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Abstract: This review presents the state of the art and a global overview of research challenges
of real-time distributed activity recognition in the field of healthcare. Offline activity recognition
is discussed as a starting point to establish the useful concepts of the field, such as sensor types,
activity labeling and feature extraction, outlier detection, and machine learning. New challenges
and obstacles brought on by real-time centralized activity recognition such as communication, real-
time activity labeling, cloud and local approaches, and real-time machine learning in a streaming
context are then discussed. Finally, real-time distributed activity recognition is covered through
existing implementations in the scientific literature, and six main angles of optimization are defined:
Processing, memory, communication, energy, time, and accuracy. This survey is addressed to any
reader interested in the development of distributed artificial intelligence as well activity recognition,
regardless of their level of expertise.

Keywords: activity recognition; machine learning; offline; real-time; distributed; centralized; wireless
sensor networks; streaming; concept drift; healthcare

1. Introduction

Population aging comes with a set of problems that will have to be solved in the
next decades. It is projected that nearly 2.1 billion people will be over the age of 60 by
2050 [1]. As disability [2], as well as dementia [3], rates increase with age, this segment of
the population requires assistance in their daily lives.

By capitalizing on the use of technology for ambient assisted living, it is possible
to extend the autonomy and the quality of life of patients suffering from mild degrees
of dementia. Using technology may also allow us to reduce the ever increasing costs
of healthcare [3] in terms of human and monetary resources. Smart environments and
smart homes were not initially thought of as healthcare oriented, and the latter were
described as “[. . . ] a residence equipped with computing and information technology
which anticipates and responds to the needs of the occupants, working to promote their
comfort, convenience, security and entertainment through the management of technology
within the home and connections to the world beyond” by Harper [4]. The initial vision
was to increase convenience and comfort for any resident, but soon enough, researchers
understood the potential of an environment filled with sensors to remotely monitor patients,
and made use of these wireless sensor networks to assist them. Virone [5] presented an
architecture that collects sensor data inside a smart home and stores it in a database so that
patients can be remotely monitored, combining sensors, back-end nodes, and databases to
track a patient inside their home.

In this paper, we explore the evolution of activity recognition from basic offline
implementations to fully distributed real-time systems. The motivation for this review
comes from the transition we are reaching in our research work in the use of ambient
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intelligence for assisted living in smart homes [6,7]. With the technological advancement of
the Internet of Things, we are now beginning to investigate the distribution and real-time
implementation of smart technologies, not only to improve current technologies used in
smart homes, but to extend assistance to vulnerable users beyond smart homes, and into
smart cities [8]. In order to reach that goal, it is necessary to have a good understanding
and a wide overview of the field of activity recognition in smart homes and its evolution,
from its infancy using binary sensors and simple learning rules, to more advanced, real-
time distributed implementations in Wireless Sensor Networks using real-time distributed
machine learning.

The switch from offline to real-time distributed activity recognition would allow us
to bring timely assistance to semi-autonomous people by quickly detecting anomalies
and being able to bring human assistance to patients when it is needed. Distributing
the algorithm for activity recognition allows us to take advantage of the ever increasing
capabilities of embedded devices and the IoT. With distribution, there is no need to run
a costly distant server to process all the data, there is less need for long distance data
communication, less privacy issues, and no single point of failure. However, there are
still many challenges to overcome for real-time distributed activity recognition, which this
survey attempts to cover.

This review is therefore aimed at researchers currently working in the field of offline
activity recognition, looking for an overview of the possibilities for distributed and real-
time approaches, as well as readers interested in the possibilities and challenges of the
distribution of machine learning algorithms in wireless sensor networks. The main research
questions this paper addresses, where each question is linked to a specific section are:

• What are the most commonly used methods, sensors, and algorithms to perform
offline activity recognition, and what results have been achieved?

• What are the additional considerations and challenges when switching from offline to
real-time activity recognition, and which architectures, algorithms, and communica-
tion protocols have been used?

• What are the current challenges of distributing real-time learning algorithms in wire-
less sensor networks, and which optimizations have been used to perform activity
recognition in a distributed and real-time manner?

In the next section, we present the process used to collect the papers used for this
review, starting with the database and the queries, to the inclusion and exclusion criteria
for each subsequent section. We then present a quick survey of offline activity recognition
systems, the main types of sensors used, the collected data, extracted features, algorithms
used, and achieved performance. In the following section, we delve deeper into centralized
real-time approaches for activity recognition, and we explore the network architectures
and protocols used, the difference between local and cloud based implementations, and the
new challenges rising with real-time machine learning for activity recognition. The fourth
section focuses on the current state of the art in distributed real-time activity recognition,
and highlights the challenges and drawbacks of a distributed approach. Finally, we
discuss the next steps and research to be carried out in order to achieve high performance
distributed real-time activity recognition, with a focus on embedded systems and the
Internet of Things.

2. Methods

Due to the wide scope of this review, it is not possible to dive into the details of each
component of activity recognition systems in offline, real-time, and real-time distributed
systems using a quantitative approach in the way a classical systematic survey would.
We have decided to opt for a narrative survey format [9] aimed at providing a qualitative
understanding based on generalizations emerging from a large population, or a large body
of research in this case.

For paper collection, we have used three different queries on Scopus, one for each
section of this paper:
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• “Activity Recognition” AND “Wireless Sensor Network” (211 results)
• “Activity Recognition” AND “Wireless Sensor Network” AND “Real-Time” (42 re-

sults)
• “Machine Learning” AND “Wireless Sensor Network” AND “Real-Time” AND “Dis-

tributed” (37 results)

The term “Activity Recognition” turned out to be too restrictive for the last section of
this paper, which highlights the novelty of performing activity recognition in a real-time
and distributed way at the current time. Scopus turned out to be the best database choice
for a narrative survey as it includes publications from many different publishers, therefore
allowing us to have a broad overview of the field of interest. Additional papers have been
added when more resources were necessary to explore communication protocols or the
distribution of specific machine learning algorithms.

For the offline section, the inclusion and exclusion criteria are the following:

• Inclusion criteria:

– Privacy preserving sensors are used to collected data about one or several users
for activity recognition purposes (cameras are excluded).

– The paper presents explicit results for activity recognition, including relative
results where different sensor setups are compared.

• Exclusion criteria:

– Papers using sensorless or device-free approaches, such as Wi-Fi.
– Papers focusing only on hypothetical architectures or sensor deployment meth-

ods (meta papers).
– Papers focusing on energy consumption only.
– Theoretical papers not providing any activity recognition results.
– Papers using public datasets that were not collected by the authors during an

experiment.
– Any paper focusing on data reduction or compression methods only.

For the real-time section, the inclusion and exclusion criteria are the following:

• Inclusion criteria:

– The activity recognition process has to be performed while the data is being
collected, either directly after collection, or periodically throughout collection.

– Papers using pre-collected data but simulating a real-time implementation are
included as well.

• Exclusion criteria:

– Any paper performing activity recognition with the use of the full, static dataset.

For the real-time distributed section, the inclusion and exclusion criteria are the
following:

• Inclusion criteria:

– Papers distributing machine learning algorithms across a wireless sensor net-
work.

• Exclusion criteria:

– Any experiment where no processing, data transformation, or classification task
is performed on the sensor nodes.

As less research has been carried out in the distributed and real-time fields, the in-
clusion and exclusion criteria have been softened in order to include more papers. Each
section of this paper serves as a building block for the following section, and to avoid any
repetition, topics such as different sensor types are only addressed in the first section.

Many systematic surveys have been carried out in the field of activity recognition
using sensors. Chen et al. [10] have reviewed sensor-based activity recognition, specifically
comparing knowledge and data-driven approaches, and opening on the opportunities



Sensors 2021, 21, 2786 4 of 34

for complex and interleaved activity recognition. Lara et al. [11] have focused on activity
recognition using wearable devices and proposed a two level taxonomy based on the use
of supervised or semi-supervised learning algorithms, and an online or offline architecture.
Wu et al. [12] have focused on sensor fusion for activity recognition, and Gravina et al. [13]
have focused on data fusion specifically for body-sensor networks, where fusion strategies
for heterogeneous data are investigated. Su et al. [14] have reviewed the use of smartphone
sensors for activity recognition. Shoaib et al. [15] have addressed the issue of online
activity recognition using smartphones, comparing the accuracy, energy, and resource
consumption of different approaches used in the literature. Other surveys have focused
more specifically on the learning algorithms, such as recent machine learning trends [16],
transfer learning [17], or deep learning [18].

Since all of these papers provide a detailed analysis of the existing methods for activity
recognition in a limited scope, we have decided to provide a narrative survey that would
present a meta-analysis of the field of activity recognition as a whole, and its evolution
towards real-time distributed approaches in the context of pervasive computing and the
Internet of Things. The main limit of this study comes from its wide scope: Interesting
papers in the field may have not been mentioned or discussed in detail. However, this is
considered acceptable, as the aim of this survey is to highlight the high level challenges
standing in the way of fully distributed, real-time activity recognition.

3. Offline Activity Recognition

The most straightforward way to perform activity recognition is to do it offline. In most
applications, sensors are deployed in the environment or directly on the subject, data is
collected, labeled, and fed to machine learning algorithms to perform activity recognition.
In most cases, the sensors are organized in a Wireless Sensor Network (WSN), and the
collected data is sent to a central computer. It is then labeled and used for training and
testing of machine learning models. Offline activity recognition is useful to learn about
behavioral patterns, such as learning Activities of Daily Living (ADL), or learning the
way different individuals perform the same activity. In these cases, it is not necessary
to have an instantaneous feedback from the system. For offline activity recognition, it
is possible to use the whole dataset to train a classifier, as long as the hardware used
is powerful enough. Otherwise, it is possible to split the data into smaller batches or
parallelize training. Once the data is collected and labeled, it is easy to compare several
machine learning models using various performance indicators. Offline activity recognition
serves as a sandbox to find the most efficient algorithms for a specific use-case in a minimal
constraint environment.

3.1. Sensors

A wide variety of sensors have been used for activity recognition applications. They
are split into two main categories: Environmental and wearable sensors.

3.1.1. Environmental Sensors

Environmental sensors are defined as static devices that capture physical measure-
ments of properties of the environment they are deployed in. Many different kinds of
sensors have been used in smart homes for activity recognition, from simple contact sensors
to high resolution cameras.

Extensive research has been conducted for activity recognition in smart environments
using binary sensors. Careful positioning of the sensors at key locations in the house allows
for accurate activity recognition, as most activities are heavily location dependent: Teeth
brushing happens in the bathroom and requires the tap to be turned on and off, whereas
cooking happens in the kitchen, where the oven might be on. Passive infrared sensors
(PIR) have been used to detect the presence or absence of motion by Ordonez et al. [19] and
Samarah et al. [20] for ADL recognition. A combination of motion sensors and pressure
plates have been used in [21] for visit recognition in elders’ homes. Despite the very
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simple sensors used, their combination allowed for a 85% visit detection rate. The same
sensors complemented by reed switches, mercury contacts, and float sensors were used
by Mittal et al. [22] for ADL recognition. Luo et al. [23] have used a smart combination of
9 PIR sensors with masking tape on some of the sensors, and were able to pinpoint the
approximate location of a subject in a room based on the activation states of the sensors.

Binary sensors can only be in two states: 0 or 1. In many applications, a much higher
resolution is needed to perform activity recognition. Digital sensors capture much more
complex data, such as image, sound, temperature, distance, or humidity. A combination
of force sensitive sensors, photocells, distance, sonar, temperature, and humidity sensors
has been used in [24] to perform ambient assisted living in a multi-resident home. Indeed,
the complex task of activity recognition for more than a single subject in the same house
requires more fine-grained data, and binary sensors are no longer descriptive enough.
Ching-Hulu et al. [25] have proposed the use of ambient-intelligence compliant objects
(AICOs), which follows Weiser’s [26] vision of weaving profound technologies into the
fabric of everyday life. AICOs act as a virtual layer added on top of physical objects,
collecting data with the use of sensors without interfering with natural manipulation of the
object. Du et al. [27] have improved the use of RFID tags on objects with a 3-stage activity
recognition framework allowing us to capitalize on the usage state of different objects to
infer the activity currently being performed and to predict the next activity in line. Galvan-
Tejada et al. [28] have used sound data and a Random Forest for the development of an
indoor location system relying on a human activity recognition approach: The activity per-
formed by the user allows us to infer their location in the environment. Chapron et al. [29]
have focused on bathroom activity recognition using Infrared Proximity Sensors (IRPS) in
a cost-efficient system and have achieved an accuracy of 92.8% and 97.3% for toilet use
and showering activities. Passive RFID tags have been used by Fortin-Simard et al. [7] to
perform activity recognition in smart homes. RFID tags do not require any power source,
and can be embedded everywhere in the environment. The authors have managed to detect
anomalies in activity execution by the user related to cognitive impairment by relying
solely on these tags. Outside of conventional sensors, low cost radars have been used by
Cagliyan et al. [30], yielding good results for running, walking, and crawling recognition
when the radar is facing the target.

Environmental sensors are interesting to researchers because they are not as intrusive
or restrictive as wearable sensors. However, the collected data does not allow us to
model the subject’s movements as accurately, and the activity recognition capabilities
of environmental systems heavily relies on how distinct activities are from each other,
and how location and time-dependent they are. Environmental sensors can still be used
efficiently in real-time systems, especially for activity of daily living recognition, as these
are often times highly coupled with the time and location of execution.

3.1.2. Wearable Sensors

Wearable sensors are sensors integrated into wearable objects. The main types of
wearable sensors used are accelerometers, gyroscopes, magnetometer, and RFID readers.
Smartphones fall outside of that category, but since they can be used for their internal
accelerometer and gyroscope while sitting in the user’s pocket, we discuss them as well
in this section. Simpler wearable systems rely on a single accelerometer sensor, and oth-
ers combine different sets of sensors on different parts of the body to fully capture the
subject’s movements.

Sarcevic et al. [31] have used a combination of accelerometers, gyroscopes, and magne-
tometers on both wrists of the subject and achieved a 91.74% activity recognition accuracy
on a set of 11 activities. Other experiments have used accelerometers on different parts of
the body, such as the right part of the chest and the left thigh [32], on both wrists and the
torso [33] with added RFID wristband readers in [34] to monitor human-object interaction.
Raad et al. [35] have opted for the use of RFID tags on ankle bracelets for localization
and tracking of elders with Alzheimer’s. In some cases, accelerometers and gyroscopes



Sensors 2021, 21, 2786 6 of 34

have been used to focus on a specific part of the body, such as the arm in [36], where 3
sets of accelerometers and gyroscopes are located on the wrist, elbow joint, and upper
arm to recognize bowling action for the game of cricket. Ioana-Iuliana et al. [37] have
used 2 accelerometers on the right hip and right lower leg to recognize posture-oriented
activites, such as standing, sitting, walking, crawling with an accuracy of up to 99.2%.
The location of the sensors on the subject’s body is a crucial part of the experimental setup,
and determines what kinds of activities will be recognized. Sazonov et al. [38] have used a
combination of accelerometers and pressure sensors on the sole of a shoe for posture and
activity recognition with great success. Cheng et al. [39] have achieved an accuracy of more
than 92% over a set of 5 activities using 4 accelerometers located on both ankles, the left
thigh, and abdomen of the subjects.

More sensors have been combined with wearables, such as audio, temperature, hu-
midity, and light sensors in [40] to recognize multi-user activities. Ince et al. [41] have
combined a wrist worn accelerometer and environmental sensors to recognize brushing
teeth, washing face, and shaving activities. Other works have used a smartphone’s built-in
inertial sensors to perform activity recognition with good results, such as in [42,43]. They
have also been combined with a wrist worn accelerometer in [44] to recognize user specific
activities such as walking, jogging, running, cycling, and weight training. In this configu-
ration, the smartphone not only collects data thanks to its inertial sensors, but it also acts
as a storage node that receives data from the wrist worn accelerometer. Physical activity
recognition has been performed using a hip worn accelerometer as well as a portable
electrocardiogram (ECG) in [45]. Similarly, Liu et al. [46] have used a wearable ECG moni-
toring device coupled with a chest-mounted accelerometer for activity recognition with a
96.92% accuracy for coughing, walking, standing, sitting, squatting, and lying activities.

Wearable sensors allow for more precise movement recognition and are particularly
suited for physical therapy applications. The main downside is that wearables can be
intrusive, and in a real-life scenario, most people are reluctant to wear sensors on their body.
In a healthcare, and assisted living context, elders and people suffering with dementia
might simply forget to wear them. However, they allow us to detect dangerous situations
such as falls more accurately than environmental sensors which is very useful in a real-time
monitoring context. Additional challenges, such as communication between two nodes on
opposite sides of the body for the needs of distribution, are covered later in this paper.

The combination of environmental and wearable sensors allows to achieve great
results for activity recognition, and wearing several accelerometers on the body leads to
better movement modeling. However, more data also means more computation, especially
when accelerometers are set to collect hundreds of acceleration values per second. In this
ocean of raw data, it is important to extract useful features to train machine learning
models, to try and achieve the highest possible accuracy while still maintaining a good
generalization to fit different users. The diagram below shows an overview of the main
types of sensors used for activity recognition in the literature (Figure 1).

3.2. Labeling and Features

Regardless of the sensors used, once the raw data has been collected, it has to be
labeled to be matched with the right activities in order to train supervised machine learning
models. The next step is to extract features from the raw data in order to train and test
the models.

3.2.1. Labeling

For offline activity recognition, raw data is collected during the experiments and
needs to be labeled to establish the ground truth. Labeling can either be done during the
experiment by an observer taking notes on the activities performed at a specific time [47],
or after the fact, using video footage of the experiment [43]. Another method that has been
used is to provide the subject of the experiment with a form [21] or an activity labeling
interface [24], which is known as active learning.
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Figure 1. Overview of some of the reviewed sensors split into two main categories: Environmental
and wearable sensors. Environmental sensors are divided into binary and digital sub-categories.

The first method allows researchers to have full control of the ground truth for their
experiments, but it is very time consuming, especially on big datasets with several users
spanning over several weeks, or months [19]. Labeling mistakes are also most likely
to happen in this kind of dataset. Involving the subject in the labeling process allows
researcher to offload some of that task to the user, even though the ground truth still
has to be checked for errors and missing labels. In the context of healthcare and smart
homes, the subjects might not always remember to fill in the activity forms all the time [21],
because of dementia or amnesia, leading to missing labels. For shorter activities, it is
unrealistic to expect the user to stop after every move to label the activity they have
just performed.

Creating and labeling datasets to make them public and benefit the activity recognition
community is therefore a tedious process, even if initiatives such as CASAS’s “Smart home
in a box” [48] have helped in that regard. Mittal et al. [22] have explored the idea of
using Formal Concept Analysis (FCA) and relying on the temporal context of activities to
extrapolate activity labels from one source house to target houses. Activities from target
houses can therefore be inferred with a certain confidence based on data from the source
house. However, the system is not perfect, and there are many unclassified instances in
new houses. If the layout and the habits of the residents change too much from one house
to the other, this method does not perform as well.

The issue of finding ways to accurately and efficiently label activities in an automatic
or semi-automatic way still remains, and it is even more important for the scientific
community to address it for real-time activity recognition and activity discovery to allow
for the development of more flexible systems.

3.2.2. Features

Most offline approaches rely on supervised machine learning for activity recognition.
A feature vector is associated with an activity label, which will be used for training as well
as testing and determining the performance of the model. Data are continuously collected
from the environment, whether it is through environmental or wearable sensors, and it is
processed afterwards in the case of offline activity recognition. Before even deciding the
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kind of features to extract, the length of the window on which features will be computed
has to be determined.

In the case of environmental sensor based activity recognition, 60 s time slices are used
in most cases [19,22,24,49]. Tsai et al. [50] have worked on CASAS datasets and used a 5 min
time slice instead. In the case of visitor recognition in elderly resident’s homes, the time
slices were built around the average duration of a visit [21]. Samarah et al. [20] have used
window sizes based on the number of sensor events from the beginning to the end of an
activity, which is a commonly used technique for binary sensor based activity recognition,
as binary sensors only collect data when their state changes. Using a combination of 9 PIR
sensors, Luo et al. [23] have collected data using a frequency of 15 Hz, and computing
features on 2 s windows with 50% overlap between consecutive windows.

When wearable sensors are used, data is collected continuously at a pre-defined
frequency depending on the sensors capabilities, the resolution needed, and the storage
capacity or transfer speed of the device. Commonly used accelerometer frequencies
range from 10 Hz [37] for simple activities such as standing, sitting, or lying down to
50 Hz for most smartphone based systems [42,43], to 90 Hz [33], 125 Hz [31], 128 Hz [40],
or 150 Hz [36] for higher resolution systems.

Once the raw data is collected, it is split into windows of either fixed or variable
size. It is common to use a fixed window duration of 1 s, while the overlap between
consecutive windows can vary a lot, from 15% [39] to the most commonly used 50% [37],
to up to 87% overlap [33]. The higher the overlap, the heavier the computation is, but it
allows us to not miss out on patterns that could increase activity recognition performance.
Liu et al. [51] have provided a detailed analysis of different segmentation approaches and
window sizes for fall detection using wearable sensors. They have identified the two main
segmentation methods used in the literature: Sliding and impact-defined windows. While
the first one simply splits the data in fixed size windows, the second approach centers
the window around the fall. The authors have shown that sliding windows are more
sensitive than impact-defined windows to size changes, and that the smaller the window
is, the more energy efficient the system is. Once the windows are set, the feature vectors
can be computed. In the case of environmental sensors, sequences of events and time
domain features for digital sensors are used. For wearable sensors such as accelerometers
or gyroscopes time domain and frequency domain features can be used.

Time domain features (TDF) are straightforward to extract by performing basic com-
putation on the raw data contained in a specific window. The most commonly used TDF
used are the mean absolute value, maximum, minimum, number of slope changes, number
of zero crosssing, root mean square, standard deviation, Willison amplitude, and waveform
length [31]. Frequency domain features (FDF) are computed after transforming the raw
data from time domain to frequency domain, which entails heavier computations. One
of the most popular technique is to used Fast Fourier Transform (FFT) to perform that
transformation. Some of the most used FDF are the spectral energy, mean frequency, mean
power, peak magnitude, peak frequency, and variance of the central frequency, all of which
are detailed in [31] as well. Sarcevic et al. have also found in that paper that TDF tend to
give slightly better results for activity recognition (91.74% accuracy against 88.51% for FDF).

The choice of the features to be extracted depends on the sensor type as well as the
processing power of the system. Complex features do not always lead to better performance
as mentioned above [31].

Additionally, when moving towards real-time or distributed activity recognition,
processing time becomes a very valuable resource, and features have to be carefully se-
lected in order to keep the most relevant ones, at the expense of a slight loss in accuracy.
Zhan et al. [52] have managed to lower the computation burden by 61.6% while only losing
2.9% accuracy (92.5% to 89.6%) for activity recognition using a digital recorder by removing
the overlap between consecutive windows. Indeed, they have extracted Mel Frequency
Cepstral Coefficients (MFCC) from sound data. MFCC is defined as a representation of
the short-term power of sound, and it is a frequency domain feature, which is computa-
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tionally demanding to extract, leading to the window overlap reduction being necessary
to reduce the computational impact of its extraction. There are two main ways to select
features: Dimensionality reduction methods and feature transformation methods. The first
method reduces the dimensionality of the vector by simply dropping the worst performing
features, while the second method tries to map the initial features into a lower dimensional
subspace [47]. Henni et al. [53] have presented an unsupervised, graph-based feature
selection method, which falls into the latter category. Wang et al. [47] have used feature
selection and observed that they could drop up to 14 features out of the original 19 and still
achieve 88% accuracy for water drinking activity recognition. The most commonly used
dimension merging methods are principal component analysis (PCA) and independent
component analysis (ICA). Cagliyan et al. [30] have used PCA as a mean to estimate the
contribution of each feature in order to find the optimal positioning for the radar sensor
they have used. Lu et al. [25] have focused on explicit features (TDF), which are less
computationally demanding than implicit features. After extraction, all features have been
evaluated using two criteria: Time invariance and detection sensitivity, and only the best
performing features have been kept, based on an empirically determined cutoff point.

Feature extraction and selection is a critical step of activity recognition using machine
learning. Extracting too many features leads to a high computation cost, and the usefulness
of each feature being greatly diminished (curse of dimensionality). Some features require
more computation to extract, such as frequency domain features, and might not be suited
for time-sensitive or limited resource systems. The diagram above shows a summary of
the main FDF and TDF used for activity recognition (Figure 2).

Figure 2. Overview of the most commonly extracted features split into time and frequency domain
features. Features are further categorized based on the sensor used to collect the raw data.

3.3. Filtering and Outlier Detection

Since activity recognition is performed in a real-life environment, and is now extending
to individual homes rather than labs, more noise and outliers have to be dealt with in the
collected data. An outlier is generally defined as an observation that lies outside the overall
pattern of a definition. In the case of activity recognition relying on sensor, we usually
consider data points collected by faulty sensors to be outliers.
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Noise is another issue that has to be dealt with. Sensors will collect more data than
necessary for activity recognition, and a microphone might pick up constant background
noise, or motion sensors can fire up when a cat is moving around in the house. This noise
needs to be filtered in order to only feed relevant data to the machine learning algorithm.

Cagliyan et al. [30] have used a high pass filter to remove noise in the data collected by
radar sensors. High-pass filters are commonly used to remove the unwanted DC compo-
nent in accelerometer data, which corresponds to the contribution of gravity [33,36,37,41].
Low-pass filters have been used on accelerometer data in [40,43]. Nguyen et al. [54] have
used a threshold based approach to eliminate noise from sound data. Using a threshold is
a simple and effective method, however, the value of that threshold has to be determined
empirically, and any deviation from the norm that was previously unseen in the data could
break the threshold.

Most outlier detection techniques rely on clustering, based on the fact that by nature,
outliers have a high dissimilarity compared to acceptable data. Outlier detection methods
are split in 3 categories: Distance-based, density-based, and hybrid methods. Distance-
based methods such as k-NN-DB compute the distance between data points and their
neighbours to detect outliers, whereas density-based methods such as Local Outlier Factor
(LOF) compare the local density of a data point to the local density of its nearest neighbors.
Nivetha et al. [55] have described these methods and proposed a hybrid method that
resulted in much better outlier detection performance. Ye et al. [56] also highlighted the
fact that even though their system allows the detection and removal of outliers, it does
not allow us to “add” missing values, which is another issue brought on by faulty sensors.
Nivetha et al. [55] have shown an increase of up to 10% accuracy using their hybrid outlier
detection method compared to using no outlier detection at all, and a 1 to 2% improvement
compared to either distance or density based methods on their own. Noise filtering and
outlier detection and removal methods are therefore a necessary step to increase activity
recognition performance, even more so in a noisy environment, outside of a lab. The main
steps of the process are illustrated in the diagram above (Figure 3).

Figure 3. Pipeline of the standard activity recognition process, including the noise filtering and
outlier removal phases.

3.4. Algorithms and Performance

Researchers have focused on machine learning for activity recognition in order to
find the best performing algorithm in different contexts. Two comparison tables can be
found for environmental sensor based approaches (Table 1) and wearable sensor based
approaches, including smartphones (Table 2). When different datasets are used, the average
of the accuracies on each dataset is computed and given in the table. The meaning for the
abbreviations can be found in Abbreviations Section.

In smart homes using environmental sensors, Hidden Markov Models have been
used alone [21,24,49] or combined with other models such as SVM and MLP to build a
hybrid generative and discriminative model [19]. A Conditional Random Field (CRF) was
used in [49], yielding better results than a Hidden Markov Model (HMM), with 95.1%
accuracy instead of 91.2%. This difference in accuracy has been justified by the fact that
a Conditional Random Field (CRF) is trained by maximizing the likelihood over the
entire dataset, whereas HMM splits the data according the class labels, and optimizes
the parameters for each subset separately. This leads to CRF adapting the possible class
imbalance of the dataset and gives it a slight edge over HMM in terms of pure accuracy.
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Table 1. Comparison table for offline environmental sensor-based activity recognition approaches.

Paper Sensors Features Window Size Algorithms Activity Recognition
Accuracy

[47] Object
accelerometers TDF 2 s DT, MLP, SVM

78.9% (SVM),
78.4% (MLP),
74.7% (DT C4.5)

[52] Microphone MFCC 1.5 s DTW 92.5%

[25] AICO TDF Var. Bay. Net. 80%

[49]
PIR, switch, float,
pressure, contact,
temperature

Raw data,
change point,
last firing sensor

1 min HMM, CRF 95.1% (CRF),
91.2% (HMM)

[19] PIR Seq. of activation 1 min
HMM/MLP,
HMM/SVM,
HMM

67.2% (HMM/SVM),
65.4% (HMM/MLP),
52.2% (HMM)

[22]
PIR, reed switches,
pressure, contact,
float

Sensor data vs
contextual info. 1 min FCA 93.8% (Sensor data),

85.6% (Context)

[21] Motion, pressure Change of state 10 min HMM 85%

[30] COTS Radar Bandwidth,
min, max N/A PCA N/A

[24]

FSR, photocells,

distance, sonar,
contact, temp,
PIR, pressure

Seq. of activation 1 min
k-NN, DT,
MLP, TDNN,
HMM

71.8% (TDNN),
65.2% (DT),
64.4% (MLP),
63.6% (kNN),
62.2% (HMM)

[50] CASAS dataset Per-day act.
distribution 5 min DT 80%

[23] PIRs with mask Short term
energy

2 s
(50% OL) 2-layer RF 82.5% (First layer),

92.5% (Second layer)

[20] Binary sensors Influence of
each sensor N/A NB, HMM,

CRF

79% (CRF),
76.6% (HMM),
71% (NB)

[28] Microphone TDF 10 s RF 95%

[27] RFID tags on objects Object state Var. LSTM 85.7%

Decision Trees (DT) have not been the best performing algorithms for activity recog-
nition in [24,47], but Tsai et al. [50] have achieved an 80% accuracy in predicting the next
performed activity using DTs and a CASAS dataset. Luo et al. [23] have used a two-layer
Random Forest (RF) with their combination of masked PIR sensors. The first layer of that
RF focuses on the location and the speed of the user and achieves an 82.5% accuracy for
activity recognition. Adding in the duration spent in a specific area of the room as an
input to the second layer of the RF, the accuracy has been improved by 10%. As far as
unsupervised machine learning goes, Bouchard et al. [57] have used an improved version
of the Flocking algorithm on different datasets for activity recognition, and they have
achieved an accuracy of up to 92.5% with 13,000 iterations of their clustering algorithm.
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Table 2. Comparison table for offline wearable sensor-based activity recognition approaches.

Paper Sensors Features Sampling
Frequency

Window Size
and Overlap Algorithms AR Accuracy

[41] Accel.
Env Sensors

TDF,
FDF (FFT) N/A 50% OL GMM + FSM 93.9%

[34]
3 accel.
2 RFID WR
humidity sens.

TDF, temp
humidity,
location

N/A 15 s epSICAR
91% (seq.)
88% (inter.)
78.6% (conc.)

[45] ECG and accel. TDF 300 Hz (ECG)
75 Hz (accel)

0.12 s (ECG)
0.48 s (accel)
50% OL

SVM, GMM
84.8% (SVM)
79.7% (GMM)
89.3% (Mix)

[40]

2 accel.
2 RFID WR
mic, humidity,
temp, light

TDF
FDF for mic
Location
(RFID)

128 Hz (accel)
2 Hz (RFID) 1 s CHMM,

FCFR
96.4% (CHMM)
87.9% (FCRF)

[37] 2 accel. TDF 10 Hz 50% OL BT + NN 99.2%

[36] 3 accel. and gyr. TDF 150 Hz N/A KM + HMM 90.2%

[33] 3 accel. TDF and FDF
(ST and FFT) 90 Hz 1 s

87% OL SVM, DT 96% (SVM)
90% (DT)

[42] Phone accel. TDF 50Hz 2 s ANN 93%

[43] Phone accel. TDF and FDF 50 Hz 2.56 s
50% OL SVM 96.6%

[44] Accel. gyr. and
magnetometer TDF 5 Hz

25 Hz (phone) 2 s k-NN, ANN,
SVM, CART

96.8% (ANN)
96.2% (k-NN)
95.3% (CART)
94.4% (SVM)

[58] 5 IMU
12 accel N/A 30 Hz 0.5s

50% OL
DeepConv-
LSTM 86.6%

[39] 4 accel. TDF N/A 1 s
15% OL

SRC-RP,
SVM, HMM

94% (SRC-RP)
87% (SVM)
82% (HMM)

[31] Accel. gyr. and
magnetometer TDF and FDF 125 Hz 0.5/1/2 s

0.25s OL MLP 91.7% (TDF)
88.5% (FDF)

[59] Accel. TDF and FDF 50–100 Hz 50% OL SVM, k-NN 95.5% (SVM)
96.7% (k-NN)

[46] ECG and accel. TDF and FDF 500 Hz (ECG)
50 Hz (accel) 1.28 s DT 96.92%

[55] Accel. TDF and FDF 20 Hz 10 s SVM, RBFN 91.4% (SVM)
86.2% (RBFN)

[35] RFID bracelet TDF N/A 20 s Rule-based
classification 88%

When it comes to wearable sensors, SVM have been used in [33,39,44,45,55,59] with
accuracies ranging from 84.8% to 96%. Chiang et al. [32] have experimented with Fuzzy
rules for postures and movement recognition with, respectively, 93% and 99% accuracy.
Chawla et al. [44] have compared several algorithms (Artificial Neural Network (ANN),
k-Nearest Neighbor (k-NN), Classification and Regression Tree (CART), and Support Vector
Machine (SVM)) in terms of accuracy as well as training time for activity recognition using
wearable sensors. They have found that although the ANN had the best accuracy 96.8%, it



Sensors 2021, 21, 2786 13 of 34

was the longest algorithm to train using all features with 13.64 s training time. k-NN, CART,
and SVM have, respectively, achieved 96.2%, 95.3%, and 94.4% accuracy. Ordonez et al. [58]
have used a deep neural network using a combination of convolutional and recurrent layers
for gesture and mode of locomotion recognition, and they have achieved, respectively,
86.6% and 93% accuracy. One of the main advantages of this architecture is that there
is no need for pre-processing, and the data from the sensor can be fed directly to the
neural network.

3.5. Discussion

In this section, we have covered some of the main types of sensors, features, and main
methods for outlier detection and machine learning models used. Sensors are mainly
split between environmental and wearable sensors depending on the environment and
the type of activities to be recognized: Environmental sensors are used in smart homes to
recognize Activities of Daily Living (ADL), where sensor location and state are used to
infer activities, whereas wearable sensors are mostly used to detect different postures and
movements. For environmental sensors, sequences of activation are used, whereas Time
Domain Features and Frequency Domain Features are extracted from accelerometer data.
Threshold based noise filters and hybrid outlier detection are used to filter data before
using it to train different models.

Offline activity recognition is useful to optimize models in order to achieve high
accuracies, but they are not meant to be used in real-time application. In order to monitor
elderly patients, real-time activity recognition is necessary, as immediate assistance might
be required if any abnormal behavior is spotted.

4. Real-Time Centralized Activity Recognition

Real-time centralized activity recognition focuses on collecting data and recognizing
activities in real-time, usually by aggregating data from the nodes of a wireless sensor
network into a local computer or a distant server, and using machine learning algorithms to
perform real-time or periodical classification of the performed activities. Switching from an
offline to a real-time context is necessary when monitoring higher risk patients, or whenever
the use-case requires an instantaneous feedback from the system. The sensors used are
similar to the ones covered in the previous section: Environmental sensors, wearable
sensors, smartphones, or any combination of these methods. As far as the architecture of
the system goes, different network topologies can be used (mesh, star, partial mesh), as well
as several main communication protocols (Wi-Fi, Bluetooth, ZigBee, ANT, LoRaWAN).
Real-time systems sometimes provide a visualization tool to give feedback to the user or to
the physician in the case of a healthcare application.

This section reviews real-time centralized activity recognition systems for healthcare,
with an emphasis on the architecture of the systems as well as the issues and challenges
of real-time and near real-time machine learning in a streaming context. We compare
local and cloud-based approaches, and conclude on the state of the art in the field and the
limitations of these systems.

4.1. Architecture and Communication

Efficient real-time activity recognition systems need to rely on a robust architecture.
Data collected from each sensor node in the system needs to reach the central node in a
timely manner. In this section, we review and compare the main communication protocols
used for real-time activity recognition, as well as the most used network topologies. We
also discuss data collection and storage issues in a real-time system.

4.1.1. Communication Protocols

Wi-Fi, Bluetooth, ZigBee, and ANT (Adaptive Network Topology) are the main wire-
less technologies used for communication in Wireless Sensor Networks. We also cover the
recently introduced LoRaWAN, which is aimed at long range, low energy communication.
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Cellular networks (GSM) can also be considered for smartphone based applications, but in
the context of a WSN, they cannot be used to communicate with sensor nodes.

When it comes to newer technologies, even if 5G has not been used for activity recogni-
tion applications inside smart homes to the best of our knowledge, it seems very promising
for IoT applications [60], and has been used for the promotion of unobtrusive activities
and collision avoidance in the city [61]. Chettry et al. [62] have writen a comprehensive
survey on the use of 5G for IoT applications. More recent Wi-Fi protocols, such as IEEE
802.11af have been used for healthcare applications to collect health data, such as body
temperature and blood pressure from wearable sensors [63]. Aust et al. [64] have foreseen
the upcoming challenge of highly congested classical wireless spectrums (2.4 GHz/5 GHz)
due to the rapid advancement of the IoT, and they have reviewed the advantages of using
sub 1 GHz Wi-Fi protocols, such as IEEE 802.11ah for industrial, scientific, and medical
applications.

In terms of transfer speed, Wi-Fi offers the fastest solution. Newest standards such as
802.11ac advertise a maximum theoretical speed of to 1300 Mbps [65], with a maximum
theoretical range of about 90 m outdoors, and 45 m indoors. Bluetooth 3.0, however, offers
a maximum speed of 24 Mbps and a maximum theoretical range of 100 m. Starting from
Bluetooth 4.0, a new standard was introduced as Bluetooth Low Energy (BLE), and was
further improved in version 5.0, doubling its data rate [66]. The main goal of BLE is to
reduce energy consumption in order to extend battery life of smartphones and wearables.
However, the maximum transfer speed of BLE is 2 Mbps only, making it 12 times slower
than regular Bluetooth. ZigBee has emerged in 2003 as a new standard particularly adapted
to the Internet of Things (IoT) and sensor-based systems, with a focus on low latency and
very low energy consumption [67]. LoRaWAN (Longe Range Wide Area Network) is a
recently released (2016) network protocol built for LoRa compliant chips. It uses a star-of-
stars topology and is advertised for long range, low energy consumption communication.
Sanchez-Iborra et al. [68] have tested LoRaWAN’s maximal range and have found that
packets could travel up to 7 km in an urban scenario, and 19 km in a rural scenario, thanks
to the absence of obstacles in the way.

There are a lot of parameters to take into account for energy consumption, such as
the type of packets used for Bluetooth, data transfer rate, sleep time, and transfer time for
Wi-Fi. In each case, we picked the lowest consuming configuration presented in the papers
in order to have an even ground for comparison. A comparative table can be found above
(Table 3). In most cases, maximum range, transfer speed, number of nodes, and minimum
power consumption cannot be achieved at the same time.

Table 3. Comparison table for Wi-Fi, Bluetooth, BLE, ANT, and ZigBee standards in terms of
speed, range, energy consumption, compatible topologies, and maximum number of nodes in a
single network. The highest values in have been highlighted in the speed, range, and max number of
nodes category, and the lowest value in the energy consumption category.

Protocol Speed (Mbps) Range (m) Energy cons.
(mW) Topologies Max Nodes

Wi-Fi 1300 90 12.21 P2P, Star 250

Bluetooth 24 100 4.25 P2P, Broadcast 7 (active)

BLE (5.0) 2 240 0.07 P2P, Broadcast,
Mesh 7 (active)

ZigBee 0.25 100 0.66 P2P, Star, Cluster
Tree, Mesh 65,536

ANT 0.06 30 0.83 P2P, Star,
Tree, Mesh 65,533

LoRaWAN 0.027 19,000 1.65 Star of stars 120
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The choice of a protocol depends on the application and the main constraints of
the system. In the case of a Wearable Body Sensor Network (WBSN), sensor nodes are
powered through small batteries and need to rely on energy-efficient protocols such as
BLE. However, if the number of nodes needed is high, such as in a smart home containing
dozens of environmental sensors, ANT and ZigBee might be better suited. In applications
where energy is not the main concern, but a high throughput is needed, such as in video
based real-time activity recognition, Wi-Fi or even wired alternatives will most likely be the
best choice. Because of its long range and low speed properties, LoRaWAN is more suited
for periodic, low speed exchanges over long distances, but it is not particularly suited for
WBSN applications.

4.1.2. Topology

Real-time activity recognition systems collect data continuously from environmental
or wearable sensors. Regardless of the type of sensors used, each sensor node has to send
data back to the central node, which is usually a computer or a smartphone.

Suryadevara et al. [69] have used environmental sensors with ZigBee components
organized in a star topology to determine the wellness of inhabitants based on their daily
activities. The main advantage of a star topology is that each end node only has to know
how to reach the central node, which simplifies communication. However, each sensor
node has to be in reach of the central node, which might not always be the case for activity
recognition in extended spaces. The central node also represents a single point of failure.
Cheng et al. [39] have presented an architecture in which the failing central node is replaced
with the next most powerful node available so that the system can keep running.

In order to improve the flexibility of their system, Suryadevara et al. [70] have experi-
mented with a mesh topology using XBee modules to forecast the behavior of an elderly
resident in a smart home. A partial mesh topology is used, where 3 relay nodes can forward
data from the end nodes to the central coordinator. The reliability of the network has been
shown to be above 98.1% in the worst case scenario, with 2 hops between the end node
and the central coordinator.

Baykas et al. [71] have compared the efficiency of star and mesh topology for wireless
sensor networks and shown that in wide area networks, mesh topology networks require
22% more relay nodes to support sensor traffic as reliably as the star topology equiva-
lent. The nodes in a mesh topology also need 20% more bandwidth to deliver data in a
timely manner.

ZigBee and ANT also support cluster tree topologies, allowing the use of hubs that
receive data from their end nodes and forward it to the other nodes of the network. This
topology can be useful when it is not possible to connect every end node to a single central
node directly, or when the use of intermediary relay nodes allows us to handle traffic in a
more efficient way. Altun et al. [72] have used a relay node on the chest to forward data
from the left wrist end node to the central XBus master node located on the user’s waist.

Büsching et al. [73] have presented a disruption tolerant protocol to ensure that nodes
in wireless body area networks could switch from online to offline storage should their
connection to the central station be interrupted. After the connection is lost, each node will
store the collected data on an SD card until the connection is restored. When the node is
back online, it has to go through a synchronization procedure in order to send the backlog
of data in the correct order to the central station.

In the context of activity recognition in a single room or a small house, it seems
preferable to rely on a star topology as long as all the end nodes are in range of the central
coordinator to ensure optimal reliability with the least amount of nodes. The figure below
(Figure 4) shows the main types of topologies used in the literature.
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Figure 4. An overview of different network topologies used in wireless sensor networks for real-time
activity recognition. In the full mesh (top left), any node can directly communicate with any other
node in the network. In the star topology, all of the end nodes are connected to a single central node.
In a point-to-point topology (middle), two nodes communicate strictly with one another. In a cluster
tree (bottom), end nodes are connected to different hubs which are connected to each other.

4.1.3. Data Collection

In real-time systems, data can either be collected from sensor nodes at a fixed time
interval with the associated timestamp, or in the case of binary sensors, the new state of the
sensor can be collected whenever it changes. Nguyen et al. have used a fixed time interval
of 1 min in their real-time activity recognition system in an office [54]. Every single minute,
each sensor sends its state to the base station, that then determines the activity that is being
performed by the worker in the office based on a set of binary rules.

However, this method can lead to a lot of data being collected and stored, as well
as redundant data when the sensors stay in the same state for an extended period of
time. Suryadevara et al. [69] have instead opted to use an event-based approach for data
collection, where the data collected from the sensors is only stored if the most recent state
of the sensor differs from the last stored state. This allows us to store much less data,
and to discard any repetitive data. This approach only works for binary, or to a certain
extent, digital sensors. In most wearable sensor-based systems, data has to be continuously
collected, as sensors such as gyroscopes or accelerometers usually operate in the 10–100 Hz
sampling frequency range, and every single data point has to be stored to extract accurate
features for activity recognition [74].

In order to improve the efficiency of the system, Chapron et al. [75] have opted for a
smart data compression based on the range of definition of data collected by the accelerom-
eter. They have noticed that full float precision was not required to store accelerometer,
magnetometer, and gyroscope data, and they have successfully compressed data so that
each packet could contain the complete information from the 9-axis IMU and fit in a single
BLE characteristic.
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After choosing the right sensors based on the activity recognition task, it is critical
to build a suitable architecture and opt for an appropriate communication protocol for
real-time application. These choices should allow for a fast, reliable, and energy efficient
system. Data also has to be handled and stored in a way that minimizes storage and
processing requirements of the central station.

4.2. Local and Cloud Processing

In a centralized activity recognition system, data is collected from sensor nodes and
sent to a central station. That central station can either be a local computer, located in the lab
or the house, or it could be a distant server that receives the data, processes it, and uses it
for activity recognition. The main advantage of cloud computing is to offset the processing
and complex calculations to powerful distant machines [76]. It also provides a very high
availability, and a single set of machines can be used for different applications by splitting
their processing power and resources amongst different tasks. More recently, as another
sign of the trend shifting from centralized to distributed and pervasive computing, the Fog
computing model has been developed, where some of the processing is distributed to
intermediary nodes between the end device and the distant servers [77].

4.2.1. Local Processing

Smartphones can also be used for local activity recognition, such as the system built
by He et al. [78] relying on sensors wirelessly connected to a gateway, connected to a
smartphone via USB. Kouris et al. [79] have used 2 body-worn accelerometers and a heart
rate monitor sending data to a smartphone using Bluetooth. Similarly, Zhang et al. [80] have
used accelerometers and gyroscopes communicating with a smartphone using Bluetooth.
Biswas et al. [81] have used an accelerometer on the dominant wrist of a subject to perform
arm movement recognition. The data is sent from the accelerometer to a local computer,
which then transfers it to a FPGA board using a RS232 cable. The whole processing and
machine learning is performed by the FPGA that is directly linked to the local computer.

4.2.2. Cloud Processing

Cloud processing is particularly suited to healthcare applications, as it allows to build
a system where the data and results of activity recognition are stored online. These results
can then be accessed by the patients directly, as well as the physicians, and any abnormal
behavior can be remotely spotted in real-time.

Ganapathy et al. [82] have presented a system made of a set of body sensors, such
as blood pressure, heart rate, respiration rate, ECG, and SPO2 sensor sending data to
a smartphone using Bluetooth. These data are then wirelessly sent to a distant server.
Predic et al. [83] have used the inertial sensors of a smartphone, combined with air quality
data collected through environmental sensors. All of the data is then sent to a cloud
to be stored and processed. Mo et al. [84] have used a smartphone to collect data from
body worn sensors with energy harvesting capabilities, and to send it over to a distant
server for processing and activity recognition. Serdaroglu et al. [85] have used a wrist
worn watch with a built-in accelerometer to collect data in order to monitor patients’ daily
medication intake. The data is sent wirelessly from the watch to a gateway, connected to a
computer via USB, before being sent over to a web server. The monitoring application is
cloud-based, and both patients and doctors can access it. Khan et al. [86] have also used
on-body worn accelerometers with an emphasis on the accurate positioning of the nodes
on the subject’s body in order to improve the activity recognition accuracy. They have used
energy-based features and a cloud-based architecture to perform activity classification.
Fortino et al. [87] have presented the CASE (Cloud-Assisted Agent-Based Smart Home
Environment) system where data is collected from both environmental and wearable
sensors. Environmental sensors send data to a base station, such as a Raspberry Pi or a
Beagle Bone, and wearable sensors send collected data to a smartphone. These data are
then forwarded to the cloud-based architecture for processing.
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Cheng et al. [39] have compared the efficiency of a local Python machine learning
script running on a local computer and a distant Matlab algorithm running on the cloud.
They have found that the accuracy of SVM seems to be better on the cloud (97.6% vs.
95.7%) and the accuracy of k-NN is better using the local Python script (97.9% vs. 95.9%).
As cloud-based solution often times require the use of proprietary software and additional
costs to rent storage space and processing power, Cheng et al. have decided to rely mainly
on the localized algorithm, and only use the cloud algorithm if the local one fails.

The context of application of a real-time activity recognition system is the main
criteria to determine whether to rely on a local or cloud based architecture. In the case
of a healthcare system where remote monitoring from the doctors is necessary, a cloud
architecture seems to be more suited. It also allows the patient themselves to access their
history, as well as family members, either from their computer or an application on their
smartphone or tablet. However, cloud-based systems are usually more costly, because of
the monthly fee and the maintenance needed, as well as the possible use of proprietary
software, and the difference in activity recognition accuracy alone usually cannot justify
the extra cost.

The diagram below summarizes the main architectures used in the field of real-time
activity recognition (Figure 5). The dashed line makes the difference between local and
cloud based systems in order to compress the representation. The first approach uses
sensor nodes wired to a gateway node that communicates with a computer. This approach
is generally used with wearables in Wireless Body Sensor Networks (WBSN), where nodes
are attached on different parts of the user’s body, and a gateway node is used to store
and transfer the collected data to a local station that could be connected to the cloud.
This approach allows for a faster and more reliable communication between the sensor
nodes and the gateway, but it makes the system less practical and more invasive as the
number of nodes increases because of all the wires involved. The second approach uses
wireless communication between the sensor nodes and the gateway node. This approach
is generally used with environmental sensors, as using wires between every single sensor
node and the gateway node would be impractical in a smart home. The gateway node
is directly plugged into the central station, which could process the data locally or send
it over to a cloud server [85]. In the last presented architecture, all of the sensor nodes
are sending data wirelessly to a smartphone, acting as a gateway node, sending data to
the local station. In some applications, the smartphone sends data over directly to cloud
servers [82]. Two different gateway nodes can also be used in the same system [87].

4.3. Real-Time Machine Learning

Supervised machine learning algorithms are the most commonly used class of algo-
rithm in activity recognition. Data are collected, manually labeled, and used to train a
model. Once the model has been trained, it can be used to perform activity recognition.
In real-time applications, the simplest approach is to collect data and train the model offline.
Once the model is trained, it can be used online to classify new instances and perform
activity recognition. It is also possible to train some models in real-time by using smaller
batches from the continuous flow of incoming data in a streaming context. In both cases,
the main challenge is to label data and evaluate the true performance of an algorithm.
If activities are performed in real-time without a human observer to provide the ground
truth for verification, the accuracy of the model cannot be evaluated for supervised machine
learning based systems.

In this section, we explore some proposed techniques of automatic activity labeling,
highlight the main challenges of real-time activity in a streaming context, and review some
of the approaches that have been applied to activity recognition applications.
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Figure 5. Diagram representing the three main local and cloud architectures used for real-time
centralized activity recognition. Sensor nodes can be connected to a gateway node using USB/RS232
cables. The gateway node sends the collected data wirelessly to a central station that can process the
data locally or send it over to a cloud (top). In the second configuration, sensor nodes can send the
collected data wirelessly to a gateway node, connected to the central station (middle). In the third
configuration, all communication is performed wirelessly between the sensor nodes, a smartphone
used as a gateway node, and a central station or cloud servers (bottom).

4.3.1. Activity Labeling

In offline machine learning systems, labeling is done by hand, either directly by an
observer, after the experiment by using video recording, or by the subject themselves with
the help of a form or an application.

Naya et al. [88] have provided nurses in a hospital with a voice recorder to allow
them to describe the activity they were performing in real-time. However, the recording
still has to be interpreted by a human in order to turn it into a usable activity label that
can be used to train a machine learning model. In real-time systems, activity recognition
can either happen in a closed or open universe. In a closed universe, a complete set of
activities is defined from the start [54], and any new collected data forming a feature vector
will be classified in one of the classes of this set, or remain an unclassified instance in
some cases [89]. In an open universe, new activities can be discovered as the system runs,
and irrelevant activities can be discarded.

Suryadevara et al. [69] have created a table mapping the type and location of each
sensor, as well as the time of the day to a specific activity label. Using this technique,
they have achieved 79.84% accuracy for real-time activity annotation compared to the
actual ground truth collected from the subjects themselves. This approach is efficient in
systems where a single sensor or a set of sensor can be discriminative enough to narrow
down the activity being performed. In this closed context, no new activities are discovered.
Fortino et al. [87] have used the frequent itemset mining algorithm Apriori to find patterns
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in collected data. Events represented by quadruples containing a date, a timestamp, the ID
of a sensor and its status are recorded. These events are then processed to form a list of
occupancy episodes in the form of another quadruple containing a room ID, a start time,
a duration, and the list of used sensors. The idea behind this quadruple is to automatically
represent activities that emerge as a function of the sensors firing, the time and duration
of their activation, as well as the room in which they are located. Apriori is used to
find the most frequent occupancy episodes, which are then clustered. Clusters can change
throughout the system’s lifecycle, and each cluster acts as the representation of an unknown
activity. The name of the activity itself cannot automatically be determined, and human
intervention is still necessary to properly label it. This method is useful when there is a
high correlation between time, location, and the observed activity.

Through active learning [90], it is possible to provide the user with an interface that
allows them to give feedback over the automatic label suggested by the system. If the
label is correct, the user specifies it is, and the new learned instance is added to the base
of knowledge. Semi-supervised learning [91] can be used together with active learning to
compare activity annotation predictions with the ground truth provided directly by the
user. The model is first trained with a small set of labeled activities. Classification results
for unknown instances are then checked using active learning, and added to the training
set if they have been correctly classified, thus progressively allowing the training set to
grow, and making the model more accurate and versatile in the case of activity discovery.

The smaller the set of activities to classify is, the easier it is to link a sensor to an
activity. However, a sensor could be firing, letting us know that the sink is running, but it
would be impossible to determine if the subject is washing their hands, brushing their
teeth, shaving, or having a drink. The more complex the system gets, and the more sensors
are added, the more difficult it becomes to establish a set of rules that link sensor activation
to human activities. Most real-time systems have to be periodically re-trained with new
ground truth in order to include new activities, and take into account the fact that the same
activities could be performed in a slightly different way over time.

4.3.2. Machine Learning

There are two main distinctions to be made when it comes to real-time machine
learning: Real-time training and real-time classification. The latter represents the simplest
case of real-time machine learning: A model is trained offline with a fixed dataset, in the
same way offline activity recognition is performed, and it is then used in real-time to
classify new instances. For most supervised learning based methods, classification time
is negligible compared to training time. Models that require no training, such as k-NN
require a higher classification time. Nugyen et al. [54] have used binary rules that map
sensor states to an activity label to classify new instances in near real-time (5 min time
slices). Other straightforward approaches use real-time threshold based classification [92]
or a mapping between gyroscope orientation and activities [81].

Cheng et al. [39] have used both local and cloud based SVM and k-NN implementation
for real-time activity recognition on an interactive stage where different lights are turned
on depending on the activity of the speaker. k-NN [93] requires no training time, as it relies
on finding the k nearest neighbours of the new data instance to be classified. However,
in its original version, it has to compute the distance between the new instance and
every single data point in the dataset, making it a very difficult algorithm to use for
real-time classification.

Altun et al. [72] have compared several algorithms in terms of training and storage
time for activity recognition using wearable sensors. Algorithms such as Bayesian Decision
Making (BDM), Rule Based Algorithm (RBA), decision tree (DT), K-Nearest Neighbor (k-
NN), Dynamic Time Warping (DTW), Support Vector Machine (SVM), and Artificial Neural
Network (ANN) are trained using 3 different methods: Repeated Random Sub Sampling
(RRSS), P-fold, and Leave one out (L1O) cross validation. Using P-fold cross validation, DT
has been shown to have the best training time (9.92 ms), followed by BDM (28.62 ms), ANN
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(228.28 ms), RBA (3.87 s), and SVM (13.29 s). When it comes to classification time, ANN
takes the lead (0.06 ms), followed by DT (0.24 ms), RBA (0.95 ms), BDM (5.70 ms), SVM
(7.24 ms), DTW (121.01 ms, taking the average of both DTW implementations), and k-NN
in last position (351.22 ms). These results show that DT could be suited for both real-time
training and classification, as it ranks high in both categories. Very Fast Decision Tree
(VFDT) based on the Hoeffding bound have been used for incremental online learning
and classification [94]. Even though ANN requires the most training time, it performs
the quickest classification out of all the algorithms compared in this paper, and could
therefore be used in a real-time context with periodic offline re-training. The ability of
neural networks to solve more complex classification problems and automatically extract
implicit features could also make them attractive for real-time activity recognition. These
results were obtained for classification of 19 different activities in a lab setting, after using
PCA to reduce the number of features.

Song et al. [95] have explored online training using Online Sequential Extreme Learn-
ing Machine (OS-ELM) for activity recognition. Extreme Learning Machine is an optimiza-
tion learning method for single-hidden layer feedforward neural network introduced by
Huang et al. [96]. This online sequential variation continuously uses small batches of newly
acquired data to update the weights of the neural network and perform real-time online
training. ELM is particularly adapted to online learning as it has been crafted to deal with
the issue of regular gradient-based algorithms being slow, and requiring a lot of time and
iterations to converge to an accurate model. ELM has been shown to train NN thousands
of times faster than conventional methods [96]. OS-ELM has been compared to BPNN [95],
and has achieved an average activity recognition rate of 98.17% accuracy with a training
time of about 2 s, whereas BPNN stands at 84.56% accuracy with a 55 s training time. This
result show that neural networks could be a viable choice for online training as well as
online classification, as long as the training procedure is optimized.

Palumbo et al. [97] have used Recurrent Neural Networks (RNN) implemented as
Echo State Networks (ESN) coupled with a decision tree to perform activity recognition
using environmental sensors coupled with a smartphone’s inertial sensor. The decision tree
constitutes the first layer, and possesses 3 successive split nodes based on the relative value
of collected data. Each leaf of this decision tree is either directly an activity, or an ESN that
classifies the instance between several different classes. ESN is a particular implementation
of the Reservoir Computing paradigm, that is well suited to process streams of real-time
data, and requires much less computation than classical neural networks. The current state
of a RNN is also affected by the past value of its input signal, which allows it to learn
more complex behavior variations of the input data, and is especially efficient for activity
recognition, as the same recurrent nature of certain behaviors can be found in human
activity recognition (present activities can help inferring future activities). On a more
macroscopic scale, Boukhechba et al. [98] have used GPS data from a user’s smartphone,
and an online, window-based implementation of K-Means in order to recognize static and
dynamic activities.

In a streaming context with data being collected and used for training and classifica-
tion, several issues can arise. Once the architecture and communication aspects have been
sorted as described in the previous sections, the nature of the data stream itself becomes the
issue. As time goes on, it can be expected that data distribution will evolve over time and
give rise to what is referred to as concept drift [99]. Any machine learning model trained
on a specific distribution of input data would see its performance slowly deteriorate as
the data distribution changes. As time goes on, new concepts could also start appearing
in data (new activities), and some could disappear (activity no longer performed). These
are called concept evolution and concept forgetting. The presence of outliers also has to
be handled, and any new data point that does not fit in the known distribution does not
necessarily represent a new class.

Krawczyk et al. [100] have reviewed ensemble learning based methods for concept
drift detection in data streams. They have also identified different types of concept drift
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such as incremental, gradual, sudden, and recurring drift. Ensemble learning uses several
different models to detect concept drift, and to re-train a model when concept drift is
detected. The freshly trained model can be added to the ensemble or replace the currently
worst performing model if the ensemble is full. Concept drift is usually detected when
the algorithm’s performance starts to drop significantly and does not return to baseline.
Some of the challenges of concept drift detection are to keep the number of false alarm
to a minimum, as well as to detect concept drift as quickly as possible. Various methods
relying on fixed, variable size and a combination of different window sizes have been
described in [100]. The figure below illustrates the process of concept drift detection and
model retraining (Figure 6).

Figure 6. Diagram of the evolution of a model’s accuracy over time as concept drift occurs in two
cases: With retraining and without retraining.

Additionally, in high speed data-streams with high data volumes, each incoming
example should only be read once, the amount of memory used should be limited, and the
system be ready to predict at any time [101]. Online learning can either be performed using
a chunk-by-chunk or one-by-one approach. Each new chunk or single instance is used
to test the algorithm first, and then to train it, as soon as the real label for each instance
is specified. This comes back to the crux of real-time activity recognition, which is the
need to know the ground truth as soon as possible to ensure continuous re-training of the
model. Ni et al. [102] have addressed the issue of dynamically detecting window starting
positions with change point detection for real-time activity recognition in order to minimize
necessary human intervention the segment data before labeling it.

In limited resources environments, such as when machine learning is performed
on smartphone, a trade-off often has to be found between model accuracy and energy
consumption as shown by Chetty [103] and He [78]. This is especially true for distributed
real-time processing, which we cover in the next section.

4.4. Discussion

In this section, we have covered the main steps to follow in order to build a real-time
activity recognition system, starting from the physical architecture, to the communication
protocols, data storage, local and remote processing, activity labeling, machine learning in
data streams, and the interaction with different actors of the system. Types and location of
sensors have been covered in offline activity recognition section.

Many challenges still have to be faced for real-time activity recognition, such as
real-time activity labeling in real-time, adaption to concept drift and evolution, timely
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online training and classification, as well as memory efficient algorithms. We have re-
viewed several real-time algorithms and highlighted the importance of semi-supervised
and unsupervised approaches to reduce necessary human intervention.

With portable and embedded devices becoming more and more powerful by the
year, the Internet of Things becoming the new standard, and the convenience of pervasive
computing, it seems natural to transition from centralized to distributed activity recognition,
and to explore the new research challenges and opportunities that rise with it.

5. Real-Time Distributed Activity Recognition

With IoT boards becoming smaller and more powerful, distributed activity recognition
is the next logical step to weave technology more profoundly in everyday life. In an ideal
case and a fully distributed system, no node is essential and there is no single point of
failure, as opposed to centralized activity recognition that relies on a local computer or
a distant server for processing and classification. Distributed activity recognition also
allows the creation of fully autonomous systems that do not rely on an external internet
connection to keep performing their tasks. A local system also implies a higher degree of
privacy, as no single node stores all of the data.

However, distribution comes with a whole new set of problems, especially in a real-
time context. In this section, we first cover the on-node processing aspects of distributed
activity recognition, then we move on to communication between nodes, and we conclude
on distributed machine learning. In each section, we review some of the methods that have
been found in the literature and we identify the main considerations to take into account
when building a distributed activity recognition system.

5.1. On-Node Processing

The main difference between centralized and distributed systems is the nodes’ ability
to perform some processing before communicating with other nodes. In a distributed
system, basic feature extraction can be performed on low-power nodes, which allows it
to save a lot of energy on communication, as features extracted on a data window are
generally more compact than raw data [104].

However, because of the nodes’ limited processing power, feature extraction has to
be as efficient as possible. Lombriser et al. [105] have compared features in terms of the
information gain they provide to the classifier versus their computational cost, and they
have found that the mean, energy, and variance were the most efficient features for on-body
activity recognition with DT and k-NN, using accelerometer data.

Roggen et al. [106] have used a limited memory implementation of a Warping Longest
Common Subsequence algorithm to recognize basic movement patterns. In order to reduce
necessary processing power and code space, the algorithm relies on integer operations
rather than floating point operations. They have implemented the algorithm on a 8-bit AVR
microcontroller and a 32-bit ARM Cortex M4 microcontroller, and they have shown that
a single gesture could be recognized using only 0.135 mW of power, with the theoretical
possibility of recognizing up to 67 gestures simultaneously on the AVR, and 140 on the M4.
Because of the nature of the algorithm they have used, Roggen et al. have chosen to not
extract any features and find the Longest Common Subsequence directly using raw data.
This leads to more complex movement recognition being less efficient, but it reduces the
computational burden on the nodes.

Lombriser et al. [105] have observed that bigger window sizes and wider overlaps
yielded higher activity recognition accuracy, but came with a higher computation burden
as well. They have settled for a middle ground with 2.5 s windows and a 70% overlap.
Roggen et al. [106] have reached similar conclusions as they have found that the shorter
the sequence to match is, the lighter the computational burden is at the expense of losing
specificity on activities to be recognized. Indeed, shorter patterns are less discriminative,
and the shorter they are, the further away they are from describing a full gesture.
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Jiang et al. [107] have focused on rechargeable sensor networks, using RF waves from
RF readers to supply energy to Wireless Identification and Sensing Platform tags (WISP
tags). They have compared different scheduling methods to distribute energy amongst the
nodes at runtime in order to achieve the highest Quality of Monitoring (QoM) possible,
defined by the ratio between occurred and captured events. They have found that using a
hybrid method with scheduling on both the reader and the WISP tags allowed for the best
QoM results.

In order to save energy whilst still maintaining a high activity recognition accuracy,
Aldeer et al. [108] have used a low energy, low reliability motion sensor (ball-tube sensor)
together with a high energy, high reliability sensor (accelerometer) for on-body acitivity
recognition. The idea is to put the accelerometer to sleep when the user is mostly static,
and to use cues from the ball-tube accelerometer to detect the beginning of a movement in
order to enable accelerometer data collection. This allows to reduce energy consumption
by a factor of 4 during periods where the user is static.

5.2. Communication

Communication is one of the main sources of energy loss in WSN together with high
sampling sensors. Lombriser et al. [105] have found that radio communication accounted
for 37.2% of the total node’s energy consumption, which is the second biggest energy
consumption after the microphone (45.8%) and far more than the CPU (3.5%). It is therefore
crucial to find ways to save more energy by communicating efficiently and minimizing
packet loss as much as possible.

Considerable packet loss can be experienced in WBSN when a node tries to commu-
nicate with another node that is not in Line of Sight (LOS), such as shown in [105] where
the transmission rate from a node on the waist to a node on the ankle falls to 78.93% when
the subject is sitting down. Zang et al. [109] have designed the M-TPC protocol to address
this issue in the specific case of the walking activity with a wrist worn accelerometer and
a smartphone in the opposite pocket. They have noticed a negative correlation between
acceleration values picked up by accelerometers and packet loss. Indeed when the body of
the subject stands between the node and the smartphone, more data loss is experienced.
M-TPC is designed to send packets of data only when acceleration is at its lowest, meaning
that the subject’s arm is either in front or behind their body, at the peak of the arm’s swing-
ing motion. This protocol allows to reduce transmission power by 43.24% and reduces
packet loss by 75%.

Xiao et al. [110] have used Sparse Representation based Classification with distributed
Random Projection (SRC-RP) to recognize human activity. By randomly projecting data
to a lower dimensional subspace directly on the nodes, they can efficiently compress
data and save on transmission costs while still maintaining a high activity recognition
accuracy. With a 50% data compression rate, they have achieved an activity recognition
accuracy of 89.02% (down from 90.23% without any compression) whilst reducing energy
consumption by 20%. The authors have compared RP to PCA, and found that RP yields
a very close accuracy, whilst being less computationally expensive than PCA, as well as
being data independent.

De Paola et al. [111] have used a more centralized approach, but they have explored the
issue of optimal sensor subselection in order to save energy in a WSN. Each node collects
data, and a central Dynamic Bayesian Network is used to perform activity recognition
based on environmental sensors in a smart home. The information gain of each sensor is
computed, and if the state of the system is not expected to change much, the least relevant
sensors are set to sleep mode to save energy. Using this adaptive method, they have
achieved 79.53% accuracy for activity recognition, which is similar to the accuracy using
all sensors, but with a power consumption three times lower.
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5.3. Machine Learning

In an ideal distributed activity recognition system, processing and classification tasks
should be equally split between all the nodes. However, most approaches in the literature
still rely on a central node to perform the final classification steps. There are different levels
of distribution, starting from minimal on-node processing, to partial on-node classification,
to fully distributed classification. A summary of the different degrees of distribution
observed in the reviewed literature can be found below (Figure 7).

Figure 7. Diagram of different degrees of distribution for distributed machine learning in WSNs.
On-node pre-processing is performed before sending the data to a central node for classification
(left). Initial classification is performed on the sensor nodes before performing a second classification
on the central node (middle). The classification process is distributed among the nodes (right).

Farella et al. [112] have used on-body accelerometers for activity recognition. Their
approach is mostly centralized, but they have used a lookup table that matches specific
accelerometer values to the orientation of the node. This table is directly implemented on
the nodes and allows a first basic pre-processing step to be carried out locally. Bellifem-
ine et al. [113] have presented an agent-oriented implementation of the SPINE framework,
designed to facilitate signal processing based tasks, such as activity recognition. Each node
is able to perform basic feature extraction for accelerometer values based on a split function
(mean, minimum, maximum for each axis), and uses an aggregation function to group up
the features and send them to a central station.

Roggen et al. [106] have used majority voting in their LM-WLCSS system to find the
best overall match among the nodes. Zappi et al. [114] have trained a HMM on each node
and used a central node to weigh in the contribution of each node and perform classification
using either majority voting or a Naive Bayesian fusion scheme. Bayesian voting proved
more efficient, especially when faced with noise in the data, as the contribution of noisy
nodes is reduced. Palumbo et al. [115] have used wearable and environmental sensors for
distributed activity recognition using Received Signal Strength (RSS) values and Recurrent
Neural Networks. In the distributed implementation for the walking activity, each node
collects acceleration and RSS data, discards bad packets and sends data to the feature
extraction module. Each node uses these features to make an activity prediction using the
Echo State Network. Each prediction is sent to a gateway that performs majority voting
as the final classification step. They have achieved a 91.11% accuracy for two activities
(standing up and sitting down) using a centralized version of the algorithm. The authors
have also shown that their algorithm only requires 2kB of RAM, which makes it suitable
for embedded applications.

Wang et al. [116] have used a 2-layer classification system where gesture recognition is
performed directly on the sensor nodes worn on the body and around the wrists, and sent
to a central smartphone that performs higher level activity recognition. On each node,



Sensors 2021, 21, 2786 26 of 34

K-Medoid clustering is used to find templates for each gesture. At activity recognition time,
Dynamic Time Warping (DTW) is used to find the closest matching sequence to the training
set using a 1 s sliding window on incoming data. Each gesture has a different pattern,
and the body and wrist nodes try to match different patterns. All sensors send the results of
this initial classification to the central node that merges it into a bitmap. Emerging Pattern
(EP) is then used to recognize higher level activities. The average accuracy of the system
is 94.9%, however, it is not as suited for interleaved activity recognition because of the
importance of pattern temporality. They have also shown that performing the first stage of
classification directly on the nodes allowed for 60.2% savings in energy consumption when
compared to sending raw data for central processing.

Atalah et al. [117] have used a 2-stage Bayesian classifier using data from an ear-
worn sensor combined with environmental sensors. The ear-worn sensors first classifies
the performed activity into a different category of activities based on the heart rate of
the user. This first estimation is sent to the central node that receives additional data
from the environmental sensor and uses it to perform the second classification stage.
The authors have found that using the combination of both types of sensors allowed to
reduce class confusion rates by up to 40% for some subjects, rather than relying only on
wearable sensors.

Amft et al. [104] have also used a 2-stage classifier in their distributed user activity
sequence recognition system. The first layer of classification happens directly on the nodes
where atomic activities are recognized by finding the closest match to a known pattern in
the data. These atomic activities are organized in an alphabet, and different sequences of
atomic activities correspond to a composite activity. Using body-worn accelerometers and
environmental sensors in a car assembly scenario, the authors have identified 47 atomic and
11 composite activities, and achieved a 77% activity recognition accuracy. They have also
observed a 16% data loss when sending raw data from the nodes to a central coordinator,
which highlights the advantage of on-node processing for reduced data transmission in
distributed systems.

Fukushima et al. [118] have fully distributed a Convolutional Neural Network (CNN)
in a WSN. Each node of the network is responsible for the computations of all the layers for
a specific unit of the CNN, the same way CNN are used for image recognition, where a unit
is a pixel or a group of pixels, except each node collects temperature or motion data in the
two presented experiments. The CNN consists of an input layer, T hidden layers, a fully-
connected layer and an output layer. Each hidden layer contains a convolutional layer and
an optional pooling sublayer. Each convolutional layer has K filters. To ensure a lighter
computational load, the number and size of the filters are limited. When a node receives
all the necessary inputs from neighboring nodes, it goes through the layers, computes the
output, and advertises the output for the units in the following layer. When a sensor node
obtains ground truth, it begins the distributed backpropagation process, where each unit
updates its weights based on the propagation from the previous units, therefore, there
is no global optimization of the weights. MicroDeep has achieved 95.57% accuracy for
temperature discomfort recognition, whereas a standard CNN running on a computer
has achieved 97.1% accuracy. Using optimal parameters, MicroDeep achieves the same
accuracy as the standard CNN, but its communication cost is multiplied by 8 as opposed to
using a feasible configuration. Since the CNN forms a 2-D grid, there might be cells without
an associated sensor. These cells are referred to as holes, and the authors have shown that
they can still maintain a 94.4% accuracy even with 20% holes. This is an example of a fully
distributed, real-time activity recognition system, which relies on a high number of sensor
nodes to distribute processing.

Bhaduri et al. [119] have presented a distributed implementation of a Decision Tree
in a P2P network using misclassification error as a gain function. Each node has a set of
training examples and the aim of the algorithm is to select the best split based on each
node’s decision, using majority voting, in order to build an optimal tree. The authors
have also reduced communication costs between the node by introducing a parameter
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that controls how essential an event has to be in order for a node to send a message to
its neighbouring nodes. Another parameter is introduced to enforce a minimum delay
between the transmission of two consecutive messages on each node. An event could be
the introduction or disappearance of a node in the network, the change of state of a node,
or additional data received, that could possibly change the structure of the tree. Decision
Trees and Random Forest are an interesting choice for real-time activity recognition as
discussed in the previous section, thanks to their acceptable training and classification
time, and generally good performance in the field. To the best of our knowledge, no
fully distributed implementation of DT or RF have been used for activity recognition in a
healthcare context.

Navia-Vazquez et al. [120] have addressed the distribution of the Support Vector
Machine algorithm. They have presented a naïve approach where a local SVM is trained at
every node using local data, the support vectors are sent to the other nodes, a new training
set is built at each node using the support vectors received from other nodes, and new
support vectors are computed and exchanged until convergence. Another method using
Semiparametric Support Vector Machine is presented; it allows to reduce the communica-
tion costs compared to the naïve alternative. Both methods achieve a much better accuracy
than a SVM only using locally available data on a single node. Support Vector Machine is
not the fastest algorithm to train, but distributed optimizations such as the second method
presented in that paper could allow dynamic retraining for a limited communication cost
in sufficiently powerful WSNs.

In an embedded context, the main considerations are to keep processing as close
as possible to the data source, to optimize sensor usage and scheduling in order to save
energy, to compress data and promote efficient node communication, and to use a higher
number of nodes if accuracy is the priority. The use of local optimization procedures is also
mandatory to reduce communication costs, such as Fukushima’s local backpropagation for
a distributed CNN [118].

5.4. Discussion

Real-time distributed activity recognition in a streaming context remains a very inter-
esting field with many challenges to overcome. The six optimization angles of processing,
memory, communication, energy, time, and accuracy leave no room for error in the concep-
tion of an efficient activity recognition system.

Different degrees of distribution can be implemented depending on the size of the
WSN, as well as the algorithm and the context of the experiment. A higher number of nodes
generally allows for a better accuracy through voting, and a better noise resilience, whereas
a smaller number of nodes allows for less intrusive systems that can easily mesh in daily
life activities. Processing can be reduced by using approximations, such as using integers
instead of floats [106], extracting features with the highest information gain to extraction
cost ratio [105], or downsizing the windows and the length of patterns to be matched [106],
which also reduces the memory overhead necessary for gesture recognition. Optimizing
sensors sampling rate allows both processing and memory savings [108]. Using integers
also allows to save a lot of memory at the cost of a loss in accuracy. Compressing data
using random projection is also a way to reduce memory usage as well as communication
costs [110], but comes with extra on-node processing.

Communication can be optimized through the use of efficient protocols [109] as well as
parameters controlling the importance of a message before sending it, as well as enforcing
a minimum delay between consecutive transmission from the same node [119].

Energy is the variable that dictates most of the design and implementation choices for
distributed activity recognition, especially in a healthcare context where it is expected to be
able to monitor patient around the clock. Any processing optimization usually reduces
energy consumption, whereas any extra processing to save on memory or communication
will increase it. Rechargeable sensors can be a viable option in some cases [107]. In a
sustainable development perspective, it would be interesting to include renewable, portable
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energy sources, such as small solar panels or energy harvesting modules based on body
motion, whilst still making sure the system is as lightweight and non-intrusive as possible,
especially in WBSNs.

Time is at the centre of real-time activity recognition, and any algorithm should be
able to provide a classification result in a timely manner. Depending on the context of
application, a one minute delay could be acceptable (activity of daily living monitoring) or
it could be way too long (self-driving car).

The accuracy of the algorithm should be as high as possible despite all of these
constraints, and a lot of time, a trade off has to be found between time and accuracy,
as well as energy and processing. It is expected that distributed training based algorithm
will not perform as good as good as their offline, batch training based equivalents, but it
is a necessary compromise for real-time activity recognition. Instead, the trend goes
toward higher degrees of distribution with dozens or hundreds of nodes to compensate
the accuracy lost while training using partial data with an increase in data sources and a
better modeling of the environment or the subject in dense WBSNs.

All of these angles are usually coupled, and trying to optimize one of them can result
in a loss of performance in another one. A summary of some of the approaches used in the
literature have been summarized in the table above (Table 4).

Table 4. Comparison of the impact of different optimization methods used in the literature on
processing, memory, communication, energy, time, and accuracy of the system. A + symbol (green
cell) means a positive impact, a = symbol (yellow cell) means no noticeable impact, a - symbol (red
cell) means a negative impact, and a ∼ symbol (gray cell) means an impact that could be positive or
negative based on the method implementation.

Method Processing Memory Comm. Energy Time Acc.

Integers instead of floats + + + + + -

Highest gain features + = = = = -

Smaller windows/patterns + + + + + -

Lower sensor sampling rate + + + + = -

Compressing data on node - + + ∼ = -

Comm. reduction protocols - - + ∼ - -

Rechargeable sensors - = - + = =

Sensor subselection - = + + - -

More nodes - - + - = +

Majority voting = = + + = +

2-layer classification + = - - = +

Local optimization + + + + + -

6. Conclusions

In this paper, we have reviewed activity recognition methods for healthcare in offline,
centralized and distributed cases. We have highlighted different findings and challenges,
and followed the natural evolution of activity recognition with the development of hard-
ware performance, miniaturization, and the Internet of Things. When offline activity
recognition acts as a sandbox for researcher to compare the performance of different ma-
chine learning algorithm and sensor types, real-time centralized methods allow real-life
implementation for healthcare applications, but they come with a set of new problems such
as efficient communication, online training and classification, real-time activity labeling,
and concept drift detection. Real-time distributed activity recognition harnesses the power
of the IoT to reduce communication, processing and memory cost, single points of failure
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and bottlenecks, dependence on an distant server, and an Internet connection. It allows
us to promote pervasive computing and weaving of technology in everyday life to bring
assistance and improve the subject’s quality of life.

Many improvements still have to be made to find balance between all the constraints
that come with distribution of algorithms in a low resource environment. Research should
focus on the six main optimization angles we have highlighted: Processing, memory, com-
munication, energy, time, and accuracy. Various types of sensors and sensor combinations
should be used for cases going from basic to complex activity recognition. Increasingly
efficient and compact embedded algorithms have to be implemented for on-node process-
ing. Smart and low energy communication protocols have to be used and improved, as
communication is the crux of distribution. New energy sources have to be harvested. Exist-
ing machine learning algorithms have to be distributed in an efficient manner, especially
deep learning and neural networks, which have shown a lot of potential. New distributed
machine learning algorithms have to be crafted by switching from the monolithic nature of
high volume batch learning to a more flexible and real-time perspective for training. New
methods have to be explored to estimate the performance of a real-time system without
ground truth. Semi-supervised as well as unsupervised methods have to be explored more
thoroughly, as they will be more suited for real-time applications.

Beyond the scope of healthcare and activity recognition, distributed machine learning
opens up a lot of opportunities both in research and industry for the implementation of
distributed intelligence. By shifting the processing power away from the cloud and distant
servers and bringing it closer to the data source, context is preserved, and quicker and more
flexible systems can be developed. Each node is able to act here and now with local data in
a case where communication is cut off, or collaborate with immediate neighbors, a subset
of nodes in the network, or the entirety of its peers. It is easy to imagine an architecture
with different tiers, degrees of distribution, accuracy, and complexity based on the task at
hand for fields as different as surveillance, security, advertisement, industry, or even smart
cities. Such a flexible system could also handle nodes joining and leaving the network
and dynamically assign resources where they are needed. Real-time distributed artificial
intelligence, embedded in the environment is a very challenging but promising field.
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FSM Finite State Machine
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HMM Hidden Markov Model
IoT Internet of Things
KM K-Means
kNN k-Nearest Neighbors
LoRaWAN Long Range Wide Area Network
LSTM Long Short-Term Memory
MLP Multi-Layer Perceptron
NB Naive Bayes
PIR Passive Infrared
RBFN Radial Basis Functional Neural Network
RFID Radio-Frequency Identification
RNN Recurrent Neural Network
SRC-RP Sparse Representation Classification based on Random Projection
SVM Support Vector Machine
TDNN Time-Delayed Neural Network
WBSN Wireless Body Sensor Network
WSN Wireless Sensor Network
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