classification accuracy was im-
proved. The EMB lets the high-resolution feature map of the shallow layer focus on the 
object regions while the accuracy of detecting small objects increases. The high accuracy 
of small object detection is expected to be used for satellite photo and traffic analysis. To 
evaluate the performance of the proposed method, the SSD-EMB was compared with the 
SSD [15], some SSD-based models, and state-of-the-art models. In the PASCAL VOC 2007 
and 2012 benchmark datasets, the SSD-EMB enhanced the feature map of the shallow 
layer to improve the small object accuracy and overall accuracy. Additionally, it can be 
used in real-time detection. We further conducted an experiment on MS COCO. Through 
this experiment, we found that the performance of the model’s backbone considerably 
affects the overall accuracy. 

In EMB, the attention stream simply focuses on the object region. In this way, locali-
zation accuracy is improved, but there is no significant effect on the classification accu-
racy. In this study, EMB was applied only to the SSD, but in the future work, we plan to 
evaluate the performance by applying the EMB to other state-of-the-art networks and will 
conduct research to further improve small object detection by creating a new attention 
mechanism and low-rank approximation that improve the classification accuracy. In our 
model, we utilized the fully annotated images to train the model. A fully annotated image 
has the class label and coordinates of the objects. However, it is a very difficult and chal-
lenging task to obtain or create these images in real life. Therefore, weakly supervised 
object detection, which trains model with weakly annotated images easily obtained on the 
web, is the focus of our future work. 

Author Contributions: The work presented here was completed with the collaborations of all au-
thors. Conceptualization, H.-T.C.; methodology, H.-T.C.; software, H.-T.C.; validation, H.-T.C., H.-
J.L., H.K., S.Y. and H.-H.P.; formal analysis, H.-T.C.; investigation, H.-T.C., H.-J.L., H.K., S.Y. and 
H.-H.P.; resources, H.-T.C. and H.-H.P.; data curation, H.-T.C.; writing—original draft preparation, 



Sensors 2021, 21, 2842 19 of 21 
 

 

H.-T.C.; writing—review and editing, H.-J.L., H.K., S.Y. and H.-H.P.; visualization, H.-T.C.; super-
vision, H.K., S.Y. and H.-H.P.; project administration, H.K., S.Y. and H.-H.P.; funding acquisition, 
H.K., S.Y. and H.-H.P. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was supported by the Chung-Ang University Research Scholarship Grants 
in 2019, and the Competency Development Program for Industry Specialists of the Korean Ministry 
of Trade, Industry and Energy (MOTIE), operated by the Korean Institute for Advancement of Tech-
nology (KIAT) (Project number: P0002397, Project name: HRD Program for Industrial Convergence 
of Wearable Smart Devices). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can 
be found here: https://github.com/HTCho1/SSD-EMB.Pytorch/. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Feng, D.; Haase-Schütz, C.; Rosenbaum, L.; Hertlein, H.; Gläser, C.; Timm, F.; Wiesbeck, W.; Dietmayer, K. Deep Multi-Modal 

Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges. IEEE Trans. Intell. 
Transp. Syst. 2020, 22, 1341–1360. 

2. Zhang, C.; Xu, X.; Tu, D. Face Detection Using Improved Faster RCNN. arXiv 2018, arXiv:1802.02142. 
3. Li, Z.; Dong, M.; Wen, S.; Hu, X.; Zhou, P.; Zeng, Z. CLU-CNNs: Object detection for medical images. Neurocomputing 2019, 350, 

53–59. 
4. Hashib, H.; Leon, M.; Salaque, A.M. Object Detection Based Security System Using Machine learning algorthim and Raspberry 

Pi. In Proceedings of the 2019 International Conference on Computer, Communication, Chemical, Materials and Electronic En-
gineering (IC4ME2), Rajshahi, Bangladesh, 11–12 July 2019. 

5. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 
2017, 60, 84–90. 

6. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, 
arXiv:1409.1556. 

7. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with 
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 
June 2015; pp. 1–9. 

8. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. 

9. Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of 
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. 

10. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects 
in Context. In Proceedings of the Computer Vision—ECCV 2014, Zurich, Switzerland, 6–12 September 2014; Springer Interna-
tional Publishing: Berlin/Heidelberg, Germany, 2014; pp. 740–755. 

11. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. 
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; 
pp. 580–587. 

12. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 Decem-
ber 2015; pp. 1440–1448. 

13. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE 
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. 

14. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. 

15. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings 
of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Springer International Publishing: 
Berlin/Heidelberg, Germany, 2016; pp. 21–37. 

16. Fu, C.-Y.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. DSSD: Deconvolutional Single Shot Detector. arXiv 2017, arXiv:1701.06659. 
17. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1701.06659. 
18. Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. 

Res. 2011, 12, 2121−2159. 
19. Zeiler, M.D. ADADELTA: An Adaptive Learning Rate Method. arXiv 2012, arXiv:1212.5701. 
20. Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. 



Sensors 2021, 21, 2842 20 of 21 
 

 

21. Singh, B.; Davis, L.S. An analysis of scale invariance in object detection snip. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3578–3587. 

22. Singh, B.; Najibi, M.; Davis, L.S. SNIPER: Efficient Multi-Scale Training. In Proceedings of the Advances in Neural Information 
Processing Systems, Montreal, Canada; Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.; 
Curran Associates, Inc.: Red Hook, NY, USA, 2018; Volume 31, pp. 9310–9320. 

23. Zhang, J.; Sun, J.; Wang, J.; Yue, X.-G. Visual object tracking based on residual network and cascaded correlation filters. J. Am-
bient Intell. Humaniz. Comput. 2020, https://doi.org/10.1007/s12652-020-02572-0. 

24. Yang, Z.; Liu, G.; Xie, X.; Cai, Q. Efficient dynamic domain adaptation on deep CNN. Multimed. Tools Appl. 2020, 79, 33853–
33873. 

25. Hwang, Y.-J.; Lee, J.-G.; Moon, U.-C.; Park, H.-H. SSD-TSEFFM: New SSD Using Trident Feature and Squeeze and Extraction 
Feature Fusion. Sensors 2020, 20, 3630, doi:10.3390/s20133630. 

26. Zhai, S.; Shang, D.; Wang, S.; Dong, S. DF-SSD: An Improved SSD Object Detection Algorithm Based on DenseNet and Feature 
Fusion. IEEE Access 2020, 8, 24344–24357. 

27. Denton, E.; Zaremba, W.; Bruna, J.; LeCun, Y.; Fergus, R. Exploiting linear structure within convolutional networks for efficient 
evaluation. arXiv 2014, arXiv:1404.0736. 

28. Jaderberg, M.; Vedaldi, A.; Zisserman, A. Speeding up convolutional neural networks with low rank expansions. In Proceedings 
of the British Machine Vision Conference, Nottingham, UK, 1–5 September 2014; British Machine Vision Association: 2014. 

29. Cao, J.; Song, C.; Song, S.; Peng, S.; Wang, D.; Shao, Y.; Xiao, F. Front vehicle detection algorithm for smart car based on im-
proved SSD model. Sensors 2020, 20, 4646. 

30. Ding, F.; Zhuang, Z.; Liu, Y.; Jiang, D.; Yan, X.; Wang, Z. Detecting defects on solid wood panels based on an improved SSD 
algorithm. Sensors 2020, 20, 5315, doi:10.3390/s20185315. 

31. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. 
J. Comput. Vis. 2010, 88, 303–338. 

32. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.U.; Polosukhin, I. Attention is All you 
Need. In Proceedings of the Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., 
Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: 2017; Volume 30, pp. 5998–6008. 

33. Yu, J.; Lin, Z.; Yang, J.; Shen, X.; Lu, X.; Huang, T.S. Generative image inpainting with contextual attention. In Proceedings of 
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5505–5514. 

34. Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; Bengio, Y. Show, Attend and Tell: Neural Image 
Caption Generation with Visual Attention. In Proceedings of the International Conference on Machine Learning, Lille, France, 
6–11 July 2015; pp. 2048–2057. 

35. Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-Attention Generative Adversarial Networks. In Proceedings of the 36th 
International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; Chaudhuri, K., Salakhutdinov, R., Eds.; 
PMLR: Long Beach, CA, USA, 2019; Volume 97, pp. 7354–7363. 

36. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. 

37. Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7794–7803. 

38. Park, J.; Woo, S.; Lee, J.-Y.; Kweon, I.S. BAM: Bottleneck Attention Module. arXiv 2018, arXiv:1807.06514. 
39. Woo, S.; Park, J.; Lee, J.-Y.; So Kweon, I. Cbam: Convolutional block attention module. In Proceedings of the European Confer-

ence on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. 
40. Choe, J.; Lee, S.; Shim, H. Attention-based Dropout Layer for Weakly Supervised Single Object Localization and Semantic Seg-

mentation. IEEE Trans. Pattern Anal. Mach. Intell. 2020, doi:10.1109/TPAMI.2020.2999099. 
41. Gao, C.; Zou, Y.; Huang, J.-B. ICAN: Instance-centric attention network for human-object interaction detection. arXiv 2018, 

arXiv:1808.10437. 
42. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. 

arXiv 2020, arXiv:2005.12872. 
43. Ning, X.; Gong, K.; Li, W.; Zhang, L.; Bai, X.; Tian, S. Feature refinement and filter network for person re-identification. IEEE 

Trans. Circuits Syst. Video Technol. 2020, 31, doi:10.1109/TCSVT.2020.3043026. 
44. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. 
45. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. 
46. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal speed and accuracy of object detection. arXiv 2020, 

arXiv:2004.10934. 
47. Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the 2020 IEEE/CVF Conference 

on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; IEEE: Piscataway, NJ, USA, 2020. 
48. Dai, Z.; Yi, J.; Zhang, Y.; He, L. Multi-scale boxes loss for object detection in smart energy. Intell. Autom. Soft Comput. 2020, 26, 

887–903. 
49. Qayyum, A.; Ahmad, I.; Iftikhar, M.; Mazher, M. Object detection and fuzzy-based classification using UAV data. Intell. Autom. 

Soft Comput. 2020, 26, 693–702. 



Sensors 2021, 21, 2842 21 of 21 
 

 

50. Ciccone, V.; Ferrante, A.; Zorzi, M. Robust identification of “sparse plus low-rank” graphical models: An optimization ap-
proach. In Proceedings of the 2018 IEEE Conference on Decision and Control (CDC), Miami, FL, USA, 17–19 December 2018; 
IEEE: Piscataway, NJ, USA, 2018. 

51. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: 
An Imperative Style, High-Performance Deep Learning Library. arXiv 2019, arXiv:1912.01703. 

52. Zhang, S.; Wen, L.; Bian, X.; Lei, Z.; Li, S.Z. Single-shot refinement neural network for object detection. In Proceedings of the 
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: 
Piscataway, NJ, USA, 2018. 

53. Zhang, S.; Wen, L.; Lei, Z.; Li, S.Z. RefineDet++: Single-shot refinement neural network for object detection. IEEE Trans. Circuits 
Syst. Video Technol. 2021, 31, 674–687. 

 


