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Abstract: In this paper, we propose and validate an artificial neural network-based equalizer for the
constant power 4-level pulse amplitude modulation in an optical camera communications system. We
introduce new terminology to measure the quality of the communications link in terms of the number
of row pixels per symbol Npps, which allows a fair comparison considering the progress made in
the development of the current image sensors in terms of the frame rates and the resolutions of each
frame. Using the proposed equalizer, we experimentally demonstrate a non-flickering system using
a single light-emitting diode (LED) with Npps of 20 and 30 pixels/symbol for the unequalized and
equalized systems, respectively. Potential transmission rates of up to 18.6 and 24.4 kbps are achieved
with and without the equalization, respectively. The quality of the received signal is assessed using
the eye-diagram opening and its linearity and the bit error rate performance. An acceptable bit error
rate (below the forward error correction limit) and an improvement of ~66% in the eye linearity are
achieved using a single LED and a typical commercial camera with equalization.

Keywords: CP 4-PAM; optical camera communications; ANN equalizer

1. Introduction

Optical camera communication (OCC) systems, which are part of the optical wireless
communications (OWC), leverage the use of off-the-shelf conventional, complementary
metal-oxide-semiconductor (CMOS) image sensors (ISs) and standard light-emitting diodes
(LEDs) as the receiver (Rx) and the transmitter (Tx), respectively.

The camera-based Rxs can capture intensity-modulated light signals from a range of
LED light sources (i.e., traffic lights, advertising boards, signage, display screens, vehicle
head, and taillights, streetlights, etc.). The OCC technology together with the visible and
infrared light transmission could be used in different low data rate Rb applications, such
as the Internet of Things (IoT) (e.g., as part of the fifth-generation wireless and beyond),
motion capturing [1], intelligent transportation systems [2], indoor localization, security,
virtual reality, and advertising [3]. OOC comprises a plurality of pixels (i.e., photodetectors
(PDs)), where the signal strength of each pixel depends on the intensity of incident light [4].
Each pixel can detect signals at different wavelengths over the visible range, e.g., red, green,
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and blue (RGB), hence offering parallel detection capabilities and an adaptive field of view
(FoV) feature. In addition, the transmitted information from many light sources, different
directions, and locations via the line-of-sight (LOS) [5,6], non-LOS, and/or a combination
of both paths [7] can be captured using a single-pixel or a pixel-array IS-based Rx. Thus
resulting in a higher signal-to-noise ratio, improved mobility, and flexibility over a linkspan
up to hundreds of meters [8].

On the contrary, the IS requires a higher sampling duration and lower number of
quantization levels compared with the PDs due to the light integration time (known as the
exposure time Texp), and the built-in analog to digital converter circuit [9]. The sequential-
readout nature of CMOS IS-based Rx allows each pixel-row to capture the incident light
at a different time, thus resulting in the so-called rolling shutter (RS) effect [9]. Note that,
the performance of VLC with IS-based Rx is limited mainly by the camera capabilities, i.e.,
the frame rate Rf, Texp, and FoV. As a result, in OCC, the transmission bandwidth is rather
low and limited to a few tens of kHz compared to the PD-based VLC systems. Although,
low data should not be seen as a problem considering that there are many applications
where low Rb is not critical at all (i.e., IoT, etc.). However, in OCC, lower Rb may result in
the flickering effect at the Tx [10,11]. In IEEE 802.15.7m standard [12], different schemes
have been proposed for OCC to mitigate flickering and to increase Rb [13]. For example,
in [14], an optical orthogonal frequency division multiplexing VLC with a special IS-based
Rx with a built-in PD-array was used to achieve a very high Rb of 55 Mbps. However, the
fabrication process of the IS was too complex and, therefore, not commercially available.
In [15,16], under-sampled frequency and phase shift on-off keying (OOK) modulation
schemes were proposed to mitigate flickering in OCC with low Rb. In [17], Manchester
coding was proposed to alleviate flickering in the RS mode, where it was shown that link
performance in terms of Rb deteriorated with the transmission range [8,17].

Moreover, an OCC link with the under-sampled pulse amplitude modulation (PAM)
with subcarriers was experimentally demonstrated with the increase Rb to 250 bps [18,19].
In addition, a multilevel-intensity modulation scheme for RS-based OCC with the frame
rate Rf of 30 fps was proposed in [20] with Rb of 10 kbps over a link range of up to 2 m.
Furthermore, a parallel transmission VLC system with color-shift-keying (i.e., different
colors RGB-LEDs) was reported in [21] with an overall Rb of 5.2 kbps. In [22], the concept of
parallel transmission was demonstrated over a range of up to 60 m and with Rb of 150 bps.
Whereas a 16 × 16 array µLED and a high-speed camera with Rf of 960 fps and using Rb of
122.88 kb/s was reported in [23].

In OCC systems, equalization methods can also be deployed to compensate for spatial
and temporal induced dispersion. In [24], an OOK VLC (a single LED) and camera-based
Rx with a dual equalization scheme to compensate for both spatial and temporal dispersion
were reported with increased Rb up to 14.37 kb/s. The artificial neural network (ANN)
architecture has also been proposed for post-equalization to combat non-linear impairments
in OWC [25,26]. The use of an ANN-based equalizer is one of the remarkable solutions
adapted in PD-based OWCs, wherein the ANN act as the universal classifiers [27]. In [25],
a 170 Mb/s OOK VLC link using an LED with a modulation bandwidth of 4.5 MHz
and the ANN-based equalizer at the Tx was reported, where the superiority of ANN
equalizers in mitigating intersymbol interference (ISI) was demonstrated compared with
other equalization techniques. Note, in OCC with the ANN-based equalizer, the network
needs to be trained once for a range of Texp with the data being stored in a look-up table
within the camera.

In [28], the variable transparent amplitude shape code (VTASC) scheme was exper-
imentally evaluated for device-to-device (D2D) (i.e., smartphones) communications in
the form of high-density modulation (HDM) with the ANN assisted demodulator. Rb of
2.66 Mbps over a 20 cm long transmission link was achieved. Note, the concept of D2D is
one form of the multiple-input multiple-output system, where every pixel is transmitted
and detected. Similarly, to allow transmission and reception of information under bad
weather conditions, a convolution neural network (CNN)-based OCC was proposed in [29].
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The CNN was used for classification and recognition of LED patterns and to decode the
transmitted data streams even under an unclear state, where LED patterns are not visible
to the camera due to blocking of the transmission path and/or weather conditions. In [30],
an OCC link with an ANN-based decoder was reported to mitigate the gap-time effect
between two adjacent frames, where OOK was transmitted using an RGB-LED with Rb of
47 kb/s. In [4], an OCC link using a single LED source and Manchester line code with the
non-return to zero formats was reported with Rb of 14 kb/s.

In this work, the aim is to establish a flickering-free OCC system with improved Rb
using a single LED and an ANNs-based equalizer. The key contributions extended from
our previous work [31] are:

• Comprehensive and systematical investigation of the applicability of CP-PAM for the
LED- and camera-based VLC.

• Development of a practical CP-PAM OCC prototype with a single Luxeon Rebel white
LED (SR-01-WC310) and an IS (Thorlabs DCC1645C) as the Tx and the Rx, respectively.

• Development of an efficient signal extraction algorithm for the RS-based OCC system.
• Implementation of an ANN-based equalizer at the Rx to enhance the system performance.
• Development of an experimental test-bed for the proposed system and evaluating it

in terms of the Tx’s frequency, eye diagrams, and the bit error rate (BER) with and
without the ANNs-based equalizer.

• Proposing a new measurement metric for assessing the quality of the communications
link in terms of the number of row pixels/symbol.

The remainder of the paper is organized as follows. Section 2 introduces the proposed
CP PAM scheme, whereas Section 3 outlines the ANN equalizer model for IS-based OCC.
The experimental setup is described in Section 4. Results and discussion are presented in
Section 5. Finally, conclusions are given in Section 6.

2. Constant Power-PAM in RS-Based OCC System

The OCC system is mainly composed of a light source-based Tx with normalized
length (diameter) represented in L, and a camera-based Rx, which is modeled using a single
convex lens with a focal length f. The transmission speed in the RS-based OCC system is
defined by the amount of the information that can be captured by an image at the distance
d, which depends on the acquired number of samples (i.e., pixel rows) and is given by [32]:

Nrow = 2 f × tan
(

FoV
2

)
= 2 f × L

2d
, (1)

where FoV is the angular field of view.
Note that the acquired Nrow is incorporated with the sampling frequency of the IS,

known as the rolling rate of IS, Fs (i.e., the frequency at which the row pixels are sampled
at the image plane).

Therefore, the maximum frequency of the transmitted signal is limited Fs
2 according to

Nyquist’s theorem. The Fs value depends on the pixel clock and Texp (i.e., the time that
every sample (pixel) of the IS is exposed to the light). Note, Texp acts as a moving-average
filter [10,33] with the frequency resolution given by:

∆ f =
1

Texp
=

Fs

Nrow(d)
, (2)

Fs is defined in terms of the bandwidth of the transmitted signal fTx and the number
of received pixels per symbol, Npps, which is given by:

Fs = Npps . fTx , (3)

Note, (i) Npps varies with the payload Pbit; and (ii) the maximum transmission distance
is proportional to both ∆ f and the size (diameter) of the light source. Higher Texp results
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in increased signal intensity levels, and, therefore, higher signal-to-noise-ratio (SNR) at
the cost of reduced Rx bandwidth. With reference to Equations (1)–(3), a communications
link can be established at low Rf but with flickering, which is due to the variation in the
mean value of light intensity during a time period larger than the optical bandwidth of the
human eye. This may occur provided there are many consecutive symbols with the same
logical state.

The flicker index is a relative measure of the cyclic variation in the output of various
sources at given frequencies [34,35]. It considers the waveform of the light output and its
amplitude, which can be determined by dividing the area above the line of average light
output by the total area under the light output curve for a single curve, see Figure 1, and is
given by:

Flicker index =
area 1

area 1 + area 2
, (4)
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The flicker index has a range of 0 to 1.0, with 0 representing the steady light output
level. Area 2 may be close to zero provided the light output varies as periodic spikes, thus
leading to a flickering index close to 1. Higher values indicate an increased possibility of
noticeable flickering.

To mitigate flickering, CP-PAM can be adopted to equalize the mean intensity value
of all symbols, i.e., Iave [18]. In CP-PAM, each PAM symbol is temporally divided into two
equal chips, (i) the 1st chip for the intensity of the PAM symbol IS; and (ii) the 2nd chip
for the stabilization level, i.e., 2Iave − IS, see Figure 2. For example, a symbol with a level
of “2” will be stabilized in the following chip with another symbol with a level of “1” to
ensure performance equality, as clarified in Table 1.

Table 1. Proposed CP 4-PAM levels.

Input Data Conventional PAM Level

Constant Power 4-PAM

First Level
(IS)

Stabilization Level
(2Iave−IS)

11 3 3 0
10 2 2 1
01 1 1 2
00 0 0 3
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It is also noted that considering the Rb efficiency of CP 4-PAM is reduced by half due
to the stabilization level (also used for error detection), the CP N-PAM offers a higher
coding efficiency compared with Manchester coding [17].

3. ANN Equalizer

In RS-based OCC systems, the IS sampling process limits the available bandwidth and
results in ISI at higher data rates, thus impacting the performance of the communications
link. The ability to detect the slow rise-time symbol may be impacted by the existence of
the transition between different illumination levels. Equalization is one option that is being
adopted to mitigate the ISI. Note, the ISI is predicted by the training filter coefficients based
on a training sequence. Alternatively, the ISI can be viewed as a classification problem,
where class decision boundaries are created to classify symbols based on training [4].
Hence, determining the optimal threshold boundaries in a practical channel can be seen
as a nonlinear process, and consequently, the ANN-based equalizer with the adaptive
algorithm can be employed to mitigate ISI and, therefore, increase the data rate. Unlike
other communication systems, OCC training of the ANN network is carried out only once
for a specific exposure time with the data being stored with a look-up table [25,26].

An ANN is an interconnected network of processing elements (neurons). It comprises
of two distinct stages: (i) The training phase, where the ANN estimates an input-output
map between the received and training data to determine the weighted input from each
neuron. The weighted values are updated in each training iteration until either the required
performance is achieved, or the entire training set is used; and (ii) the operation phase,
where the ANN is deployed without the knowledge of the dataset under test. The multi-
layer perceptron (MLP) is a popular ANN architecture, which has been demonstrated with
high effectiveness in signal equalization [36]. It offers the ability to map any non-linear
input-output sequence, provided there are sufficient neurons in the hidden layer(s), and
the SNR is sufficiently high.

The MLP structure consists of at least three layers; (i) a single input layer x; (ii) (M− 1)
hidden layers; and (iii) a single output layer y. The input layer (also called the observation
vector) has the same structure as a conventional linear equalizer for sequential equalization,
i.e., it is a tapped delay line o(m−1) = [o(m−1)

1 , o(m−1)
2 , . . . , o(m−1)

Nm−1
], where N is the number

of neurons, and m is the layer number. This is illustrated in Figure 3, where weights w(m)
kn

relate the nth input to the kth neuron. Each neuron can be biased with a value C(m), which
is in turn scaled by a threshold factor v(m)

k .
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The output o(m)
k of the kth neuron is mapped via a non-linear activation function f (.)

as given by [25]:

ok
(m) = f

(
Nm−1

∑
n=1

w(m)
kn o(m−1)

n + C(m)vk
(m)

)
. (5)

The output of each layer is usually connected to each of the neurons in the next layer,
i.e., a fully connected mode, therefore, using the observation vector o(m) for the mth layer
and the Nm × Nm−1 connection matrix between layers m and m− 1, the output is given in
the vector form by:

o(m) = f
(

W(m)o(m−1) + C(m)v(m)
)

, (6)

where W(m) and v(m) are given by:

W(m) =



w1
(m)

w2
(m)

.

.

.
wNm

(m)


, (7)

v(m) = [v(m)
1 v(m)

2 . . . v(m)
Nm

]
T

. (8)

Considering the N0 × 1 input vector, NM × 1 output vector, o(0) = x and o(M) = y,
the following observation vector o(m) is given by:

x = [x1 x2 . . . x(m)
No

]
T

, (9)

y = [y1 y2 . . . yNM ]T . (10)

Therefore,
o(1) = f

[
W(1)x + C(1)v(1)

)
, (11)

o(2) = f
[
W(2)o + C(2)v(2)

)
, (12)

. . .

y = f
[
W(M)o(M−1) + C(M)v(M)

)
. (13)

MLP will record its trained information in wkn
(m) and in the threshold factors vn

(m),
since C(m) is given as a constant for all layers (i.e., set as C(m) = 1, m = 1, 2, . . . , M).
Resilient back-propagation (RBP) is a supervised back-propagation (BP) training method,
which updates the weights to converge more rapidly than the standard BP training tech-
nique [26]. Figure 3 depicts a single neuron for the case where the layers are interconnected
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with different weight coefficients. The RBP adjusts the MLP weights to reduce the error
cost function En as given by [25]:

Ek =||dk − yk||2, (14)

where dk and yk are the ideal and actual received symbols, respectively. It should be noted
that, for the training sequence, d is known. Each iteration of the RBP algorithm has a
dynamic step size, which varies based on the magnitude of the gradient descent of Ek.

4. Experimental Setup

The schematic block diagram of the proposed OCC system is shown in Figure 4a. A
pseudorandom binary sequence (PRBS) with a length of 2 16–1 bits was generated using
MATLAB, which was then up-sampled with nsamp of 50 and modulated using CP-PAM.
Based on the output labels provided for 4-PAM, see Table 1, mapping of the data to the
corresponding symbols was carried out. The PRBS s(t) was divided into sub-sequences with
effective symbols per packet with lengths of Pbit-symbols, which depends on the transmitter
bandwidth fTx. Each subsequence was encoded with a pre- and post-amble to form a Qth
Tx packet, where Qth represents the packet number and each packet consists of 3-symbol
pre-amble [1.5 1.5 1.5], Pbit-symbol payload, and 3-symbol post-amble [1.5 1.5 1.5].
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The symbols in the overhead signal (i.e., pre-amble and post-amble) were chosen to
ensure constant average optical power when compared with the payload. The signal was
then sequentially uploaded onto an arbitrary wave generator (AWG, AFG3252C, 240 MHz
bandwidth), see Figure 4b. The uploading process was done through the generation of
Qth Tx packet at different fTx, the output of which was used for intensity modulation of a
Luxeon Rebel LED (SR-01-WC310) with a peak wavelength at 630 nm. Note, a linewidth
of 118 nm was used for transmission of the modulated light over a short LoS free-space
channel (i.e., 50 cm).

At the Rx, a diffuser was used to scatter the light over the capturing area of the IS
(Thorlabs DCC1645C RS) with a standard Texp of 2 ms was adopted in this study. The
observed frames PQ

U×V×3 at the output of the camera were processed off-line in MATLAB
using both Algorithms 1 and 2. In Algorithm 1, the data set zi

Q was retrieved by accumu-
lating the intensities for all pixels in each row. The received signal was then normalized to
remove the DC by capturing 20 frames with no signal, see Figure 5a,b.

Algorithm 1 Signal Extraction Algorithm
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average filter. Note, the window size of the filter was set to nsamp since it provided an
optimal match compared with the observed signal. Next, zcal in the vector form was
applied to an MLP equalizer using an array of tapped-delay lines as previously described.
The MLP used here included single input, hidden, and output layers. All the key system
parameters are listed in Table 2.
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Algorithm 2 Find the frame with full packet inclusion (i.e., includes both pre- and post-ambles)
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Sensors 2021, 21, 2826 10 of 16

Table 2. System parameters.

Description Value

Tx
LED type Luxeon Rebel LED (SR-01-WC310)
Tx signal bandwidth fTx (Hz) 220–1520 Hz
Tx bias current 180 mA

Camera Rx

Camera model Thorlabs DCC1645C-HQ
Exposure time Texp 2 ms
Maximum SNR of IS 44 dB [37]
Lens type Navitar 12 mm F/1.8 2/3” 10 MP
Pixel clock 10 MHz
Camera raw image resolution 1280 × 1024 pixels
Captured symbols per frame 11–76 symbols

Packet Generator

Data format CP-PAM
Symbol per packet Pbit 5–70 symbols
Packet generator sample rate 11.125 kHz
Number of samples nsamp 10

Channel Channel length 50 cm

ANN Equalizer

Activation function Hyperbolic tangent sigmoid
Number of neurons in input layer 200
Number of neurons in output layer 1
Number of neurons in hidden layer 200
Number of hidden layers 2
Percentage of the train to test 0.8
Maximum epochs 1000
learning rate parameter η 0.01
Network training function Resilient back-propagation

5. Results and Discussion

The experimental work was focused on deploying an MLP-based equalization to
mitigate the ISI due to the limited modulation bandwidth of the CMOS IS-based Rx. The
measured and simulated CIS for Texp of 2 ms are highlighted in Figure 6, showing that the
obtained IS bandwidth (i.e., a 3 dB point) was 250 Hz. It is also noted that the mismatch
between the measured and simulated response was caused by aliasing due to the limited
sampling frequency of the IS and utilization of image compression techniques [38]. The CP
4-PAM encoded signal was then generated at a different bandwidth fTx of up to 1520 Hz.
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The captured frames at the Rx are processed with Pbit of up to 70 symbols per packet.
Figure 7 illustrates examples of the captured frames and the processed signals for Pbit of
5, 10, 15, 20, 50, and 70, i.e., fTx 220, 320, 420, 520, 1120, and 1520 Hz, respectively. Note,
the width of the received Qth packet and the recorded Fs are 666 pixels and 13.31 kHz,
respectively, based on the demodulated signal, see Figure 7. Increasing fTx decreases the
number of received pixels for each CP 4-PAM symbol, thus, reducing the quality of data
transmission. The number of pixels utilized for each CP 4-PAM symbol is indicated in
Table 3. For the link with the ANN-based equalizer deployed at the Rx side, the quality of
the received signal was measured using the eye diagrams and the BER performance. As
illustrated in the eye diagrams, see Figure 8, the eye-openings indicate the impact of the
ISI on the received signal. Note, (i) the threshold levels can be differentiated for Pbit of 5
and 20 symbols, see Figure 8a,b, respectively, but not for Pbit of 50 and 70 symbols as in see
Figure 8c,d, respectively; (ii) the five levels are shown in the eye diagrams, where one of
the levels represents the packet overhead designed to maintain the same average power
for CP 4-PAM; and (iii) the overhead level is removed at the Rx side using Algorithm 1.
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Table 3. Results with Rf of 30 fps and CIS width of 1024 px.

Payload
Symbol/Packet (Pbit)

Total Number of
Symbols/Packet

Number of Row Pixels/
Symbol (Npps) fTx (Hz)

5 11 60.54 220
10 16 41.62 320
15 21 31.71 420
20 26 25.61 520
30 36 18.50 720
35 41 16.24 820
40 46 14.48 920
50 56 11.89 1120
70 76 8.76 1520
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An example of transmitted and received signals with and without equalizer for Npps
of 8.7 pixels per symbol is illustrated in Figure 9. The equalized signal at the Rx side shows
a significant improvement in reducing the impact of the ISI on the received signal with
minimal signal distortions.

The eye linearity of the received signals is measured based on the average amplitude
levels is given by [39]:

Eye linearity =
min

(
Vup, Vmid, Vlow

)
max

(
Vup, Vmid, Vlow

) , (15)

where Vup, Vmid, and Vlow are the average amplitude levels.
Figure 10 shows the eye linearity of the received signals with respect to Npps for the

link with and without ANN equalizer and for Texp of 2 ms. Note, we have used Npps, i.e.,
new terminology for a fair comparison considering the progress made in the development
of ISs. As shown, for the link with no equalizer, the eye linearity increases with Npps
reaching a maximum level of 0.6 at Npps of ~26, beyond which it drops linearly with
rapidly Npps. However, with the ANN equalizer, the eye linearity is improved significantly
for both the test and trained cases reaching the optimal linearization of almost 1 at Npps of 18
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and remaining constant beyond Npps > 18 (i.e., being independent of Npps). Thus, the ANN
equalizer show an improvement of ~66% in the eye linearity for Npps > 18 pixels/symbol
(i.e., fTx < 920 Hz) for both training and testing sets.
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Next, we measured the BER as a function of Npps for the link with and without ANN
equalizer, as illustrated in Figure 11. In addition, shown is the forward error correction
(FEC) BER limit line of 3.8 × 10−3. Note, at the FEC limit the Npps value is reduced from 30
to 20 for pixels per symbol for the links without and with the ANN equalizer, respectively,
compared with the test plot. Thus, the effective Rb (i.e., no post- and pre-ambles) is
estimated by:

Rb = 2
V

Npps
·R f , (16)

where V represents the pixel row.
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Figure 11. The BER measurements as a function of Npps for the proposed system with and without
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The effective Rb at the FEC limit for the case with and without the ANN equalizer with
a range of IS resolutions is indicated in Table 4. It demonstrates with the ANN equalizer Rb
of 24.4 and 12.2 kbps for Rf of 60, and 30 fps, respectively, can be achieved compared with
the case of no equalizer with Rb of 18.6, and 9.3 kbps for Rf of 60, and 30 fps, respectively.

Table 4. Effective Rb at different ISs resolutions at the FEC limits.

ISs Resolutions

Rb (bps) at Npps = 26
(i.e., w/o Equalization)

Rb (bps) at Npps = 20
(i.e., with Equalization)

Rf = 30 fps Rf = 60 fps Rf = 30 fps Rf = 60 fps

1200 × 1800 3794 7588 5040 10,080
1500 × 2100 4486 8972 5940 11,880
1800 × 2400 5178 10,357 6840 13,680
2100 × 3000 6563 13,126 8640 17,280
2400 × 3000 6563 13,126 8640 17,280
3300 × 4200 9332 18,665 12,240 24,480

6. Conclusions

We proposed an ANN-based equalization technique for a CP 4-PAM based OCC sys-
tem. An experimental setup was developed to demonstrate non-flickering communications
using a single light-emitting diode with a transmission rate of Rb of 24.4 kbps. The quality
of received signals was measured based on the eye-diagram opening, eye linearity, and
the BER. We demonstrated the ability to mitigate the intersymbol interference and hence
to transmit a signal with an acceptable BER (below the FEC limit) for Npps of 20, and 30
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for unequalized and equalized systems, respectively. An improvement of ~66% in the
eye linearity was achieved using a single LED, and a typical commercial camera with
equalization technique was achieved. The limitation of the proposed system was assessed
by the system complexity, including the associative memories needed for the look-up table
training data as well as the IS resolution, gap-time and exposure time, and reading time.
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