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Abstract: The recurrent neural network (RNN) model, which is a deep-learning network that can
memorize past information, is used in this paper to memorize continuous movements in indoor
positioning to reduce positioning error. To use an RNN model in Wi-Fi-fingerprint based indoor
positioning, data set must be sequential. However, Wi-Fi fingerprinting only saves the received
signal strength indicator for a location, so it cannot be used as RNN data. For this reason, we propose
a movement path data generation technique that generates data for an RNN model for sequential
positioning from Wi-Fi fingerprint data. Movement path data can be generated by creating an
adjacency list for Wi-Fi fingerprint location points. However, creating an adjacency matrix for all
location points requires a large amount of computation. This problem is solved by dividing indoor
environment by K-means clustering and creating a cluster transition matrix based on the center of

check for each cluster.
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Sensors 2021, 21,2823. https://
doi.org/10.3390/521082823 1. Introduction
Recently, Wi-Fi fingerprinting has been used to construct indoor positioning sys-
Academic Editor: M. Osman Tokhi tems [1-8]. In this approach, the Wi-Fi fingerprinting system records the received signal
strength indicator (RSSI) of the access points (APs) collected at each location point in the
database. It then compares input data with the recorded data to calculate a position. The
signal strength values of Wi-Fi APs can lead to incorrect positions because they contain
noise caused by obstacles. To improve the location accuracy and reduce the adverse effects
of environmental factors, several types of studies have been conducted. A method of
fingerprint location for Wi-Fi signals assisted by smart phone built-in sensors has been
studied in work [9]. To improve the location accuracy, Wang et al. [10] utilized 5G mmWave
beam. However, these approaches require auxiliary devices, which makes configuration
and operation complex.
Another approach to improve location accuracy is to use RSSI with mobile user
trajectory [11-13]. An approach for fusion of dead reckoning trajectories generated from
= foot-mounted inertial measurement units (IMUs), RSSI from Wi-Fi signals and position
estimations from global positioning system (GPS) from multiple users was proposed
for trajectory estimation and crowd-sourced RM generation [12]. A Wi-Fi RSSI dataset
containing sequentially collected trajectories at a finer level of reference point is presented
in [13]. Positioning accuracy can be improved by using a dataset containing trajectory,
however, it is difficult to apply in a real environment because it takes a lot of effort to
prepare and process the dataset. Also, there is a limitation that only the movement paths
followed during the collection process exist as a dataset.
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It is often difficult to estimate a movement path of mobile users from a dataset (e.g.,
collected Wi-Fi fingerprint) for which trajectory is not provided. Regarding the movement
path generation, recurrent neural network (RNN) models capable of learning time series
information are attracting attention. It is well-known that the RNN can extract features from
high-dimensional time series input data and perform well in classification and regression
problems. The RNN model is a supervised learning algorithm that can consider the
continuity of the data [14-16]. This network can consider the continuous movement of a
person in indoor positioning and hence calculate his or her current position more accurately
or predict his or her next movement. To use an RNN in an indoor positioning system, RSSIs
must be sequentially input according to a human’s path. However, most of the datasets
provided for indoor positioning studies do not provide this path.

This paper proposes a method to generate movement path data based on Wi-Fi
fingerprinting. We use K-means clustering to create clusters that separate indoor location
areas. The generated clusters and an adjacency matrix for these clusters are used to create
path data by converting them into the states and state transition probabilities of a Markov
chain. The proposed machine learning model uses the generated movement path data
instead of Wi-Fi fingerprinting, so the RSSIs of the previous location affect the positioning
of the current location. We compared the performance of the proposed technique with that
of the Wi-Fi fingerprint-based positioning method.

The structure of this paper is as follows. Section 2 describes K-means clustering and
Markov chains. Section 3 describes methods to divide an indoor environment based on
K-means clustering and generate movement path data. Section 4 describes the performance
evaluation of the proposed and existing positioning algorithms. Finally, Section 5 presents
the conclusion and future work of this study.

2. Related Works
2.1. K-means Clustering

K-means clustering is an algorithm that classifies given data into K clusters. It updates
the centroid of cluster in a way that minimizes the variance of the distance between
clusters. Assume that all data in set D belongs to one of the clusters in set C. When
D=CUG... UCk, CUC; = @ and the number of clusters is K, the cluster to which
data point d; belongs is calculated as follows:

K
argmin,, 2 2 ||dj —¢; ||2 (1)

i=1 djECi

Algorithm 1 shows the K-means clustering algorithm used in this paper. It takes D,
K, and the maximum number of iterations as input, and outputs cluster center set C and
cluster index set L, which indicates to which cluster data point d; belongs. The center points
of a cluster are initialized using the method described in the K-means++ algorithm [17].

2.2. Markov Chains

The Markov property states that the current state is affected by the past state. Markov
chains are discrete probability processes with Markov properties and change state at every
time step. In a Markov chain, the probability of transitioning to another state is expressed
by the state transition probability matrix. Assuming states C =1, 2, 3, ..., K, the state
transition matrix is represented as follows:

P11 P12 P13 P1K
P21 P22 P23 o P

P= ps1 P23 P33 psk )

PK1 Pk2 PK3 -  PKK
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where p;; > 0 and for all i, the following formula holds:

K
Zf’l/ Z (Ci1=jlC=1i) =1 ©)

]_

Algorithm 1 K-means Clustering Algorithm

Input: D = {dy, dy, ..., dn} /* set of data to be clustered */
K /* number of clusters */
M /* limit of iterations */
Output: C = {cq, ¢, ..., cx} /* set of cluster centroids */
L={I(d)]i=1, ...,n} /*setof cluster labels of D */

begin
C initialized by K-means++;
foreachd; € D do

I(d;) < argminje{l,...,K}d<di' Cf>;
end
chagned < false;
iter < 0;
repeat
foreachc; € Cdo
UpdateCluster(c;);
end
foreach d; € D do
minDist argminje{l’___lK}d<di, cj> ;
if minDist # 1(d;) then
1(d;) < minDist;
changed < true;
end
end
iter < iter +1;
until changed = true and iter < M;
end

2.3. Fingerprint Positioning Technique

The positioning algorithm compares the input data with the radio fingerprint and
estimates it as the most similar location. Euclidean distance is representative distance com-
parison algorithm, but the distance difference becomes ambiguous when high-dimensional
data is input [1]. To solve this problem, Shrestha studied logarithmic Gaussian distance,
which shows high performance in high-dimensional data [3]. Tian studied affinity propaga-
tion clustering, which selects clusters with features like input data and compares Euclidean
distances within the cluster [5]. Positioning algorithms using deep neural networks (DNN)
have been studied to use higher-dimensional input data. Zhang improved the positioning
accuracy by designing a layer that mixed DNN and hidden Markov model (HMM) [6].
Park studied data augmentation techniques for generating Wi-Fi fingerprints with high
density data and parallel learning for learning multistory buildings [4]. Sahar and Han
collected Wi-Fi fingerprints by walking survey dataset and used them as input to the LSTM
model [2].
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3. Proposed Method
3.1. Clustering of Location Points

Dataset must be collected by transitioning to adjacent location points over time to
generate movement path data based on Wi-Fi fingerprinting. Adjacency lists that contain
the adjacent location points for all location points require a large amount of computation
to generate according to dataset size. In addition, this approach may generate movement
paths with non-mobility data or long distances data that cannot be moved by humans
depending on the density of the location points.

To solve this problem, we create clusters based on the set of location point in the
Wi-Fi fingerprint data to separate indoor areas. The K-means clustering algorithm shown
in Algorithm 2 computes the centroids of the set of clusters C for the location points of
Wi-Fi fingerprint D. This study does not consider multistory buildings, so the centroid
of each cluster c; stores the X-axis and Y-axis data. The centroids of cluster set C use the
adjacency matrix:

a1 412 413 a1K
a1 dpp 43 ce arK

A = az1 a3 Aasz3 asK 4)
aKi1 4dk2 aks Tt AKK

where a;; is computed as follows:

2 2
- { Ly (i =)+ (= )° < das “
0, otherwise

where a;; stores the adjacency of ¢; and ¢j, coordinate (x;, y;) is centroid positions of c;,
coordinate (x]-, y j) is centroid positions of Cjs and d,;y is the maximum distance. If the
distance between c; and all the other clusters is larger than this distance, c; is merged with
the nearest cluster.

The adjacency list a; = [a;1, ajp, ..., aik| represents how a cluster can move from
cluster c;. Because the cluster selected at the current time is affected by the cluster selected
at the previous time, the clusters can be expressed as a Markov chain. The probability of
transition between clusters is expressed by the state transition probability matrix P of the
Markov chain as follows:

1
=, =1
= YR g’ (6)
Pij { 0, otherwise

where p;; is the transition probability of moving from ¢; to ¢;. In this paper, we do not con-
sider movement frequencies for the positioning environment, so the transition probability
is equal for all clusters adjacent to c;. Algorithm 2 shows the proposed state transition
matrix initialization algorithm for the clusters. The state transition matrix P for a cluster
does not need to be changed unless the structure of the indoor environment changes.
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Algorithm 2 Cluster State Transition Matrix Generation Algorithm

Input: C == {cy, ¢, ..., cx} /* set of cluster centroids */
K /* number of clusters */
dmax /* distance limit */
Output: P = {p11, ..., pkx} /* set of cluster transition matrix */
for i < 1 to Kdo
Cinin < 1;
Apin < 0;
flag + false;
for j <+ 1 toK do
d < distance (c,', cj>;
ifi =jord < dyuy then

ai]‘ —1;
flag < true;
else
al‘]‘ —0;
if ¢;;;, = iord,,;, > dthen
Cmin < J;
dm,'n — d,’
end
end
end
if flag = false then
j < Cmin s
&l,‘j —1;

end

end

fori < 1 to Kdo
near_num <— Z]K:1 ajj;
for j <1 to K do

if Llij =1 then
pl] — near_num;
else
pij < 0;
end
end
end

3.2. Generation of Movement Path Data Using Clustered Fingerprint Data

This section proposes a method for creating movement path data using cluster labels
L and cluster transition matrix P of the data calculated by Algorithms 1 and 2. This paper
does not consider indoor structures and does not specify start and end clusters. For this
reason, the path is created by traversing clusters according to the path length path;;;, from
a randomly chosen cluster [18]. The movement path randomly extracts one data point in
the current cluster to generate input data and uses the location point of the last visited
cluster as a label. Because the input size of the learning model is proportional to pathy,
not only does the amount of computation increase, but so does the amount of old data that
is not needed to predict the current location. Hence, path,,x considers a time interval over
which the RSSI and device performance is collected. The generated movement path data
consists of RSSI data for each AP over time, so a long short-term memory (LSTM) layer for
time-based data can be used, as shown in Figure 1.
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Figure 1. Architecture of the proposed neural network for movement path data.

The size of the input layer in Algorithm 1 is the number of APs in the Wi-Fi finger-
printing system multiplied by path;;.x. The learning model predicts the location using the
last result of the LSTM layer as an input to the fully connected layer. Algorithm 3 shows
the movement path data generation algorithm proposed in this paper. The algorithm input
consists of dataset D and cluster labels L of the data. The Wi-Fi fingerprint training and
testing sets are input separately. If the amount of data in the Wi-Fi fingerprint is small,
there is a high probability that duplicate data will be generated. Therefore, an appropriate
value for m should be used.

Algorithm 3 Movement Path Generation Algorithm

Input: D = {dy, dp, ..., dy} /*set of data to be clustered */
L={l(d;)|d=1, ..., n} /*setof cluster labels of D */
P={p11, ..., pxx} /* set of cluster transition matrix */
path,,,. /* maximum path length */

m /* number of data to generate */
K /* number of clusters */
dmax /% distance limit */
Output: T = {t1, ..., tm} /* set of sequential location data */
for iter < 1 to m do
i+—kef{l,2,...,K};
tirer <— d; € D forall I(d;) = i;

for path < 2 to path,,, do

i~ke{l,2,...,Klp};
tier < concat(tye,, d; € D foralll( d;) =i);
end

end

4. Experiment
4.1. Experimental Environment

We use a published Wi-Fi fingerprint dataset to compare the performance of the
proposed method with existing methods. The dataset consists of RSSI fingerprint collected
from 21 devices installed at the Tampere University of Technology (TUT) in Finland [19].
As shown in Table 1, the number of training data in the TUT dataset is smaller than the
number of test data. The training and test sets of the TUT dataset were exchanged to
increase the amount of training data. In addition, this study does not consider multistory
buildings, so only the ground floor data in the TUT dataset were used.
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Table 1. TUT Wi-Fi fingerprint dataset about ground floor.

Name Value
Area size 108 m x 208 m
Number of training data 697
Number of test data 3951
Number of APs 992

4.2. Experimental Scenario

The experiment compares the positioning performance of the proposed method and
that of the existing methods 3-Layer DNN, P-DNN [4], DNN-DLB [20], 2D-CNN-DLB [20],
RSS clustering [21], and 3D clustering [21]. The existing methods determine the position
using the Wi-Fi fingerprint inputs. The proposed method determines the position using
movement path data generated from the Wi-Fi fingerprints. K-means clustering was used
to create clusters from the training and test sets of the TUT dataset. The state transition
matrix initialization algorithm was used to create the state transition probability of the
clusters, and the movement path data generation algorithm was used to generate the
movement path data for learning and testing with state transition probabilities, training
set, and test set.

The architecture of a layer of the RNN model used in the proposed technique is shown
in Figure 2 for p = 5. The input layer was set to 992 x path,,, and the output layer was
used to regress the positioning coordinates X and Y.

input (None, 4960)
output | (None, 4960)

Input Layer

input (None, 4960)
output | (None, 5, 992)

Reshape Layer

input | (None, 5, 992)

LayerNormBasicLSTM
output | (None, 5, 280)
. input | (None, 5, 280)
LayerNormBasicLSTM
output | (None, 5, 280)
/
. input | (None, 5, 280)
LayerNormBasicLSTM
output | (None, 5, 280)
/
. input | (None, 5, 280)
LayerNormBasicLSTM
output | (None, 5, 280)
y
. input | (None, 5, 280)
LayerNormBasicLSTM

output | (None, 5, 280)

input (None, 280)
output (None, 2)

Fully Connected Layer

Figure 2. Proposed deep learning layer at p = 5

The hyperparameters of the K-means clustering and path data generation method are
shown in Table 2. A Bayesian optimizer was used to optimize hyperparameters [22]. This
study used the search range listed in Table 3 to find the optimal hyperparameter settings.
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Table 2. Hyperparameters for movement path data generation.

Hyperparameter Value
Number of clusters k 50
Maximum number of iterations M 1000
Distance limit d 15m
Path p 5
Number of generated training data 11,4, 20,000
Number of generated test data 1,5 5000

Table 3. Search ranges for hyperparameter optimization.

Hyperparameter Value
Minibatch size 50 (fixed)
Learning rate 0.001—0.05
Dropout 0.5—1
Number of stacked LSTMs 2—7
Number of LSTM hidden cells 100—Input size x 2
Number of epochs 20—1000

4.3. Experimental Results

Figure 3 shows the results of applying the location points of the TUT Wi-Fi fingerprint
dataset to the K-means clustering of Algorithm 1. In Figure 3, the X marks the center
of the cluster and the other symbols indicate the location of data point. To distinguish
the cluster to which the data point belongs, when marking the data point, the symbol
(e.g., triangle, plus signal, circle, etc.) and color are expressed differently. The sum of the
distances between the centers of the clusters and the observation points averages 438.36 m,
with a minimum distance of 52.66 m and a maximum distance of 972.19 m.

80
70 |

60 |

50 | x €
vy
4 . e
£ x0T e A
20/ . S W AT | v B R
o - B w . .
- CEPRah s 3 'x;‘. g J
10} x . e® o .
. ' Cluster centroid
ol .
-10 !
0 50 100 150 200 250

X[m]
Figure 3. K-means clustering result on TUT Wi-Fi fingerprint dataset (K = 50).

Figure 4 shows the result of generating a neighbor list between midpoints of a cluster.
The cluster on the right side of the figure is connected to the nearest cluster because the
distance to all clusters is greater than the distance limit. This paper does not consider the
building structure, however it can generate a neighbor list similar to that of the TUT dataset.
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Figure 4. Result of creating neighbor list of clusters (dyax = 15)

Table 4 shows the mean error of each method for the TUT dataset. The results show
that proposed method yields the lowest average error. The movement path data includes
various paths to reach the same position. Therefore, it can be concluded that the positioning
is accurate because the previous RSSI influences the current RSSI.

Table 4. Mean error of positioning algorithms on the TUT dataset.

Algorithm Mean Error [m]
2-Layer LSTM with movement path data 491
(proposed) '
DNN-DLB [20] 5.33
3-Layer DNN 5.73
Data Augmented 5-Layer P-DNN [4] 6.94
2D-CNN-DLB [20] 7.08
RSS clustering (affinity propagation) [21] 8.08
3D clustering (K-means) [21] 14.80

5. Conclusions

In this paper, we proposed a method to generate movement path data based on
information gathered from Wi-Fi RSSI. This data is used as input data for an RNN model
to reduce the position error of an indoor positioning system. The method used to generate
movement path data is based on K-means clustering and Markov chains. Since the Wi-Fi
fingerprint dataset did not include time information, we had to use a single set of RSSIs
as input for machine learning. To solve this problem, we divided the location points of
the Wi-Fi fingerprinting area into clusters and created movement paths for discrete time
steps based on a Markov chain. The experimental results of the proposed technique on
the TUT dataset yielded an average error of about 4.9 m, which is lower than that of other
existing methods.

The proposed method generated data through a random walk without considering
a multi-level indoor structure. This approach can generate a movement path for an open
indoor space, but it cannot generate movement paths for a unidirectional movement space
(e.g., a museum or aquarium).
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