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Abstract: Recently, unmanned aerial vehicles (UAVs) have been applied to various applications.
In order to perform repetitive and accurate tasks with a UAV, it is more efficient for the operator to
perform the tasks through an integrated management program rather than controlling the UAVs
one by one through a controller. In this environment, control packets must be reliably delivered to
the UAV to perform missions stably. However, wireless communication is at risk of packet loss or
packet delay. Typical network communications can respond to situations in which packets are lost
by retransmitting lost packets. However, in the case of UAV control, delay due to retransmission is
fatal, so control packet loss and delay should not occur. As UAVs move quickly, there is a high risk
of accidents if control packets are lost or delayed. In order to stably control a UAV by transmitting
control messages, we propose a control packet transmission scheme, ConClone. ConClone replicates
control packets and then transmits them over multiple network connections to increase the probability
of successful control packet transmission. We implemented ConClone using real equipment, and we
verified its performance through experiments and theoretical analysis.

Keywords: UAV; Multipath Transmission Control Protocol; reliable transmission

1. Introduction

Recently, unmanned aerial vehicles (UAVs) have been used for various studies and
services. Additionally, service providers are looking for ways to apply UAVs with high
moving speed and three dimensional movement to various tasks [1–3]. A UAV can be
equipped with a small computing board, which enables a variety of tasks, such as collabora-
tion with existing applications [4], rapid object delivery [5] or a wide range of information
gathering or sharing tasks [6,7]. UAVs for specific tasks are often managed by a ground
control system (GCS) rather than being controlled by each operator one by one [8,9]. In or-
der for the GCS to control the UAV, it must transmit its current status to the GCS, and the
GCS controls the UAV maneuvers by transmitting control packets to it. However, wireless
networks for controlling UAVs are likely to lose or delay control packets due to unstable
network environments. As the UAV moves with very high speed, delayed transmission of
control packets can lead to fatal accidents. Therefore, transmission of control packets must
be fast and reliable. In addition, since it is important that control messages arrive within
the time limit, the environment for transmitting control messages should be in the domain
of a Time Sensitive Network (TSN). Based on these observations, we propose ConClone, a
scheme for control packet transmission in order to reliably transmit control packets to the
UAV over TSN.

ConClone is based on the Multipath Transmission Control Protocol (MPTCP), which
can maintain multiple connections simultaneously through multiple interfaces [10]. Mul-
tiple interfaces used in MPTCP can use different frequency bands or combine different
interfaces (e.g., UWB + Wi-Fi, LTE + Bluetooth and wireless + wired) to avoid channel
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collisions or interference. MPTCP can continue to communicate through other connec-
tions, even if the communication environment of some connections is degraded. However,
MPTCP cannot prevent already transmitted packets from being delayed or lost. To solve
these problems, ConClone sends replicated control packets to the UAV through different
connections. The UAV exchanges with the GCS various data such as position informa-
tion [11], captured videos [12], sensor information [13] or information of nearby UAV
during maneuver [14]. Replication of all packets causes a large amount of unnecessary
transmissions, but ConClone reduces the burden on the network by selectively replicating
control packets only. With ConClone, we can increase the reliability of UAV control by
increasing the control packet delivery rate. The improvement of the control packet trans-
mission rate, as a result, increases the probability that the control packet will arrive in time.
It is possible to implement a TSN for UAVs through ConClone, increasing the stability of
the UAV control. We implemented ConClone on real devices and proved its performance
through experiments. Moreover, we theoretically analyzed ConClone to demonstrate the
performance of ConClone.

The main contributions of our paper are summarized as follows:

• To increase the maneuver reliability of UAV, ConClone reduced the loss rate of control
packets by transmitting replicated control packets through multiple connections.

• ConClone replicates only control packets to minimize the overhead of the network.
• ConClone has been implemented on a real device and has proven its effective perfor-

mance through experiments.

This paper is organized as follows. The related work is described in Section 2. Section 3
describes the concept of ConClone. Section 4 analyzes the expected performance of ConClone
theoretically. Section 5 describes the experimental setup and the performance evaluation of
ConClone. Section 6 concludes the paper.

2. Related Work

This section describes studies similar to the proposed ConClone. There are some
studies to reduce the transmission delay by modifying the communication scheme in
the transport layer or the application layer. Dudek et al. proposed a system to reduce
the delay by disabling Nagle’s Algorithm [15] for robot control systems [16]. Nagle’s
algorithm collects data packets in a buffer instead of immediately transmitting them.
When a certain amount of data are collected or an acknowledgement is received, the
data are bound in packets and transmitted. Nagle’s algorithm has the advantage of
increasing the efficiency of the network, but it has the disadvantage of increasing the delay.
However, disabling Nagle’s algorithm increases the network congestion, which could
cause overall throughput degradation. There are several studies to increase the stability
of wireless network against packet loss or delay through feedback control in networked
control systems (NCS) [17–19]. However, they cannot be directly applied to TCP, especially
MPTCP, since their feedback control scheme should be embedded into the TCP of the
network protocol stack within the operating system, which is not easy, and it should be
allowed to access physical layer information, which is forbidden in the layered network
protocol architecture. Nie et al. suggested an improved packet retransmission scheme [20].
This scheme was based on a multi-hop efficient transmission network platform composed
of multiple wireless nodes. When the server received multiple data sets, this scheme
suggested sending the number of lost data packets in a single ACK. This reduction in the
number of ACKs had the effect of reducing traffic in a multi-hop environment. Rana et
al. suggested a method to increase transmission reliability through multiple transmission
attempts in UAV communications [21,22]. In this paper, fault analysis was carried out and
it was suggested that 11 attempts were required for a 99% success rate of data transmission.
However, if there are 11 redundant transmissions in a typical single-path communication,
the overall throughput would be inevitably reduced. As a result, this paper suggested
that it is very difficult to maintain high reliability in a single-path communication. In
addition, a variety of studies have been conducted to cope with packet loss, such as
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switching techniques [23], building multiple sub-systems for reliable transmission [24,25],
and analyzing packet loss rates [26,27]. In the physical layer, transmission errors could
be detected using a channel coding scheme [28] or a hybrid automatic repeat request
(HARQ) [29].

There are studies to improve the packet transmission reliability of control packets using
MPTCP. Sayit et al. introduced various MPTCP schedulers [30]. In order to utilize multiple
paths, the scheduler that could allocate packets to transmission path has been developed in
various ways. The authors analyzed the reliability of MPTCP by analyzing nine different
schedulers. In addition, Mondal et al. proposed an MPTCP scheduler that could allocate
a dedicated connection to the control packet and could make changes to another sub-
socket when there was a problem with the primary connection [31]. Additionally, Rao et al.
proposed to use MPTCP for wireless communications of robots/UAVs [32]. They compared
links using different MPTCP algorithms (BALIA, LIA, OLIA and WVEGAS) to links in
a single TCP and demonstrated that MPTCP could provide improved stability in the
conductivity of robots/UAVs. However, although these schemes could guarantee the
throughput of control packets, data packets would have fewer available connections
than the existing MPTCP. Therefore, these schemes are not able to fully utilize multiple
connections, which are the advantages of MPTCP. Jung et al. proposed a scheduler that
could distribute data to each connection based on response times, including computing,
transmission and I/O times [33]. The proposed scheduler could guarantee throughput due
to high bandwidth usage. However, instead of high utilization of multiple connections,
the proposed scheduler could not guarantee reliable transmission of specific packets
(e.g., control packets). Vu et al. suggested redundant MPTCP schedulers for desired packet
latency. They estimated the latency of TCP connection and used replicated packets to
provide reliable data transmission [34]. The scheme they proposed can be effective in
networks that require large amounts of data transmission. However, it is not possible to
fully guarantee the robustness of the control packet transmission in the limited data capacity
of the wireless connection, because the priority is not considered for the control packet.

Compared to related work, ConClone has advantages in various aspects. ConClone
is based on MPTCP’s default scheduler, so the throughput is not degraded. In addition,
ConClone minimizes the network burden by replicating only the control packets, which
occur far less frequently than normal data packets. Overall, ConClone can maximize the
throughput of data packets using MPTCP while minimizing the delay and loss that can
occur in control packet transmissions.

3. ConClone

This section describes the ConClone concept we implemented. Additionally, we de-
scribe in detail how ConClone works in the environment where a GCS remotely controls a
UAV.

3.1. Packet Replication

The control packet contains the control information necessary for maneuvering the
UAV. Considering the movement speed of the UAV, the control packet should reach the UAV
without being lost or delayed. For this purpose, when the control packet is replicated and
transmitted, the delivery probability of the control packet can be increased. However, it is
difficult to cope with the delay of a packet only through the technique of simply replicating.
Therefore, ConClone uses the multipath routing technique described in Section 3.2.

3.2. Packet Transmission through Multiple Connections

ConClone is based on MPTCP. With MPTCP, data packets can be delivered to the
receiver through multiple connections. However, when the network environment of a
specific connection deteriorates, packets with deteriorated connections are delayed, as in
normal network communication. The existing MPTCP is difficult to prevent data delay
caused by changes in the network environment due to its reactive behavior. Even if
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the packet replication method shown in Section 3.1 is used, if the network environment
of the connection transmitting redundant data is deteriorated, all redundant data are
delayed. This problem occurs in the MPTCP default scheduler. The default scheduler
selects a connection for packet transmissions based on Smoothed Round Trip Time (SRTT).
This scheduler sends more packets over better connections and the overall throughput of
packet transmissions is high. However, since it takes time to detect the performance of
each connection and re-select the connection, replicated packets are likely to be transmitted
through a single connection rather than various connections. With a round-robin scheduler,
a replicated packet can always be transmitted through another connection. However,
because the round-robin scheduler does not consider the quality of the connection, the
overall throughput is lower than the default scheduler based on SRTT.

Like ConClone, there is a redundant scheduler that replicates data to increase the
probability of receiving data. The MPTCP’s redundant scheduler transfers all packets by
replicating them equally to multiple paths. With a redundant scheduler, control packets
are replicated to each transmission path, hence the success rate of transmitting control
packets. However, because the redundant scheduler replicates both the control packet and
the data packet, total throughput is lower than the default scheduler of MPTCP. To show
the performance difference between the default scheduler and redundant scheduler, we
experimented on actual MPTCP transmission in the experimental environment with two
transmission paths. Figure 1 shows the throughput difference between the default sched-
uler and the redundant scheduler. The overall size of the data packet, including video or
collected sensor information, is bigger than the control packet containing moving coordi-
nates or commands. However, the redundant scheduler replicates and transmits not only
control packets but also data packets. Therefore, the redundant scheduler is less efficient
than the default scheduler when transferring packets, which can reduce the transmission
speed of the control packets.

Figure 1. Throughput comparison of Multipath Transmission Control Protocol (MPTCP) schedulers.

To solve these problems, ConClone transmits general data packets based on a default
MPTCP scheduler, which guarantees throughput. Additionally, the replicated control
packet is distributed to all the connections by ConClone . With ConClone, at least one control
packet arrives at the receiver without delay, unless the transmission performance of all
connections is deteriorated. ConClone is the scheme for preventing the loss and delay of
control packets by transmitting replicated control packets through multiple connections.
Thus, it is possible to achieve a high transmission success rate for control packets while
ensuring high throughput of data packets.
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3.3. Design of ConClone

MPTCP is implemented in the transport layer. The data packet generated in the
application layer is transmitted to the transport layer, and the transmitted data packets are
distributed through the MPTCP scheduler to a sub-socket that manages each connection.
As shown in Figure 2, ConClone is implemented between the MPTCP scheduler and the
sub-socket. ConClone analyzes packets to find the control packet and applies the ConClone
scheme to the control packet only. Additionally, as shown in Figure 2, ConClone consists of
a packet selector and a socket selector.

Figure 2. The design of ConClone.

3.3.1. Packet Selector

The packet selector analyzes packets to find out control packets and replicate them.
MPTCP and socket buffer related functions are implemented in the Linux kernel layer.
sk_buff in the kernel contains information about the buffer [35], and the packet selector can
access sk_buff to check which packet is a control packet. Control packets are replicated
by the packet selector as many times as the number of sub-sockets and are sent to the socket
selector.

If the application classifies control packets separately, packet selector can replicate the
control packet immediately at the application layer. This is because packet selector already
knows which one is a control packet. In this case, packet selector ignores the process of
checking the packet through sk_buff.

3.3.2. Socket Selector

The socket selector assigns each control packet replicated in the packet selector to each
sub-socket. The order of selecting sub-sockets is the same as the order of sub-sockets
selected in the existing MPTCP scheduler. Since the MPTCP scheduler has information
on the performance of the sub-socket, the socket selector allocates the control packet to the
sub-socket in the order of performance and transmits them.

Overall, through the process of the packet selector and the socket selector, control packets
are replicated by the number of sub-sockets, and control packets can be transmitted through
all sub-sockets. If the receiver receives multiple packets with the same sequence number,
the receiver ignores the replicated packets except the first packet received. Therefore,
replicated packet transmission does not cause any problems.

4. Analysis of ConClone

In this section, we analyze the performance of ConClone through theoretical analysis.
We investigate network problems that may occur in general network communication, and
see if we can reduce the incidence of problems by using ConClone with multiple connections.
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4.1. Analysis of the Network Problem Situation

In a UAV network, when data should be transmitted, data are usually transmitted
through the Transmission Control Protocol (TCP), which is a reliable transmission protocol.
Transmission through the TCP can be divided into three phases [36]. In the stable phase,
there is no problem with transmission. The congestion phase presents the case that data
transmission is delayed due to excessive data transmission or packet loss occurs due to
buffer overflow. If a packet is lost, TCP starts to retransmit the lost packet. However,
even if retransmission is conducted instantaneously, a UAV will receive the control packet
with an additional delay of at least one round trip time (RTT). The disconnected phase
includes the connection lost, retransmission timeout (RTO) and 3 duplicated ACKs, in
which data transmission is greatly delayed or failed. These phenomena occur in situations
where continuous transmission is not possible. In these cases, a transmitter should wait a
long time for the problem to be solved or immediately establish another connection. The
disconnected phase is uncommon in wired networks, but it is often seen in the case of
wireless access networks, multi-hop communications and mobile communications. Since
most UAVs use Wi-Fi 2.4GHz ISM band for data transmissions, the disconnected phase
frequently occurs. Additionally, in the environment where the network is composed
with moving objects such as UAV or mobile devices, data transmission path changes
occur frequently, and the network signal strength is very unstable. In this case, data
transmissions are delayed or network connections are disconnected frequently. When the
operator controls a UAV, the congestion phase and the disconnected phase should occur as
little as possible. Therefore, in order to prevent the congestion and disconnected phase,
ConClone proactively responds to the phases by using multiple connections.

4.2. Analysis of ConClone

Prior to the actual experiment, we analyzed how much ConClone improves the trans-
mission success rate of the control packet. Based on the system reliability theory [33], we
analyzed the time required for transmission of control packets and the effect of multiple
interfaces. Various failures could occur during transmission of control packets, such as
unintended packet losses or them not arriving on time. Note that this analysis cannot be
affected by the underlying physical layer. This is because TCP can see only the remaining
network bandwidth after being consumed or wasted by the underlying protocol layers,
such as the network, data-link and physical layers. Another reason is that TCP cannot
directly see the transmission failures or bandwidth changes due to various effects in phys-
ical layer, but it perceives those failures or changes only with TCP delay or lost packets.
It means this analysis can be done, independently of any physical layer assumption or
modeling.

The failure of the replicated control packet on the i-th interface is defined as fi. In
accordance with this definition, in Section 4.2.1 we modeled on the probability of successful
transmission when using n multiple interfaces to determine both the ideal and realistic
transmission times with ConClone. We also derived how the transmission time varies with
the number of interfaces. In Section 4.2.2, we analyzed the lifetime of MPTCP connection
with multiple interfaces, and then we proposed how to determine the number of interfaces
needed to meet a required reliability.

4.2.1. Analysis of Transmission Completion Time

The longer a UAV cannot communicate, the higher the probability that an accident
will occur. Therefore, it is necessary to ensure a high rate of control packet transmission.
ConClone uses multiple interfaces to increase the probability of successful transmission of
control packets. Since MPTCP operates based on multiple interfaces, multiple connections
can be established. When the number of interfaces is defined as n, a total of n−1 replicated
control packets are generated. Replicated packets are transmitted simultaneously through
each interface. In addition, if even one control packet is successfully transmitted, ConClone
goes to the next process of transmitting the next control packet. If the probability of
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transmission failure in one process is assumed to be fi on average, the average successful
transmission probability of system Psuccess can be calculated as follows:

Psuccess = 1− f1 × f2 × f3 × · · · × fn

= 1−
n

∏
i=1

fi.
(1)

Equation (1) can be seen in most of parallel systems. MPTCP allows multiple interfaces
to be used simultaneously. Assuming that the transmission failure probabilities of the each
interface are the same as f , Equation (1) can be simplified as follows:

Psuccess ≈ 1− f n. (2)

The analysis result of the Equation (2) is shown in Figure 3. If the probability of
transmission failure of single connection is 10%, the successful control packet transmission
probability of system calculated through theoretical analysis is 0.900 when there is one
connection; 0.990 when the connections number two with ConClone; and 0.999 when there
are three connections with ConClone. As can be seen from those results, even if only two
connections are used, most of the packet losses in ordinary network communication can be
eliminated. Overall, it can be concluded that as the number of interfaces (n) increases, the
successful transmission probability of system (Psuccess) increases.

Figure 3. Successful transmission probability analysis.

In order for control packets to be delivered to a UAV reliably, control packets must
be transmitted through a reliable transmission protocol, TCP. The TCP maintains reliable
transmission by retransmitting a packet that has failed to transmit. However, when retrans-
mission occurs, the time for the control packet transmission to be completed (Totalcompletion)
is lengthened. Even if the transmission of control packet is reliable, it is difficult to maneuver
the UAV moving at high speed if the transmission completion time of all control packets is
not guaranteed. We theoretically analyzed how much ConClone increases the Totalcompletion
of the transmission compared to the ideal transmission time (Totalideal), and showed that it
can ensure the stability of the UAV.

To see the effect of ConClone on the transmission completion time of transmitting
C control packets, we first break down the time into total successful transmission time
and total retransmission time. Each control packet takes several retransmissions until it is
successfully transmitted, and its subsequent packet takes the same procedure. We initially
derive the total transmission time Totalideal if there are no failures for each transmission.
Note that this time is still present in other cases where a transmission failure appears,
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and in this case Totalideal is simply Totalsuccess. Then we calculate total delay incurred by
retransmissions, which is denoted by Totalrecovery.

Firstly, we explain how to determine the total transmission time for whole C control
packets. Let Ti denote packet transmission interval. Then, the ideal transmission time
Totalideal for successful transmitting C control packets can be approximated as Equation (3):

Totalideal ≈ C× Ti. (3)

Secondly, we introduce a new packet transmission interval, which is different from
Ti and occurs when one packet transmission is not successful. The new interval is larger
than Ti because the transmission interval is determined by a TCP RTO, which directly
notifies transmission failure. When any transmission failure occurs in TCP, TCP packet
transmission is accompanied by failure detection (TCP RTO) and retransmission, both
of which together are defined as recovery in this analysis. To derive Tirecovery, which is
the aggregate retransmission time to transmit C control packets, we define one failed
transmission interval (Ti f ailure) with failure coefficient k, expressed as follows:

Ti f ailure ≈ k× Ti, (k > 1). (4)

In the above equation, the coefficient k is the failure coefficient that expresses the extent to
which the transmission time is lengthened due to the transmission failure.

Thirdly, we derive the aforementioned Tirecovery. Since a failed packet transmission can
cause several TCP retransmissions until the successful packet transmission, we define the
recovery time for one packet (Tirecovery) as the time taken for those retransmissions. In the
event of a packet transmission failure, the probability of failure for a single transmission
is obtained as system failure probability of 1− Psuccess = f n from Equation (2). Therefore,
the failure probability of j− th for one packet is ( f n)j. Since, Tirecovery should be defined for
infinite TCP retransmissions, from Ti f ailure in Equation (4) and ( f n)j, Tirecovery is expressed
as follows:

Tirecovery = Ti f ailure(1 + f n + f 2n + · · ·)

= k× Ti×
(

1
1− f n

)
.

(5)

Then, Totalrecovery is expressed as the sum of the total recovery time for C packet
transmissions. The probability that the system fails to transmit for the first time, 1− Psuccess,
is reflected in Tirecovery, so Totalrecovery is as follows:

Totalrecovery ≈ C× (1− Psuccess)× Tirecovery

= C× f n × k× Ti×
(

1
1− f n

)
.

(6)

Finally, we derive the ratio of completion time to ideal time when there are retrans-
missions. The total time spent just on successful transmissions for C packets, Totalsuccess,
is equal to Totalideal , which is the time for ideal transmissions without any failure. By
adding the transmission time (Totalsuccess) to the required retransmission time (Totalrecovery),
the time to make all transmissions completed (Totalcompletion) can be calculated. With
Equations (3) and (6), the rate of increase in completion time (Tr) can be thus calculated as:

Tr =
Totalcompletion

Totalideal
=

Totalsuccess + Totalrecovery

Totalideal

≈
C× Ti + C× f n × k× Ti×

(
1

1− f n

)
C× Ti

= 1 +
k× f n

(1− f n)
.

(7)
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Figure 4 shows that the completion time increase ratio (Tr) decreases as the number of
connections increases with failure coefficient k varies over 1 and 2.

Figure 4. Completion time analysis.

In the case of k = 1.5, if UAV control requires the delay of the control packet to be 10%
or less, it can be expressed as Tr < 1.1. In the case of the existing MPTCP, in order to satisfy
Tr < 1.1, it can be achieved only when the probability of transmission failure of connection
( f ) is 9% or less. However, when control packets are transmitted to two connections with
ConClone, Tr < 1.1 is satisfied even when the probability of transmission failure is 29%
and the probability is a reasonable condition that is analyzed at a distance of around
80 m (which will be discussed in Section 4.3). With three connections, the probability of
transmission failure up to 44% can be tolerated. Overall, it is possible to reliably transmit
control packets with ConClone even in a high failure environment.

4.2.2. Number of Interfaces Required to Ensure Expected Reliability

We experimented on empirical packet transmission based on MPTCP. As described in
Section 5, the UAV and ground control system (GCS) communicated with each other by one
hop. GCS transmitted control packets at regular intervals. We measured the inter-packet
time of control packets, and the results are shown in Figure 5.

Figure 5. The reliability of the lifetime interval and its fitting results.
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As shown in Figure 5, we found that the lifetime interval of MPTCP transmission can
be approximated with an exponential distribution. In the exponential distribution with
parameter λ, the expectation is 1/λ.

The lifetime interval indicates the number of successes in transmitting control packets
continuously without retransmission. As can be seen in Figure 6, ConClone works when
only one of n interfaces is active, so the lifetime of ConClone can be modeled as a series of
intervals where each interval i is the interval in which i number of interfaces are active.
Therefore, the distribution of ConClone’s lifetime can be modeled with n-stage serial system,
where the lifetime of each stage i is also exponentially distributed with parameter iλ,
denoted as Xi ∼ EXP(iλ).

Figure 6. The lifetime distribution of ConClone.

If there are n interfaces, the entire process until the number of inactive interfaces
increases, leaving one available interface being defined as the lifetime of ConClone. Then
the lifetime of ConClone, Y can be defined as follows:

Y = Xn + Xn−1 + · · ·+ X1. (8)

Therefore, the expected reliability of the entire system (E[Y]) is calculated as follows:

E[Y] = E[Xn + Xn−1 + · · ·+ X1]

= E[Xn] + E[Xn−1] + · · ·+ E[X1]

=
1

nλ
+

1
(n− 1)λ

+ · · ·+ 1
λ

=
1
λ
×
(

1
n
+

1
n− 1

+ · · ·+ 1
)

=
1
λ
× Hn

≈ 1
λ

ln(n).

(9)

Assume the required expected reliability (MTTF) is given with at least α; E[Y] must be
greater than or equal to α. With Equation (9), the number of interfaces n required to ensure
the expected reliability α can be expressed as follows:

n = eλα. (10)

Equation (10) is plotted as shown in Figure 7. For example, if the λ is 2 and the
required reliability (α) is 0.6, at least n = 4 interfaces are required to ensure reliability. If the
required reliability rises to 0.8, five interfaces are necessary. If the λ is reduced to 1 when
the required reliability is still 0.8, the number of required interfaces is reduced to three.
Overall, through Equation (10), we can understand how many interfaces are required to
ensure the required reliability. Note that this explanation is only applied to the network
configuration specified in the initial part of this analysis. As for other configurations for
network parameters, such as deadline and network delay, we need to figure out the λ and
then determine the necessary number of interfaces for the required reliability.
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Figure 7. Number of interfaces required to ensure expected reliability.

4.3. UAVs Channel Model Analysis

In this subsection we analyzed on TCP packet transmission failure based on path
loss (PL) that reflected the effect of the channel model for real UAV operation. Aerial
link characterizations in both air-to-ground (A2G) and air-to-air (A2A) situations were
sufficiently analyzed in [37], using 802.11 interfaces, and the long-distance pass loss model
is shown in Equation (11):

PL = PL(d0) + 10α× log10

(
d
d0

)
(11)

where d0 and d represent the minimum distance and the distance between transmitter and
receiver respectively. Channel analysis was performed with a configuration with d0 of 1 m
and d of 1 to 100 m based on this equation. According to [37], A2G and A2A channels have
path loss exponents α as 2.03 and 2.01 respectively.

With 802.11 g using M-order quadrature amplitude modulation (QAM), including
constellation and code-specific constants κ1 and κ2, channel gain h from the PL, transmission
power ptr and bit error rate (BER) are approximated as Equation (12), which is in [38].
Furthermore, in the communications with the frame length L f r, the frame error f f rame,
by some error of bits within a single frame, is calculated as follows:

BER = κ1 × exp
(
−κ2hptr

2ρ − 1

)
, (12)

f f rame = 1− (1− BER)L f r , (13)

where L f r is the number of bits for a single frame. Packet error occurs in the case that all
transmitted frames, including retransmissions, are not successful. Therefore the packet
error probability can be obtained from the Equations (12) and (13). Additionally, we can
approximate the packet loss probability fpacket in Equation (14)

fpacket = 1− (1− f Nre+1
f rame )

N f r , (14)

where N f r is the number of frames within a single packet and Nre is the number of frames
retransmitted within the single packet. The derived fpacket is planned to solidify the analysis
and experiment with ConClone shown in Figure 8. Furthermore, the setting of f in the
theoretical derivation of Section 4.4 and empirical experiments of Section 5 is based on
this analysis.
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Figure 8. Bit error rate (BER) and PER based on the unmanned aerial vehicle (UAV) channel model.

4.4. Hardware Stability Analysis

Enhancing the stability of UAVs from the additional network interfaces can be done
by analyzing the control system with the Newton–Euler theorem. We use fundamental
values of UAVs in the case of a quad-copter to improve the stability. These values are the
rotor’s angular velocity (w), air density generated by the propeller (B), torque (τ), axis
(T) and the distance form the center of mass to the rotor (L). In our case of a quad-copter,
quadrants are defined as A1, B1, A2 and B2 clockwise. According to [39], the variables
of the inertia moments I of the quad-copter for the x-axis (pitch) and y-axis (roll) and its
thrust to attitude as z-axis (yaw) are described in Equation (15):

I =

Ixx
Iyy
Izz

 =

 2
5 MT R2

C + (IA1 + IA2)
2
5 MT R2

C + (IB1 + IB2)
2
5 MT R2

C + (IA1 + IA2 + IB1 + IB2)

 =

 2
5 MT R2

C + 2L2mr
2
5 MT R2

C + 2L2mr
2
5 MT R2

C + 4L2mr

. (15)

On a single axis, the y-axis as in our case, an additional pair of network interfaces can
be mounted near each rotor. Therefore, changed moments of inertia matrix I

′
are rewritten

with the mass mi of n interfaces as Equation (16).

I
′
=

I
′
xx

I
′
yy

I
′
zz

 =

 2
5{MT + (n− 1)mi}R2

C + 2L2(mr +
⌊ n

4
⌋
mi)

2
5{MT + (n− 1)mi}R2

C + 2L2(mr +
⌊ n+2

4
⌋
mi)

2
5{MT + (n− 1)mi}R2

C + 4L2(mr +
⌊ n

2
⌋
mi)

, (n = 1, 2, 3, . . . ). (16)

Our quad-copter with the DJI F450 frame has a 0.25 m distance L, a 0.07 m radius, a
1013 g total mass and a 16 g interface. Furthermore, as shown in Equation (16), we assumed
the additional network interfaces were adapted in a symmetrical position. Therefore,
symmetrically mounted interfaces on both ends of each frame increased the mass of motor
parts (mr) and total mass (MT) slightly. There was no alteration to the center of mass. With
these values, we derived how the inertia moments of the quad-copter are changed for
the cases with 1 to 4 interfaces in Table 1. The minimum value was 0.0057 for Ixx and
Iyy of the single interface and the maximum value was 0.0176 Izz for the four interfaces.
The moment of inertia determines how agile and reliably control units such as Pixhawk
can control the UAV. The changed moment of inertia was small enough to compare with
the conditions of several studies of UAV control stability with specifications similar to our
quad-copter [40–43].
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Table 1. Moments of inertia according to the number of additional interfaces.

Moments of Inertia Single Interface 2 Interfaces 3 Interfaces 4 Interfaces

Ixx(kg×m2) 0.0057 0.0058 0.0058 0.0078
Iyy(kg×m2) 0.0057 0.0078 0.0078 0.0078
Izz(kg×m2) 0.0095 0.0135 0.0135 0.0176

5. Evaluation

This section describes experiments and results to demonstrate the performance of
ConClone. The ConClone implementation is described first. Then we describe the experiment
and the results using real devices. Finally we succinctly describe the specific application
scenarios using ConClone.

5.1. Implementation and Configuration for Evaluation

To run ConClone on a portable computing board that can be mounted on UAV, we
implemented ConClone on Ubuntu 16.04 LTS, an operating system that can be used on a
portable computing board [44]. ConClone was developed based on MPTCP v0.91.3. To use
MPTCP and sk_buff as described in Section 3.3.1, we implemented ConClone in the kernel
layer of Linux. In the experiment, two computing boards with ConClone were used, and
each computing board was equipped with two low-cost IEEE 802.11g network interfaces.
Therefore, computing boards could communicate simultaneously with two connections.
In the experiment, one network interface antenna was removed to produce the network
environment degradation in which control packets were lost.

The Pixhawk 4 autopilot used to control the UAV was configured to periodically
receive control packets within 0.5 s to reliably control the UAV. In addition, during real UAV
flight, various information other than control packets was exchanged between the GCS and
the computing board of UAV. Reflecting this, when the control packet was delivered, the
next control packet was sent at 0.5 s intervals and the general data packet was transmitted
at the same time. We experimented until 120 control packets were delivered and compared
the performance between ConClone and MPTCP using the default scheduler.

5.2. Evaluation of Inter-Control Packet Delay

Figure 9 shows the comparison with the estimated inter-packet time calculated by
Equation (7). As shown in Figure 9a, the default MPTCP had increased transmission time
due to retransmission, and showed a significant deviation from the expected inter-packet
time. On the other hand, ConClone showed results similar to the expected inter-packet time,
and was very stable.

Figure 10 shows the inter-packet time between control packets measured by the
receiver. MPTCP using the default scheduler showed irregular inter-packet time. However,
ConClone showed stable inter-packet time close to 0.5 s. When a control packet loss occurred,
the lost control packet was retransmitted again, and the inter-packet time was increased
by the delay due to the retransmission. Therefore, the observed stability of inter-packet
time in ConClone indicated that ConClone rarely could cause packet loss. The averages and
standard deviations of the results obtained in the experiment of Figure 10 are shown in
Table 2. ConClone was close to the transmission interval of the control packet; the standard
deviation was much less than the default MPTCP. Additionally, ConClone showed stable
communication even in long-term transmission of more than 2000 control packets, which is
shown in Figure 11. The inter-arrival time for 13.6% of packets transmitted based on Default
MPTCP was more than 1 s, whereas only 2.8% of ConClone took more than 1 s. Moreover,
the maximum inter-arrival time of ConClone was only 1.92 s. As a result, ConClone was able
to show stable inter-packet time due to low control packet loss.
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(a) Default MPTCP

(b) ConClone

Figure 9. Comparison with expected inter-packet time.

Figure 10. Inter-packet times of control packets.
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Table 2. Average and standard deviation of experiment with real devices.

Scheme Average (s) Std

Default MPTCP 0.9204 0.8637
ConClone 0.5681 0.1135

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
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1
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F

Default MPTCP

ConClone

Figure 11. Cumulative distribution function (CDF) of inter-arrival time in long-term transmission.

5.3. Evaluation on Transmission Completion Time

As in the experiment in Section 5.2, when the control packet was delivered, the next
control packet was transmitted after 0.5 s. Therefore, all transmissions should have ended
in 120× 0.5 s. However, if a control packet was lost and retransmission occurred, it would
be delayed, so the completion time of transmitting 120 control packets became longer.

Figure 12 shows the time taken for all control packets to be delivered. Default MPTCP
delivered 120 control packets for a total of 110.44 s, but ConClone transmitted all in 68.17 s.
Unlike the default MPTCP, the ConClone was unaffected by retransmission, so ConClone
took less time to transmit 120 packets than the default MPTCP. This result can also be
seen as the theoretical completion time calculated from Equation (7). In this experiment,
packet loss occurred on average with 28.4% probability. When the error rate was 28.4%,
the theoretical completion time increase rate was 1.5540 for one connection and 1.0954 for
two connections. Since the default MPTCP transmitted only one control packet at a time,
it could be considered that only one connection was actually used to transmit the control
packet. However, since ConClone replicated the control packet and transmitted through all
connections, it could secure the transmission rate corresponding to two connections.

The theoretical time required to transmit all 120 packets is 86.702 s for default MPTCP
and 65.906 s for ConClone for failure coefficient k = 1.122 in this evaluation. Table 3
summarizes these results. Table 3 shows that the theoretical and experimental results of
ConClone were similar to each other. In real experiments, conventional MPTCP could not
cope with transmission failure due to congestion and connection instability. Therefore,
the time required for the transmission of all control packets was longer than that of ConClone.
Retransmission was considered in the theoretical model, but the temporary instability of
the connection in UAV was not considered. Thus, the difference between the actual
experiment and the theoretical time was as much as the time until the connection was
restored. As future work, we will revise the theoretical model to include connection
instability time. Overall, unlike conventional TCP or MPTCP, control packets can be
transmitted reliably through ConClone, while maintaining the MPTCP default scheduler,
which can achieve high throughput with multiple connections.
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Figure 12. Completion times of all control packet transmissions.

Table 3. A comparison of real and theoretical completion times.

Scheme Real (s) Theoretical (s)

Default MPTCP 110.44 86.702
ConClone 68.17 65.906

5.4. Real Scenarios

We envision that ConClone can be utilized in many real scenarios where reliable and
time-constrained communication is required for applications with UAVs. First, in the works
for UAV gas sensing, it is necessary to accurately update the measured gas distribution
map through real-time networking [45–47]. With ConClone, we can shorten the transfer
completion time of sensing and localization data, thereby ensuring stable transfer of that
data. In particular, Kersnovski et al. proposed a solution in terms of the exploration
algorithm in a multi-UAV framework to avoid mission failure in a real world scenario [48].
Through the application of ConClone, it is possible to reduce the failure rate or to quickly
recover the connection in this real scenario. In addition, several studies have been proposed
in [49,50] in terms of routing paths and physical links to ensure strong connectivity in A2G
and A2A. At the transport level, the proposed ConClone can be effectively applied with little
or no dependency between link and routing, and can construct robust UAV connections.

6. Conclusions

UAVs have high maneuverability that is not obstructed by terrain and objects. Con-
sidering the advantages of UAVs, many researchers are carrying out studies to apply them
to various tasks. However, because UAVs are flying at a high speed, it is possible that an
accident may occur if the control packet transmission is delayed for a moment. Considering
the weight of a UAV and its rotating rotor blades, a collision with any UAV would be very
dangerous. Therefore, in order to prevent accidents, the control packet must be stably
transmitted to the UAV. To ensure stable UAV control, we proposed ConClone. ConClone
replicates control packets and transmits them through multiple connections to increase
the probability of successful delivery of control packets and minimize delay. Addition-
ally, we proved the performance of ConClone theoretically and proved the stability of the
ConClone by conducting experiment with real devices.

As future work, we would like to strengthen ConClone by understanding the situa-
tion wherein packet replication occurs or by analyzing the replication frequency through
deep learning. We also plan to modify the modeling to account for long-term transmis-
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sion instability. If the modeling can take into account the transmission instability that
makes retransmissions impossible, then the time required for transmission can be more
accurately estimated. Moreover, further rigorous research into the cross-layer approach
to MPTCP [51,52] and channel modeling [53] has the potential to significantly improve
performance when applying Conclone. Therefore, we will perform additional cross-layer
analysis as future work that considers MPTCP, multiple interfaces, channel characteristics
and their mutual influences, and then apply the results to ConClone.
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