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Abstract: For the effective application of thriving human-assistive technologies in healthcare services
and human–robot collaborative tasks, computing devices must be aware of human movements.
Developing a reliable real-time activity recognition method for the continuous and smooth operation
of such smart devices is imperative. To achieve this, light and intelligent methods that use ubiquitous
sensors are pivotal. In this study, with the correlation of time series data in mind, a new method of
data structuring for deeper feature extraction is introduced herein. The activity data were collected
using a smartphone with the help of an exclusively developed iOS application. Data from eight
activities were shaped into single and double-channels to extract deep temporal and spatial features
of the signals. In addition to the time domain, raw data were represented via the Fourier and wavelet
domains. Among the several neural network models used to fit the deep-learning classification of the
activities, a convolutional neural network with a double-channeled time-domain input performed
well. This method was further evaluated using other public datasets, and better performance was
obtained. The practicability of the trained model was finally tested on a computer and a smartphone
in real-time, where it demonstrated promising results.

Keywords: human activity recognition; inertial measurement unit sensors; deep learning; convolu-
tional neural network; input adaptation

1. Introduction

HAR (human activity recognition) is an active research field that focuses on identifying
human activities from a visual or sensor input. The growing interest in HAR comes from
its necessity in health monitoring [1], human–computer interactive systems, monitoring
systems [2,3], among others. The activities can be static or dynamic including walking,
sitting, bike riding, jogging, eating, reading, and washing. Data for HAR training are
mainly acquired from non-visual sensors such as IMUs (inertial measurement units) and
sEMG (surface electromyography) [2,4–13], visual sensors such as cameras [14–16], and a
combination of both [17,18]. In addition to its costs and privacy issues, visual-based HAR
provokes extra work in image processing including locating subjects in the image frames.
On the contrary, owing to the growth of portable smart devices with embedded sensors,
IMUs are omnipresent and can be used almost without restrictions. Moreover, wearable
devices can be continuously used indoors or outdoors while safeguarding users’ privacy.
However, wearable sensors provide relatively limited information compared to cameras.

Owing to their ubiquity and embedded sensor diversity, smartphones have been
commonly utilized to develop HAR solutions [5,19,20]. The advantages of smartphones,
when compared to other wearable devices, are their capability to capture and process
data and their reliability in transmitting and receiving data when connected with other
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devices. Accelerometers and gyroscopes are the most used sensors for representing human
body acceleration and movement direction. Therefore, these sensors have allowed for the
extraction of diverse information from the motion of a person that can be used to recognize
physical activities [6,8,21–23].

HAR can be regarded as a pattern recognition problem. Magnificent progress has
been made by conventional pattern recognition methods on HAR through classical ma-
chine learning algorithms such as hidden Markov models [24–27], decision trees [28–30],
SVMs (support vector machines) [5,29,31–33], and naive Bayes [34–36]. Even though these
methods achieve excellent results when few and lower-dimensional input data exist, cer-
tain domain knowledge or a controlled environment is required. This, in turn, results in
learning only slight activities [37,38]. Hence, their performance is limited in terms of the
classification accuracy and generalization of a model.

According to recent surveys, HAR algorithmic implementation is heading in the direc-
tion of deep learning [39]. This is due to the rapid advancement of deep learning methods
and their unparalleled performance in many areas such as object recognition, natural
language processing, and image processing. Additionally, deep learning-based neural
network training has been recently used even in bioinformatics [40,41]. Unlike traditional
pattern recognition approaches, deep learning can alleviate the burden of engineering the
extraction of features from the input data by learning high-level and meaningful features
through neural networks [6,42,43]. It is undisputed that CNNs (convolutional neural
networks) and RNNs (recurrent neural networks) have dominated HAR methods over the
last couple of years. For its temporal and spatial feature exploitation capability, the CNN
has been the champion for time series-related classification problems as well [4,9–11,20,38].
On the contrary, for their excellent achievements on sequential data, RNN models are
potential neural networks for time series IMU sensor data of a HAR problem [4,44–46].
Before the motion data are provided to the deep-learning algorithms, an input adaptation
must be performed to influence the training performance of the networks. Hence, these
time series motion data were transformed and structured into various forms to obtain
better classification results.

In this study, a multi-function iOS application software for smartphones was developed
to assist in data handling and real-time recognition. The raw data collected were restructured
to increase its dimensionality so that it was easy to exploit the spatial and temporal axis
features of the motion data. This was carried out by duplicating the spatial data of the
IMU data. This improves the accuracy of the neural network models. The resultant models
were made to be as light as possible to reduce the computational cost. The trained model
was tested on a computer and a smartphone for real-time motion recognition to check its
practicability. This methodology was adopted from a previous conference paper [47].

The main contribution of this study is a better input adaptation method for sensor-
based human activity recognition. This was carried out by restructuring raw sensor data in
a special manner to improve the performance of neural networks. Duplicated triaxial IMU
data were stacked vertically with the intention of extracting spatial features during neural
network training. Restructured data were formatted into single and double-channels in
an attempt to obtain a better structure in terms of lightness and efficiency. This method is
superior to existing state-of-the-art systems.

The remainder of this paper is organized as follows. In the first section, an introduction
to HAR and related works are discussed. Section 2 presents the background and related
works section. Sections 3 and 4 mainly focus on input adaptation and neural network
architectures developed. After the results are discussed in Section 5, the concluding
statements and future work are presented.

2. Background and Literature Review

HAR methods intend to understand a person’s activity behaviors to enable computing
systems to proactively assist users in various fields [7]. For instance, this can be applied
to an elderly person who uses a robotic assistant to walk upright and sound. In this case,
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the assistive robot can be automatically activated when the person starts to walk and
continuously monitors their movement using the wearable sensor’s data.

2.1. Conventional Pattern Recognition

Conventional PRs (pattern recognitions) can fall into two major classes: supervised
and unsupervised learning. The difference is the availability of labeled output data, where
the former has it, but not the latter. Supervised learning attempts to obtain a mathematical
model depending on the input–output relation, whereas unsupervised learning identi-
fies patterns from the input data through preprocessing steps which are also required,
including feature extraction, vectorization/segmentation, normalization, standardization,
and projection [48].

Some of the most common conventional PR algorithms are as follows: (a) naive Bayes:
probabilistic classifiers based on the application of Bayes’ theorem to presumably inde-
pendent features [34–36]. (b) Support vector machine: uses a hyperplane to separate data
samples into two classes by maximizing the distance between the hyperplane and the data
instances on either side [5,13,29,31–33]. (c) Random forests: an ensemble learning method
that comprises a large number of decision trees for classification or regression [26,49,50].
(d) Decision trees: in the case of decision trees, tree-like decision rules are used to sort out
data instances based on the features or data values [28–30]. (e) kNN (k-nearest neighbors):
stores all available cases and classifies new cases based on resemblance measures [19,51–53].
Lastly, (f) neural networks have also been used in previous studies [20,54–56].

Figure 1 presents a typical flowchart of the HAR using conventional PR approaches.
First, raw motion data inputs were collected from various types of sensors (smartphones,
watches, among others). Second, statistical features were heuristically extracted from
readings based on human expertise [37,38,42], such as the mean, variance, and amplitude
in traditional machine learning approaches [57]. Finally, these statistical features serve as
inputs to train a conventional PR model for activity inference.

Figure 1. Conventional PR for a sensor-based HAR.

2.2. Deep Learning

Figure 2 shows how deep learning works for HAR with different types of networks.
Compared to Figure 1, the feature extraction and model building steps are combined
into one step under the deep learning modeling of various neural networks. In this step,
automatic feature learning through a network and high-level characteristic extraction by
the deep layers is suitable for complex activity recognition tasks.

Nowadays, deep learning is being used in several fields such as supporting medical
teams in medical diagnostics [58,59], natural language processing [60,61], agriculture [62,63],
obstacle detection, and learning control policies in robotics [64–66], and spectral and spatial
information processing in remote sensing [67]. It has achieved a promising result in these
diverse fields. Moreover, the development of new deep learning algorithms, new devices
capable of fast deep learning training, is enabling it to work with diverse input data
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including text, images, time series, audio. However, it highly relies on the quantity of the
dataset, which is difficult to collect and time-consuming. This limits the application range
of deep learning.

Figure 2. Deep learning for a sensor-based HAR.

There are two paradigms related to solving sensor-based HARs using deep learning:
data-driven and model-driven. Data-driven approaches treat each input dimension as a
channel. For instance, a three-axis accelerometer data is assumed to have three channels: x,
y, and z. Subsequently, the learning algorithm tries to learn by determining the distinctions
among input data [9]. By using 1D convolution in the temporal window, [38] further
improved it by unifying and sharing weights within a multiple-sensor CNN implementa-
tion. Such approaches ignore the spatial dependence within a sensor and among multiple
sensors when multiple sensors are used.

In model-driven approaches, the input data are reshaped or transformed into a form
that can produce a better result. One method is to resize the inputs to a virtual 2D image
to adopt a 2D convolution. This method usually pertains to non-trivial input-tuning
techniques. In [10], zero pads were introduced into the combined virtual image of the
samples to separate different sensor values from each other. In [11], a different complex
algorithm was also designed to transform the time series into a larger 2D image. Even
though these approaches are better, adding rows of zeros introduces unwanted information,
and the network size increases. Similarly, larger 2D virtual images consume resources,
making it difficult to implement them in actual devices.

RNNs and CNNs are widely used for training end-to-end networks to extract high-
level features. According to a recent survey, the CNN is leading a group of deep-learning
methodologies for HAR. However, in terms of the average accuracy of CNN papers
recorded over the last five years, it falls slightly behind the RNN methods [39]. This could
be improved with a better input adaptation method wherein data instances are prepared
with the CNN learning methodology in mind. Among the previous works, ref. [68] used a
CNN and LSTM (long short-term memory) for emotion detection over multimodal raw
data. Data from different sensors were collected and fused before being assigned to the
deep-learning layers. In [69], a 1D CNN was also used to recognize indoor activities using
data collected from multiple sensors including accelerometers, gyroscopes, a barometer,
and a magnetometer. Another study [70] performed a 2D CNN over the frequency-domain
representation of each tri-axial accelerometer and gyroscope, which were later fused to
obtain the predicted activity. Other studies such as [4,9–11,20,38,71,72] have also employed
CNN-based HAR systems.

On the contrary, RNNs are the second most used neural network models for HAR [39],
in addition to their excellent speech recognition and natural language processing. In [73,74],
a real-time HAR was implemented using LSTM and an SVM, respectively, over raw motion
data. In addition, [44,45], are among the works conducted by HAR using a RNN. A ConvL-
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STM (convolutional-long short-term memory) was introduced in [75] for rainfall forecasting.
It is an LSTM with kernels and convolutions rather than element-wise multiplication.

Unsupervised and semi-supervised learning methods such as an ensemble of au-
toencoders have been introduced recently in HAR recognition [76]. For their specialty in
reducing data dimensionality, autoencoders are good for a lower computational cost. A
similar method, named random projection, used probabilistic methods to classify subjects
and activities by reducing feature dimensions [77].

The restricted Boltzmann machine (RBM) has been also utilized in HAR. RBMs are
non-deterministic generative deep learning models with only two types of nodes—hidden
and visible nodes connected by a fully bipartite graph. RBMs can be trained in supervised
or unsupervised fashions. Varieties of RBM architectures have been used for pre-training
and multi-modal sensor data [78–80]. To enhance the performance of a deep learning
method, some previous studies used a hybrid model where a different neural network
layer is added into the existing network as a complementary [46,81].

Almost all previous studies focused on choosing appropriate neural networks and
selecting the type and quantity of sensors. Little attention has been given to input data
shaping and the real-time verification of developed systems. This paper will positively
contribute to addressing the concerns of HAR systems.

3. Data Collection and Management Methods

The overall process of the methodology used is summarized in the following Figure 3.

Figure 3. System overview.

3.1. Data Collection

Although some HAR approaches can be generalized to various sensor modalities,
most of them are specific to certain types. According to [82], sensors lie mainly in three
modality categories: body-worn sensors, object sensors, and ambient sensors. For their
close contact positioning and capability to capture human kinetics, wearable sensors were
chosen herein and will be discussed below.

Wearable sensors such as accelerometers, magnetometers, and gyroscopes are com-
monly utilized sensor modalities to capture human movement for HAR. The linear acceler-
ation and angular velocity of a person change according to human body movements. Thus,
daily human activities can be inferred from the accelerometer and gyroscope data. Nowa-
days, these sensors are embedded in several electronic devices that are used daily, such
as smartphones, watches, bands, glasses, and helmets. For its omnipresence and reliable
communication feature, a smartphone was used as an IMU sensor (only its accelerometer
and gyroscope, in this case) attached to the waist of the human body, as shown in Figure 4.

Body-worn sensors are widely used in deep learning-based HARs [9,11,21,38,43].
Among these works, the accelerometer sensor is the one most adopted. However, gyroscope
and magnetometer data are frequently used together with accelerometer data in several
HAR studies. Predominantly, activities of daily living and sports are mainly recognized by
the use of these sensors.
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Figure 4. Smartphone (iPhone) attached to the waist as a motion sensor.

An IMU (inertial measurement unit) sensor embedded in an iPhone 7, providing a
3-axis accelerometer and gyroscope data, was employed as a device for measuring the
human motion kinematics. To handle sensor data in a simplified way, an exclusive iOS
application software, shown in Figure 5, was developed with three main functionalities.

Figure 5. Graphical user interface of the iOS application software developed.
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The first function is recording the activity sensor data locally as a CSV (comma
separated values) file for later training purposes. For each subject, the data were saved on
a phone with a unique name. As it could be tiresome to separate different activity data, the
recording was carried out in a manner such that each subject recorded one activity at a time.
This makes the labeling effort easier. Eight daily physical activities, including walking,
jogging, jumping, walking upstairs, walking downstairs, still (standing and sitting), lying
down, and bicycle riding were chosen for this research. By taking into account the speed
or rhythm that humans perform these activities, 50 Hz was chosen as the rate at which
sensor readings were recorded. Unlike most HAR works, an outdoor environment was
chosen and subjects were asked to start and stop the recording without being told how to
perform the activities. A total of eight subjects participated in the data collection process
for approximately 19 min each. An aggregate of approximately 150 min of activity data
were gathered for deep learning training.

The second function of the iOS application is to stream real-time sensor data to a
computer during real-time inferencing. During testing the trained models on the computer,
the smartphone transmits real-time activity data via Wi-Fi to the computer. Hence, both
terminals must be connected to the same wireless router. The rate at which the smartphone
communicates with the computer was at the same rate as the data were collected, which
was 50 Hz. This is how the efficacy of the trained neural network models was validated
using an actual device.

Finally, the third task of the application is real-time activity recognition on the smart-
phone itself. Real-time activity inferencing/prediction was investigated not only on a
computer but also on a smartphone by embedding the model into the application software.
This can be seen in the above Figure 5d.

3.2. Data Preparation
3.2.1. Data Segmentation

As many human activities are a repetition of a single motion (e.g., walking is the
repetition of steps), the large time series data were divided into small data frames by using
a sliding window of a certain time interval. In [83], the cadence of a normal walking person
was observed to be 90 steps/min (0.67 s per step). Considering the frequency of repetition
of all the activities, a 1.2-s sampling window size with 50% overlap was considered so that
activities with a slower period could benefit from a wider range, as shown in Figure 6. A
sampling window size that is too large and too small has a significant effect on the overall
performance of the system. If the size is too large, a single sampled frame could include
multiple activities, which will be wrongly considered as a single activity. On the contrary, a
small window could result in insufficient data for makeup even for a single activity. As
described above, 50 Hz, which indicates 50 sensor readings per second, was set for the
data collection stage. Hence, a 1.2-s shifting/sampling window represents 1.2 × 50 = 60
sensor readings per dataset. This is how datasets are formed for neural network training.
Having a 50% overlap in the shifting window helps us double the quantity of the training
dataset. As shown in Figure 6, an individual dataset is depicted in grayscale image form
by mapping the maximum and minimum values to 0 and 255. A particular Python module
was used to perform this.

To increase the diversity of the datasets and improve the generalization of deep
learning methods, a previous work by [84] proposed the application of translation, rotation
and noise injection during the training and testing of natural images. However, in the
case of virtual images, as shown below in Figure 7, such augmentations could result in a
meaningless dataset as the sensor is fixed in position and orientation, unlike cameras, which
enable us to take pictures from different angles. For example, if we flip a walking dataset
horizontally, it will have a physical meaning of walking backwards which is not a physical
activity. Furthermore, adding more pre-processing would increase the computational cost
during the real-time HAR. Hence, a single augmentation, which is a 50% overlapping of
the shifting window is used to create the raw datasets.



Sensors 2021, 21, 2814 8 of 26

Sensors 2021, 21, x FOR PEER REVIEW 8 of 28 
 

 

3.2. Data Preparation 
3.2.1. Data Segmentation 

As many human activities are a repetition of a single motion (e.g., walking is the 
repetition of steps), the large time series data were divided into small data frames by using 
a sliding window of a certain time interval. In [83], the cadence of a normal walking per-
son was observed to be 90 steps/min (0.67 s per step). Considering the frequency of repe-
tition of all the activities, a 1.2-s sampling window size with 50% overlap was considered 
so that activities with a slower period could benefit from a wider range, as shown in Fig-
ure 6. A sampling window size that is too large and too small has a significant effect on 
the overall performance of the system. If the size is too large, a single sampled frame could 
include multiple activities, which will be wrongly considered as a single activity. 

 
 

 
Figure 6. Mapping a time series data segment into a grayscale image. 

Figure 6. Mapping a time series data segment into a grayscale image.
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3.2.2. Data Representation

To investigate a dataset representation exhibiting superior activity characteristics
during classification, time series data were represented in different formats by transforming
the raw data. Three of the most common time series data representations are appraised
here; these are time-domain (TD), frequency-domain (FD), and wavelet transformation
(WT). Each type of representation is discussed in detail below.

The TD representation is the raw time series sensor data collected from the smartphone
application software by itself, as shown in Figures 6 and 7. For an FD representation, a
Fourier transformation is performed on the given time series. FFT (fast Fourier transforma-
tion) determines the DFT (discrete Fourier transformation) of an input signal significantly
faster than directly computing it by minimizing the number of operations required for a
problem. The frequency domain is particularly vital for breaking down a signal comprising
of multiple pure frequencies. From a frequency perspective, daily activities are repetitive



Sensors 2021, 21, 2814 9 of 26

actions. For instance, walking and jogging both include the cycle of the landing and
swinging of the lower limbs. However, the frequency of these cycles is different in both
activities, wherein it is faster while jogging than while walking. In addition, the magnitude
of the frequency signals from jogging was higher than that of walking, owing to the higher
speed and acceleration that could be captured by the IMU sensor. Thus, when it comes
to daily activities, picking signals with pure frequency values is easier. However, these
activities vary according to their frequencies and magnitude. Therefore, FD representation
(amplitude vs. frequency) is a competitive candidate for a good representation of time
series signals.

The white part of the FD grayscale images in Figure 8 represents higher-amplitude
signals. The magnitude of the amplitude decreased with the brightness of the pixels. Hence,
the figure shows that the stronger signals have a medium frequency, as can be seen from
the white part of the figure. DC components, which have a very small frequency, on the left
side and high-frequency sensor noises on the right part of the figure can be easily observed.

Figure 8. Virtual images of input data representations. TD-SC (time-domain-single channel), TD-DC
(time-domain-double channel), FD-SC (frequency domain-single channel), FD-DC (frequency domain-
double channel), WT-SC (wavelet transformation-single channel), WT-DC (wavelet transformation-
double channel).

From FFT representation, we obtain a frequency spectrum of the real signal but we
do not know when that “frequency” occurs. The time resolution of the signal is lost. To
obtain both frequency and time resolution, we can divide the original signal into several
parts and apply FFT to each part. This is known as the WT. WT is computed for different
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segments of the signal by translating and dilatation factors. While the FFT has a uniform
time–frequency distribution, the wavelet transform provides a multi-resolution analysis.

As can be seen from the FD images in Figure 8, the most important frequencies of
the activities occur around the center of the frequency range. Three-level decomposition
discrete WT, which results in four coefficients (three approximation coefficients and one
detail coefficient), can be accurately able to represent the signals. Hence, a three-level
decomposition was performed on the sensor data. The wavelet coefficients obtained are
shown on the right side of the lower figure of Figure 8.

3.2.3. Data Structuring

The structure of the input data has a significant influence on the deep learning perfor-
mance results. To obtain a better input adaptation, three different input data structures were
studied here. These are unaltered, single-channel and double-channel structured versions.
As described previously, six IMU sensors (three accelerometers and three gyroscopes) were
utilized for data collection.

As each dataset has a length of 60 sensor readings, there are a total of six signals of a
length of 60 readings each. If we arrange them vertically, a 6 × 60 array of data is acquired.
This is denoted as the unaltered version of the input data, where the raw signals are shaped
into a simple array that can be regarded as a virtual image. As the name indicates, a virtual
image does not represent any object’s drawing, but data are shaped in the same manner as
images are represented. As a result, 6 × 60 virtual images were formed, where the upper
and lower 3 × 60 data frames were accelerometers and gyroscope readings, respectively.

To extract more deep features, not only from the temporal axis but also from the spatial
correlation of the sensor signals, each sensor’s data frame (3 × 60) is restructured into a
2D virtual image of shape 7 × 60. This is produced by duplicating the signals once more
to obtain uniformly distributed signal interdependencies when it is applied for neural
network training. Duplicating it more than twice would add unwanted redundancy. On
the contrary, leaving it unaltered would result in an untimely disappearance of features
before being exposed to the network. Hence, to avoid these issues, a new restructuring is
introduced, as shown in Figure 8. When both virtual images of the two sensors are piled
on top of one another to create a 14 × 60 activity virtual image, which is denoted as SC
(single-channel).

For time series signals, the correlation among signals is one of the vital features that
need to be extracted for effective neural network classification. Hence, the raw sensor data
are restructured, as shown in Figure 8. The data of both sensors are arranged in the x, y, z, x,
y, z, x order. The correlations can be between two signals (e.g., x-y, y-z) and among all three
(e.g., x-y-z). If we assume only the correlation of two spatial signals of one of the sensors,
the output will be xy, yz, zx, xy, yz, and zx. Three duplicate correlations were obtained.
The duplication will help us in that important features of the input signal’s traits will not
vanish early in the network before being extracted, especially when using the CNN, where
pooling layers are employed to significantly reduce the data dimension. Furthermore,
features are not produced solely from the correlation of two signals; hence, the duplication
will help the network to extract other deeper features in the later neural network layers by
keeping the signals’ information alive uniformly throughout the network.

Finally, the 7 × 60 data frames of both the accelerometer and gyroscope are stacked
side by side to form a two-channel virtual image, denoted as DC (double-channel). The
channel is introduced to avoid mixed-up convolution of different sensor measurements
(accelerometer and gyroscope) in the same kernel of an early stage of the network. Hence,
different types of data on different channels can be learned using independent kernels.
Generally, data structuring considers spatial and temporal correlations, computational time,
learning sensor-specific features separately, and on-device applications into consideration.

Finally, considering the three data representations structured in three forms of virtual
images in Figure 8, the input data adaptation structure is summarized, as shown below
in Figure 9.
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Figure 9. Input data representation and structuring.

4. Neural Network Architecture

Modeled to mimic the human brain operation, a neural network comprises thousands
or even millions of nodes that are densely interconnected with each other. Usually, neural
networks are arranged into layers of nodes, and they are “feed-forward,” meaning that
data move through them from the input side to the output side in only one direction. As
our brain utilizes neuron firing to perform various tasks and processes, neural networks
use an activation function, that decides whether it should fire (activate) a node.

There are several activation functions, that perform well with different deep learning
problems. Among these functions, the most popular are step, linear, sigmoid, tanh, ReLU
(rectified linear unit), and softmax. These are their associated pros and cons. In particular,
ReLU can work effectively in multiclass classification with a lower probability of gradient
vanishing. In addition, as all negative inputs are mapped to zero, the network can have
sparse activation. Imagine a network with randomly initialized weights and almost 50%
of the network yields zero activations owing to the ReLU characteristics. This indicates
that fewer neurons are firing (sparse activation), and the network is lighter. Usually, the
number of nodes is in the hundreds of thousands if not in millions. Hence, employing
ReLU, which is a computationally less expensive mathematical operation, has a significant
effect on the computation time of the entire network. Softmax was also used on the last
layer of the neural networks to predict the likelihood of predicting a class.

During training, methods such as exponentially decreasing the learning rate and batch
normalization were used to speed up the training process. Selecting the right learning rate is
difficult because a too-small value may result in a long training process that could get stuck,
whereas a considerably large value may result in learning a sub-optimal set of weights too
fast or swings around the optimal solution which is an unstable training process.

In the first steps of the training process, the weight values are most likely too far from
the optimum values. Hence, the learning rate should be relatively large at first and as the
training progresses, we want the learning rate to be smaller so that we can jump over the
best possible solution. The learning rate initially set to 0.0001 was exponentially decayed at
a rate of 0.9, with a step size of 1000.

Batch normalization is a technique for training very deep neural networks by standard-
izing the inputs to a layer for each mini-batch dataset. It reduces the effect of the internal
covariance shift of activations, which forces each mini-batch input of a layer to have similar
distribution throughout the hidden layers, as described in the original paper [22]. This
stabilizes the learning process and reduces the number of training epochs required to train
deep networks.

All parameters of the neural network models were updated through the Adam opti-
mizer using the back-propagation principle [85]. A mini-batch size of 50 was selected to
train the networks for approximately 100 epochs. The exponentially decreasing learning
rate parameters, mini-batch size, LSTM units, and other hyperparameters were determined
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after several training trials. As a result, the trial-and-error method helped us to find out
model parameters that result better and smoother results.

4.1. Convolutional Neural Network

A CNN can successfully capture the spatial and temporal dependencies in an image
through the application of relevant filters. It is composed of convolution layers, pooling
layers, and fully connected layers. The convolution layers are the core part of the CNN,
where the dot product of weights (kernels) and input data followed by a ReLU function
are performed. The kernels are usually smaller in size than the input data and must move
from left to right, starting from the top part down to the bottom depending on the shifting
parameter known as stride that decides the number of steps the kernel has to move between
convolutions. The activation function then performs an element-wise operation on each
input of the corresponding layer.

The other part of the CNN model is a pooling layer that follows the convolution layers.
The pooling layer is responsible for reducing the spatial size of the convolved feature. This
decreases the computational power required to process the data through dimensionality
reduction. Furthermore, it is useful for extracting dominant features that are rotational and
positional invariant, thus maintaining the process of effectively training the model. There
are two types of pooling methods: max pooling and average pooling, where the former
takes the maximum value, and the latter performs an average over the pooling window.
As there are not many extreme features in most daily activities’ datasets, average pooling
was chosen.

Finally, an FC (fully connected) and an eight-class softmax classifier are added at the
end of the network. The FC is where the multidimensional array of data is flattened and
provided to the classifier.

The softmax function is a function that transforms a vector of “k” real values into
a vector of “n” real values whose sum is 1. The input values can be positive, negative,
zero, or greater than one, but the softmax transforms them into values between 0 and 1 so
that they can be interpreted as probabilities. The class with the highest probability value
was deemed to be the predicted class of the input data. The entire CNN model is shown
in Figure 10.

Figure 10. SC-CNN model. Conv = convolution layer, pool = pooling layer, DL = dense layer (fully
connected), and SMC = softmax classifier.

Owing to the three types of data structuring, two CNN models were prepared: single-
channel CNN (SC-CNN) and double-channel CNN (DC-CNN). The former is implemented
over the unaltered and single-channel structures of the three data representations. The
latter is performed over double-channel versions of the data structures. For the SC-CNN in
the first convolutional layer, there are 20 kernels of size 2 × 2 × 1 with a stride length of 1
for all axes, as shown in Figure 10. This configuration allows us to examine the important
characteristics of the relation between any two signals of the input activity virtual image
data. This produces features from the correlation of x-y, y-z, and z-x repeated twice,
forming six rows. It is then followed by an average pooling layer of a 2 × 4 window size.
After the pooling, an averaged result of the input data is obtained, which are the averages
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of x-y and y-z, z-x and x-y, and y-z and z-x. Taking one of the averages, x-y and y-z, it
will be mainly influenced by the y-signal’s high features, as y exists on both. The same
applies to the other two averages which are mainly influenced by the sharp features of x
and z. The second convolution layer takes the output from the first layer and is convolved
by another 40 3 × 3 × 20 kernels. The second layer calculates the features based on the
interdependence of all combined signals. Again, it is accompanied by a 1 × 2 average
pooling layer. Except for the kernel size of the first layer, which is 2 × 2 × 2, the SC-CNN
structure also applies to the DC-CNN model.

Each convolutional layer performs a 2D convolution on each of its input channels
followed by ReLU, which is a nonlinear activation function. The average pooling method
reflects the effect of each element within the pooling window on its output map. The
dense layer then vectorizes the result of the second average pooling into a 256-dimensional
feature vector in the DC-CNN and 512 in the SC-CNN. Finally, these generalized vectors
are fed into an eight-class softmax layer, which determines the activity type based on the
probability distribution of the activity classes. The neural network was trained with a
mini-batch size of 60 and an exponentially decaying learning rate to speed up the training.

4.2. Long Short-Term Memory

Unlike other feedforward neural networks, LSTMs have feedback connections to help
them relate past and present information. Hence, they are capable of learning long-term
dependencies with the help of memory cells, according to previous works [86]. Unlike
other traditional RNNs, LSTMs have four neural network layers, mostly composed of
sigmoid and tanh layers interacting in a special fashion. A single LSTM cell has two extra
inputs other than the normal input dataset, namely the cell state and cell output from the
preceding cell. As a result, it yields two outputs: the cell state and the cell output. An
LSTM model can support multiple parallel sequences of input data, such as each time
series’ IMU motion data. The network learns to extract features from the sequences of the
signals by looking into their temporal dependence. This enables them to learn directly
from raw time series data.

For their good record in sequential data learning, LSTMs are relevant network models
for IMU sensor datasets training. As mentioned in Section 3, our datasets have a length of
60 sensor readings on the temporal axis. Hence, each dataset was divided into 60 time steps
for LSTM network training. Each IMU sensor value in each dataset was fed to 100 hidden
units of the LSTM cells. These cells were accompanied by a dense layer and an eight-class
softmax that output the appropriate activity class corresponding to the input. The network
used is shown below in Figure 11.

Figure 11. LSTM Network (x = input, C = cell state, O = output, FC = fully connected).
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4.3. ConvLSTM

ConvLSTM was developed by [75] for predicting precipitation intensity nowcasting.
It is a type of recurrent neural network and is used especially for spatiotemporal prediction,
which has convolutional structures in both the input-to-state and state-to-state transitions.
It is very similar to LSTM units, except in that the internal element-wise operations are
replaced by convolution operations. As a result, the input data retains its dimensions while
it passes through the LSTM network units. In our case, a 1 × 3, 64 convolution kernels
were used to learn the dataset features.

5. Experimental Results and Discussion

The deep-learning algorithms were programmed and trained on a computer with
16GB RAM, 3.6-GHz Core-i7 embedded processor, and an NVIDIA GeForce GTX type GPU
(graphical processing unit) using Python 3.6. A summary of the experimentation setup
and devices used is shown below in Table 1. For the case machine learning libraries, there
are several open sources that provide lower and higher APIs (application programming
interfaces) to deep learning methods. For its user-friendliness and simplicity, a high-level
API named Keras is used for training and inference. Keras is a high-level API of TensorFlow:
an approachable, highly productive interface for solving machine learning problems, with
a focus on modern deep learning. It provides essential abstractions and building blocks for
developing and shipping machine learning solutions with a high iteration velocity. Keras
empowers users to take full advantage of the scalability and cross-platform capabilities of
TensorFlow running on CPUs (central processing units), TPUs (tensor processing units),
and on clusters of GPUs. The trained models can be saved to run them later on a browser
or on a mobile device [87].

Table 1. Devices used for experimentation.

Devices

G-Gear eX.Computer
Gaming Series iMac 27 iPhone 7

Specifications and
installed software

• 64-bit Windows OS system
• Intel® Core™ i7-7700 CPU @360 GHz
• 16GB RAM
• 16GB GeForce GTX 1080 Graphics
• Keras 2.2.4 installed through Anaconda®

• Python 3.6

• macOS High Sierra
• Xcode 10.0
• Swift 4
• CocoaPods 1.6.0
• BlueSockets 1.0 [88]

• iOS: 12.1
• 32 GB memory

Purpose Training and testing iOS application development IMU sensor handling
and real-time HAR

In our dataset, eight male subjects participated in the data collection process for the
eight activities. The subjects had an age range of 25 ± 4 years and were from Asia, Africa,
and America. The total number of datasets recorded was 14,962, which were split into
11,962 (79.9%) training datasets, 2000 (13.4%) validation sets, and the remaining 1000 (6.7%)
development sets. The entire dataset is composed of 19.8% walking, 9% jumping, 13%
upstairs, 12.8% downstairs, 10.4% jogging, 14.5% bike riding, 11.5% still, and 9% lying
down data. The training datasets were the main part of the datasets used to train the neural
network. In addition, every time the model is updated during its training phase, the newly
updated model is tested on the validation datasets. The effectiveness of a model can be
investigated based on its performance on the validation datasets. Often, a significant gap
between the training and validation performances can occur. The model can overfit the
training data but not the validation data. In contrast, it can perform poorly with training
data owing to its inability to capture the relation between the input and output data. This
is known as an underfitting model. Hence, large, and diversified datasets are required for
model training to perform well on both seen and unseen data. Furthermore, the unseen
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development datasets were used to confirm the generalization capability of the trained
model to new input data.

5.1. Network Performances

The performances of the neural network models for the different data structuring
methods are presented in Table 2. In addition, the validation accuracies, the time taken per
training step, and the number of trainable parameters of each network are shown. For the
on-device testing of the models, the computational time and compactness of the model are
among the major factors to be considered. Depending on both the time spent for the input
data to propagate until the end layer and the performance accuracy of the networks, it is
clearly shown that a CNN for a TD-DC performs well. Graphically, the training accuracies,
validation/testing performance, and loss of this network together with the others for TD
datasets are shown in Figure 12.

The results did not under-fit or over-fit for any of the data representation and neural
network combinations since a good result was obtained for both the training and validation
datasets. For comparison, only the validation accuracies and respective losses of the
different models are shown in Figure 12 (lower two graphs). A validation accuracy of
99.4% with an optimal number of parameters and computational time was achieved. This
demonstrates that time series representation with the DC-CNN network can perform quite
well in classifying motion data. Hence, this neural network model was chosen as the best
model for on-device testing and inferencing. This was tested on both the smartphone and
the computer for real-time recognition.

To indicate the improvement obtained from the proposed data structuring, raw data
of size 6 × 60 were also used to train the CNN network. As it is a single-channel dataset,
SC-CNN was used for training. This result is compared with the DC-CNN result of the
TD-DC dataset, as depicted in Table 2. Table 2 shows that, restructuring the raw data into
a double-channel form enhanced the accuracy results. The validation accuracy increased
from 98.6% to 99.4%.

Table 2. Comparison of the models for 100 epochs.

Network Data Representation Validation
Accuracy (%)

Time/Step
(Number of Parameters)

SC-CNN

TD-SC 98.89

240~265 µs (1,176,972 parameters)

FD-SC 97.90
WT-SC 98.46

TD-Unaltered 98.60
FD-Unaltered 98.30
WT-Unaltered 97.80

DC-CNN
TD-DC 99.40 184.6 µs (621,284 parameters)

FD-DCWT-DC 98.40
98.56

LSTM
TD-SC 99.38

2 ms (193,508 parameters)FD-SC 97.06
WT-SC 97.01

ConvLSTM
TD-SC 99.20

510 µs (2,560,140 parameters)FD-SC 98.83
WT-SC 98.86

Finally, the DC-CNN model was evaluated using the development datasets. A confu-
sion matrix is used to display its generalization performance on completely new datasets,
as shown in Table 3. Each diagonal of the confusion matrix cell quantifies the number of
correctly predicted input datasets of an activity. The other cells indicate the number of
incorrectly classified development datasets. For instance, if we take the cell on the third
row and column one, it is assigned a value of “3”, which is interpreted as three upstairs
ascending datasets that were wrongly predicted as a walking activity.
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Figure 12. (a) DC-CNN accuracies over TD-DC; (b) validation accuracies; and (c) loss graphs of
different models for validation TD dataset.

Table 3. DC-CNN confusion matrix for the development dataset.

True label

Walking 185 0 3 1 0 0 0 0
Jumping 0 87 0 1 0 0 0 0
Upstairs 3 0 139 0 0 0 0 0

Downstairs 0 0 0 116 0 0 0 0
Jogging 1 0 0 0 109 0 0 0
Cycling 1 0 0 0 0 141 0 0

Still 0 0 0 0 0 0 109 0
Lying 0 0 0 0 0 0 0 104

Walking Jumping Upstairs Downstairs Jogging Cycling Still Lying

Predicted label
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5.2. Public Datasets

Even though an excellent result was obtained from the datasets collected in this
research, it is always good to re-evaluate the methodologies discussed so far with other
related previous works. There are a couple of HAR works on the Internet, but those with
open access public datasets were chosen to investigate the methods developed in this
research. Four popular public datasets were selected to evaluate the DC-CNN model
and TD-DC data structuring methods. Similarly, public human activity datasets were
collected from a smartphone. The datasets are the UCI dataset as found in [11], the WISDM
public dataset from the work of [23], the physical activity recognition dataset [12], and
UniMib SHAR [89].

5.2.1. WISDM Dataset

This was collected and organized by Fordham University’s Wireless Sensor Data
Mining Laboratory. However, unlike the other public datasets, this dataset contains only
the accelerometer data of a smartphone connected to the waist. They used a 20 Hz sampling
rate to record the motion data. Hence, when a 1.2 s shifting window was used to downsize
the data into dataset pieces, a single dataset had a length of 24 accelerometer readings. In
addition, a 50% overlap of the sampling window was applied when dividing the dataset
into small frames. The fact that this dataset has only accelerometer sensor values forces us
to structure it into a single-channel of 7 × 60 virtual image form. Based on this, an SC-CNN
model with TD-SC data structuring was utilized for classification. In [23], a J48 decision
tree algorithm was used for classifying the WISDM dataset, as shown in Table 4. The same
dataset was used to fit the SC-CNN model and the result is also shown in Table 4, where
our method is significantly better in the classification of the activities.

Table 4. Comparison of different models over different datasets.

Dataset Paper by Data Structure Network Accuracy (%)

Own This paper TD-DC DC-CNN 99.40

WISDM [23]
[23] Heuristic features J48 decision tree 90.04

This paper SC-TD (accelerometer) SC-CNN 97.08

UCI [11]
[11] 2D FD Deep-CNN 95.18
[20] 1D TD CNN 94.79

This paper TD-DC DC-CNN 97.53

Physical activity
recognition dataset [12]

[12] Heuristic features Random forest 89.00
This paper TD-DC DC-CNN 94.10

UniMiB [89]
[89] flattened raw data kNN 88.51
[90] Raw data Neural network 90.00

This paper TD-SC SC-CNN 95.25

5.2.2. UCI Dataset

This work was conducted at the University of California’s Center for Machine Learning
and Intelligent Systems. It was used in [11] for wearable sensor-based HAR work. Fourier
transform was carried out over the raw data and restructured into a 36 × 68 dimension
array to fit a D-CNN (deep-convolutional neural network). Ref. [20] also studied the 1D
CNN implementation over a six-input channel (three-accelerometer and three-gyroscope).
The sampling rate for the data collection of the UCI dataset was 50 Hz, which is the same
as this study. Hence, a TD-DC structuring was used to train the DC-CNN to compare
the results, as shown in Table 4. However, our study shows its superiority over the
original work.
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5.2.3. Physical Activity Recognition Dataset

This is one of the recent datasets released and it includes data for eight daily physical
activities with seven body-worn sensors. Among the sensors, only the chest sensor’s
accelerometer and gyroscope data were captured to make an equivalence with what this
paper is using as motion input data. Fifteen subjects, seven females and eight males with
an age of 31.9 ± 12.4 years, a height of 173.1 ± 6.9 cm, and a weight of 74.1 ± 13.8 kg
participated in this dataset. Each subject performed each activity for approximately 10 min,
and a total of 1065 min of data were acquired. The random forest learning method was
used to classify the manually extracted time and frequency features of the motion data [12].

5.2.4. UniMiB SHAR Dataset

This dataset includes a total of 11,771 accelerometer data samples from 30 subjects
performing daily life activities and falling motions. The daily living activity dataset
comprised nine types of activities. The classification task of this dataset was originally
benchmarked with four different classifiers and two different feature vectors [89]. To
compare with these methods, TD-SC structuring accompanied by SC-CNN training was
performed on this dataset, as shown in the results in Table 4.

5.3. The Application Software

The Core ML and Vision APIs were released by Apple during the iOS 11 announce-
ment. Core ML provides life to machine learning-based applications so that developers
can bring machine learning models into their iOS applications. It is optimized for the
on-device performance of a broad variety of model types by leveraging Apple hardware
and minimizing memory footprint and power consumption [91]. Recently, Apple has
launched an on-device training in Core ML, starting from iOS 13. This paves the way to
develop intelligent systems on Apple-based products.

The smartphone used in this research was an iPhone 7, running iOS 12.1. As discussed
in Section 3.1, the application has three functions, as shown below in Figure 13. However,
in this section, the third function which is real-time HAR is discussed. To integrate a deep
learning model with Core ML, the model should first be converted to a Core ML Model
format, which can be manipulated using the Core ML API in the Xcode IDE. Xcode IDE is
a platform used in developing applications for Apple products.

Figure 13. Application program structure.

Depending on the deep learning library, a previously trained model can be converted
to a Core ML model using built-in or third-party converters. In our case, Keras’ built-in
library, Core ML converter [92], was adopted to convert the Keras model to a Core ML file.
The conversion process is illustrated in Figure 14. The generated “mlmodel” (an extension
of Core ML files) file was then integrated into an iOS application by the Core ML API of
the Xcode IDE. After the neural network operation over the continuously fed sensor data
was performed, the result was displayed on the screen of the iPhone as a class label and
confidence level.
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Figure 14. Integration of Keras model and the application.

5.4. Real-Time Recognition

The proposed system was examined in real-time and showed significant results.
Before exporting the trained Keras model to the iOS application, it was first tested on
a computer for real-time recognition, using the data streaming functionality of the iOS
application developed. The phone sends data over a TCP (transmission control protocol) to
the computer, where the computer uses a pre-trained model to classify activities in real-time.
For the computer, socket programming was used to handle the communication system.
In other words, the smartphone was programmed as a server for sending the sensor data
while the computer was running a client Python program receiving data at 50 Hz, which is
the same rate as the data were first recorded for training. For communication between the
devices to be effective, both the smartphone and the computer were connected to the same
Wi-Fi or local hotspot connection. Once the connection was established, the received data
underwent restructuring to the TD-DC form and neural network operation to output the
activity class with its estimated confidence level as shown in Figure 15. Averagely, 80 ms
was elapsed for a single dataset to propagate from the data reception to the predicted
activity printing.

Figure 15. Cont.
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Figure 15. Real-time activity recognition by a computer.

As previously discussed, the lighter and effective model, DC-CNN, was incorporated
into the iOS program. In the case of using only a smartphone, the phone’s motion data were
structured into a TD-DC structured array, using an Xcode library named “MLMultiArray,”
and provided as an input to the model. Finally, the type of activity and confidence level
are displayed on the screen of the smartphone in tabular form. For both devices, receiving
data stream was stopped once previously obtained data started undergoing the inferencing
process. The real-time data reception was resumed once the recognition process was
completed. This did not introduce too much effect as not a lot of data were ignored in that
short time frame. Some snapshots of the iOS application recognition results in real-time
are shown in Figure 16.

For new subjects, who did not participate in the data collection, the results were
satisfactory for most of the classes. Some of the iOS application recognition results in
real-time are shown in Figure 16.
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6. Conclusions and Future Works

In this study, deep learning of neural networks for HAR was investigated using
different devices. A considerable amount of human activity data are required for training.
For its omnipresence and convenience, a smartphone was used as a motion sensor to record
daily human activities. The smartphone was attached to the waist of the subjects to track
the body trunk’s motion. Only the data from the accelerometer and gyroscope sensors were
gathered, which were downsized later into 1.2 s dataset partitions as preparation for deep
learning. The tiresome labeling process was alleviated using the developed application
software for the smartphone.

As neural networks learn by distinguishing the deep features of the input data, var-
ious input data structuring methods have been proposed and evaluated to determine
the best way to organize input data. In particular, each sensor datum was organized
into a 7 × 60 data array formed by duplicating the tri-axial signals. Later, the 7 × 60 data
frames from each sensor were combined into single-channel or double-channel virtual
2D image forms. In addition, to the original time series data, two transformations,
i.e., Fourier and wavelet transformations were generated on the collected data to increase
the data representation.

These different data representations and structures were used to train various neural
network models. A structuring method that allows for the extraction of correlation features
from each signal independently works well during training. This was confirmed from the
validation accuracy of the TD-DC structuring, which was 0.8% higher than the validation
accuracy of the unaltered version. In terms of accuracy, computational cost, and training
speed, a CNN for the time-domain double-channel (TD-DC) representation input data (DC-
CNN), demonstrated better performance than the others. Thus, it remarkably improves
the performance of HAR compared to previous state-of-the-art techniques.

To check its effectiveness on other HAR datasets, the methodology was further evalu-
ated using four public HAR datasets. Consequently, it significantly exceeded the related
works carried out on public datasets. Furthermore, this model was tested on a com-
puter for real-time HAR and later integrated into a smartphone application. As a result,
satisfactory results were achieved for both devices. This demonstrates the practicabil-
ity of the proposed methodology. Hence, the system can be adapted to different fields
where human motion monitoring and analysis are essential, such as safety, healthcare, and
human–robot interaction.

Although there has been advances with HAR at the research level, HAR has not
made much advancement in real-world applications. Various factors contribute to this
phenomenon. However, there is a lack of research focusing on on-device real-time HAR
implementation. This, in turn, restricts our knowledge of the challenges and limitations
of real-time HAR monitoring. This research will be a basis for further on-device HAR
implementations so that we can use HAR on human–robot interaction, society health, and
general well-being.
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This study had some limitations. The first is that it was performed by attaching
a smartphone to the waist of subjects, which is not convenient placement and does not
provide comfort to people when adopted for real-world applications. Besides, the proposed
system was not applied to data collected from sensors attached to other positions of the
human body. Second, this method was not tested on datasets acquired from multiple
sensors. After all, there are more than eight human activities, and an increased number
of sensors are required to broaden the range of activity recognition. Lastly, the neural
network, DC-CNN, is an excellent choice for spatial correlation feature extraction, which
could overlook temporal features.
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