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Abstract: The increasing rate of antimicrobial resistance (AMR) in pathogenic bacteria is a global
threat to human and veterinary medicine. Beyond antibiotics, antimicrobial peptides (AMPs) might
be an alternative to inhibit the growth of bacteria, including AMR pathogens, on different surfaces.
Biofilm formation, which starts out as bacterial adhesion, poses additional challenges for antibiotics
targeting bacterial cells. The objective of this study was to establish a real-time method for the
monitoring of the inhibition of (a) bacterial adhesion to a defined substrate and (b) biofilm formation
by AMPs using an innovative thermal sensor. We provide evidence that the thermal sensor enables
continuous monitoring of the effect of two potent AMPs, protamine and OH-CATH-30, on surface
colonization of bovine mastitis-associated Escherichia (E.) coli and Staphylococcus (S.) aureus. The bacte-
ria were grown under static conditions on the surface of the sensor membrane, on which temperature
oscillations generated by a heater structure were detected by an amorphous germanium thermistor.
Bacterial adhesion, which was confirmed by white light interferometry, caused a detectable amplitude
change and phase shift. To our knowledge, the thermal measurement system has never been used
to assess the effect of AMPs on bacterial adhesion in real time before. The system could be used to
screen and evaluate bacterial adhesion inhibition of both known and novel AMPs.

Keywords: thermal biosensor; AMPs; measurement in real time; white light interferometry

1. Introduction

The discovery of the antimicrobial effect of the fungus Penicillium in 1928 by Alexan-
der Fleming was a milestone for human and veterinary medicine, allowing the effective
treatment of bacterial infections [1]. Different antibiotic substance classes with bactericidal
or bacteriostatic effect are available today. However, the extensive administration of antibi-
otics in human and veterinary medicine increased the selective pressure on bacteria [2].
Consequently, antimicrobial resistance (AMR) of pathogenic bacteria increased over the
decades, with potentially fatal consequences in the case of infections in human and animal
patients [3,4]. Rising awareness with respect to AMR is needed in the medical sector but
also in the general public to promote the prudent use of antibiotics and not least to spur
development of suitable alternatives to common classes of antibiotics [5].

Various bacteria organize themselves in biofilms, a microbial community surrounded
by a viscous matrix of extracellular polymeric substances (EPSs), including constituents
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such as polysaccharides, proteins, extracellular DNA, and lipids [6,7]. The cells within a
biofilm adhere to one another and the growing bacterial community can reside on biotic
or abiotic surfaces [8]. In contrast to planktonic bacteria, living in a biofilm provides
several key advantages to the bacterial colony as a whole, including protection against
environmental effects, like antibiotics or disinfectants, and the accelerated transport of
nutrients and signal molecules inside the biofilm [6,9,10]. Within the biofilm, a cell can
become 10-1000 times more resistant to the effects of antimicrobial agents compared to
its planktonic state (reviewed in [9]). The lifecycle of a biofilm starts with the adhesion of
planktonic bacteria to a surface. The bacteria form aggregates, start to produce EPSs, and
form a mature biofilm, which releases planktonic bacteria actively or passively (reviewed
in [10]).

Studies investigating the formation and development of bacterial communities are of
medical importance since 60% of persistent infections are caused by biofilms [11]. Bacterial
growth on and in different types of indwelling catheters and implants is typical, but peri-
odontitis and endocarditis are also often caused by bacteria residing in biofilms (reviewed
in [12,13]). Consequently, biofilm-associated infections are a clinical problem, not only in
human but also in veterinary medicine. Bovine mastitis, for instance, is the most important
biofilm-associated disease in the dairy industry, which causes major economic losses while
posing a threat to animal health and welfare [14,15].

Biofilms are of particular importance concerning AMR in pathogenic bacteria. Ge-
netic information is shared by horizontal gene transfer between bacteria co-existing in a
biofilm [16], allowing them to exchange and implement information on AMR and tolerance
towards other (environmental) influences. Even a low concentration of antimicrobial sub-
stances can increase these self-defense mechanisms [17] and thus bacterial resistance [18].

Antimicrobial peptides (AMPs) consist of cationic and hydrophobic sequences of
12-100 amino acids in length, structured as «-helix, 3-sheet, mixed, or linear conforma-
tions [16,17]. Currently, more than 5000 AMPs are known, including synthetic agents as
well as those produced by animals, bacteria, fungi, and plants [17]. There are many possibil-
ities to utilize the effects of AMPs towards unwanted bacteria, including decontamination
of fluids and, when associated with a surface, reduction of bacterial adherence [19]. AMPs
are effective against a variety of bacteria, including multidrug-resistant (MDR) variants,
but also fungi and viruses (reviewed in [18,20]) [21]. Even at very low concentrations, some
AMPs can cause the destruction of microorganisms [22]. The complex mechanisms of the
AMP effect on bacteria are currently the subject of intensified research. The charged amino
acids of the AMPs interact with the hydrophilic head groups of the membrane-associated
phospholipids. In addition, the interaction of hydrophobic domains of the peptides, the
phospholipids, and of the bacterial membrane lead to a transfer of the AMPs into the
membrane and lead to the lysis of the membrane [23]. Furthermore, AMPs can perforate
the cytoplasmic membrane [24] or inhibit certain intracellular molecules [25]. This results
in lysis of the cell or cell death [18]. Thus far, AMPs seem to lack typical receptor inter-
actions, which are characteristic for different antibiotic classes. Thus, AMPs belong to a
novel class of anti-infective agents, which could potentially substitute antibiotics and solve
concomitant problems caused by multidrug resistance [26]. Currently, there are only a few
approved AMPs for clinical applications (reviewed in [27]).

Various laboratory methods for measuring the lifecycle and structure of biofilms
have been established, including the staining of bacteria sticking to a microwell plate [28]
and characterization of the polymeric conglomerates by optical and electron microscopic
methods [29]. However, these methods do not allow the continuous monitoring of bacterial
adhesion in real time. Considering these most frequently used methods to characterize
bacterial adhesion, utilizing a thermal sensor offers significant advantages such as monitor-
ing and measuring of the dynamic processes of the formation, inhibition, and removal of
bacterial adhesion.

An overview of other biofilm monitoring methods with their advantages and disad-
vantages is given in Table 1.
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The process of bacterial adhesion can be monitored by a sensor detecting the propa-
gation of surface acoustic waves (SAWs) generated by an interdigital transducer (IDT) on
a zinc oxide (ZnO) piezoelectric layer [30-32]. Another technique employs the principle
of electrochemical impedance spectroscopy (EIS), which measures impedance changes
induced by bacterial adhesion by using an interdigital electrode structure [33,34]. Mea-
surement of adherent mass variation by the quartz crystal microbalance (QCM) method
is another approach to monitor bacterial adhesion by utilizing the change in resonance
frequency of a piezoelectric quartz oscillator [35].

Table 1. State of the art bacterial adherence monitoring. Summary with advantages and disadvan-
tages of the measurement methods.

Measurement .
Method + Advantages — Disadvantages Ref.
. + high sensitivity — limited height
S;g%gg (ascg/l\;;c + easy to produce — measurement [30-32]
+ low cost — limited reusability
. — no long-term stability
Elgctrochemlcal + non-invasive — limited reusability
impedance . . . [34-36]
+ easy to integrate — baseline drift
spectroscopy (EIS) — low sensitivity
Quartz crystal + high sensitivi — temperature sensitive
Y 5 p [35,37]
microbalance (QCM)  + label free — affected by medium turbidity -
Isothermal + metabth — long settling time
. . information
micro-calorimetry + non-invasive — heat source [36,38]
(IMC) . indistinguishable
+ non-destructive
Time-invariant heat + easy to prepare — requires knowledge about [39]

transfer thermal properties

— no thickness measurement
— time consuming [35,40-42]
— affected by medium turbidity

Optical detection + easy to handle

Isothermal microcalorimetry (IMC) measures the heat produced by bacterial metabolism
in the adhering bacteria [36,38]. A further indirect measurement of adherent bacteria
accumulation depends on the change in thermal resistance using a heating resistor and
a temperature measurement diode in contact with the growth medium with an external
feedback circuit to keep the temperature constant while recording the power consumption
of the resistors [39]. Optical sensors for bacterial adhesion are based on different principles:
Intrinsic fluorescence of the amino acid tryptophan, for instance, can be excited by a
UV LED light [40]. Another measuring principle is based on the diffraction pattern of
adherent cells illuminated by an RGB LED recorded with a complementary metal oxide
semiconductor (CMOS) sensor [41]. Refractive index tapered fiber optic biosensors that
detect changes in the evanescent waves induced by bacterial adherence have also been
successfully used [35,43].

A new sensor based on heat transfer by alternating current (AC) thermal excitation
is not susceptible to baseline drift caused by electrochemical processes because of its
completely passivated fabrication, in contrast to most EIS designs. In this case, the thermal
sensors are optimally suitable for measurements in liquids of high ionic strength in real
time. None of these measurement systems allows compact long-term bacterial adherence
determination in real time without knowing the exact thermal properties, except for the
AC method [44].

The objective of this study was the real-time measurement of bacterial adherence and
the effect of AMPs as adherence-inhibiting substances using a thermal sensor. Thermal
waves are generated by a chromium heater, excited with a sinusoidal signal (40 Hz). The re-
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sulting temperature changes are detected by an amorphous germanium thermistor [45-47].
To determine the thermal properties of fluids, the amplitude variation and phase shift of
the measured temperature oscillations over time are analyzed. The phase shift is used to
determine the thermal conductivity A, which is in a linear relation to the product of specific
heat capacity c, and density ¢ of the analyzed fluid [47-49].

The sensors are constructed using thin-film technology deposited on a thermal insulat-
ing membrane. In contrast to EIS, the full passivation of the sensors provides high resilience
to potential measurement errors, for instance, induced by changes in the ionic composition
of the medium as a result of metabolic bacterial activity [48]. In addition, the thermal
measuring method is also completely insensitive to the turbidity of the medium due to
growing planktonic cells, as opposed to optical detection. The sensors are also reusable
after a cleaning process compared to the limited reusability of the SAW sensor [44,50].

2. Materials and Methods
2.1. Bacterial Culture Strains and Antibiotic Susceptibility Testing

The two reference strains Escherichia (E.) coli (ATCC25922) and Staphylococcus (S.)
aureus (ATCC29213) were obtained from the American Type Culture Collection (ATCC).

Bacterial strains E. coli (IMT37453) and methicillin-resistant S. aureus (MRSA)
(IMT37556) isolated from cases of bovine mastitis (Bavaria, Germany, 2014 and Saxony-
Anhalt, Germany, 2015) were additionally used in this study. Antibiotic susceptibility
testing was performed using the MICRONAUT-S Mastitis 3 system (Merlin GmbH, Riis-
selsheim, Germany) according to the manufacturer’s instructions. The tested antimicrobial
agents and their concentrations are listed in Table 2. They were evaluated according to
Clinical and Laboratory Standards Institute (CLSI) guidelines and Fefler et al. [51,52].

Table 2. Tested antibiotics and concentration range.

Antibiotic Concentration in pg/mL

Penicillin G 0.125-8
Ampicillin 4-16
Cefazolin 4-32
Cefoperazone 2-16
Cefquinome 1-8
Oxacillin 1-4
Pirlimycin 1-4

Erythromycin 0.125-4

Marbofloxacin 0.25-2

Amoxicillin/clavulanic acid 4/2-32/16
Kanamycin/cefalexin 4/0.4-32/3.2

2.2. Antimicrobial Peptides (AMPs)

Two different AMPs were purchased. The AMP protamine, originally identified
in salmon sperm (Salmo salmine) [53], was partly expressed, isolated, purified, verified,
and utilized for the measurements (ILBC GmbH, Potsdam, Germany) (Table 3). It was
produced using recombinant DNA technology, and isolated and purified using reverse
column chromatography through high-performance liquid chromatography (HPLC) as
described in patents [54]. The AMP OH-CATH-30, a fragment of OH-CATH missing 4
N-terminal amino acids, originally identified in king cobra (Ophiophagus hannah) [55], was
chemically synthesized and purchased (genecust, Ellange, Luxembourg). The peptides
were dissolved in deionized (DI) water and stored at —20 °C, followed by further individual
dilution if necessary.
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Table 3. Sequence and molecular properties of used antimicrobial peptides (AMPs).

Sequence (Primary Structure)
AMP Molecular Weight (g/mol)
Degree of Purity (%)

MPRRRRSSSRPVRRRRRPRVSRRRRRRGGRRRR
Protamine 4381.24
96.94

KFFKKLKNSVKKRAKKFFKKPRVIGVSIPF
OH-CATH-30 3595.55
99.44

2.3. Antimicrobial Assay—Determination of Minimal Inhibitory Concentrations (MICs) of
Different AMPs

Minimal inhibitory concentrations (MICs) of the used peptides were determined
against Gram-negative E. coli (IMT37453, ATCC25922) and Gram-positive S. aureus
(IMT37556, ATCC29213) by a standard microdilution method using microwell cell culture
plates as previously described [56].

Briefly, different concentrations of each AMP (2000 pg/mL to 15.63 ug/mL in two-fold
serial dilution steps) were prepared in Mueller-Hinton-1 (MH1) medium and 50 pL were
distributed into a 96-well microtiter plate (Thermo Scientific Heraeus, Schwerte, Germany).
Single colonies were inoculated in MH1 medium, diluted to approximately 2 x 10° colony-
forming units (CFU)/mL, and 50 pL of the prepared inoculum were added to each well,
achieving a final testing volume of 100 uL and a final testing concentration range of OH-
CATH30 and protamine between 7.8 ng/mL and 1000 pug/mL. Bacteria cultured in MH1
medium without antimicrobial substances were used as a positive control and sterile MH1
medium was used as a negative control. After 24 h of incubation at 37 °C, the absorbance
at ODgponm Was measured after shaking to ensure homogenous distribution (Synergy HT
Microplate Reader, BioTek, Bad Friedrichshall, Germany). The first concentration with no
visible bacterial growth was determined as the MIC for this AMP in combination with the
tested strain.

2.4. Whole Genome Sequencing

The two mastitis isolates were whole-genome sequenced (WGS) using Illumina MiSeq
300 bp paired-end sequencing with an obtained coverage >90x. Raw reads were used for
de novo assembly into contiguous sequences (contigs) and subsequently into scaffolds
using SPAdes v3.12 [57]. Assembled draft genomes of the isolates were annotated using
Prokka [58]. Genomic data were analyzed with ResFinder-2.2 (threshold: 90% ID, 80%
minimum length) [59].

2.5. Thermal Sensor Fabrication Process

A standard silicon wafer (4 inches, 525 um) coated on both sides with a thermal
silicon dioxide layer (0.4 um) followed by a low-pressure chemical vapor deposition
(LPCVD) silicon nitride layer (0.11 pm) was used as supporting material for the membrane
(600 um x 700 pm). The heating structure (Cr, 0.1 pm), the thermistors (a-Ge, 0.2 um), and
the conducting lines and paths (Ti, 0.02 pm/Au, 0.17 pum/Ti, 0.02 pm) were structured
by lithography, physical evaporation, and lift-off processes. On the front side, a plasma-
enhanced chemical vapor deposition (PECVD) silicon nitride layer (0.72 um) for passivation
and encapsulation of previous structures was deposited. It can be applied at a temperature
of 120 °C, which was necessary to prevent crystallization of the amorphous germanium
thermistors.

The backside of the sensor was used for consecutive measurement because the PECVD
silicon nitride layer on its top contains pinholes, which might promote oxidation of ger-
manium in a liquid medium. The chrome heating structure, titanium adhesion-promoting
layers, and gold contacts would not significantly be affected by oxidation, as chromium
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and titanium form a stable passivating oxide and gold has high corrosion resistance. After
opening the silicon dioxide/nitride layer at the backside by reactive ion etching (RIE), the
silicon was wet etched by 30% potassium hydroxide (KOH) to uncover the resulting mem-
brane (1.2 pum). Further information about the sensor geometry and detailed fabrication
processes can be found in previous publications [48,60].

The heater was made of chromium because of its low temperature coefficient of
resistance (TCR) (0.01%/K) [61] and its total resistance at room temperature is 3—6 k(.
It has a length of 1.6 mm, a width of 6 um, and a thickness of 100 nm. Amorphous
germanium was chosen for the thermistors because of its high TCR (—2.3%/K), resulting
in a resistance at room temperature of 0.5-1.2 MQ). The dimensions of the thermistor
are 574 pym X 6 um x 200 um (length x width X thickness) [45,46]. Further, as shown in
previous applications of the same sensor, the resolution of temperature measurements
was limited to 0.48 mK by noise at a response time of 3 ms by a bandwidth of 4 kHz [46].
Only the central thermistor was used in this application for measuring the temperature
oscillations caused by the heater.

2.6. Chip Layout

The total dimensions of the printed circuit board (PCB) (Figure 1) were 30 mm X
27.7 mm x 1.6 mm (width x high x depth). The sensor die was attached at the backside
with a one-component epoxide resin (Structalit 8804, Panacol, Germany), cured for 10 min
at 120 °C and electrically connected via aluminum bonding wires (25 um). To connect
the sensor and the edge connector with the traces located on the backside (Figure 1) and
avoid crossing traces, one of the traces was located across the front side. The printed circuit
board had an integrated edge connector, connected to the preamplifier and power supply
board. A hole was drilled with an inside diameter size of 5.35 mm to make the membrane
accessible for the measurement.

Figure 1. Layout of the chip for the thermal measurement. (1) Frontside of printed circuit board, (2)
sensor die bonded on the back side, (3) integrated edge connector (visible on the back), (4) drilled hole.

2.7. Sample Preparation for Sensor Application

An overnight culture grown on MH1 agar was used to prepare the inoculum. In
brief, colony material was suspended in MHI1 broth to reach a final concentration of
1 x 10° CFU/mL. One hundred microliters of the inoculum were then immediately placed
in the sample chamber of the thermal sensor and the lid was closed to prevent sample
evaporation. The measurement setup was placed in an incubator at 37 °C without shaking,
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connected to the amplifier circuit board and the data recording was started after the thermal
equalization period. For AMP experiments, the respective MIC values determined as well
as one value above the MIC were used. The MIC values were rounded up to whole numbers
to ensure better comparability and easier handling in the thermal sensor experiments. The
AMPs were added to the sample chamber at the beginning of the measurement.

2.8. Cleaning and Sterilization Protocol of the Thermal Sensor and the Sensor Connection Setup

A cleaning and sterilization protocol was developed to remove adherent bacteria
from the sensor membrane and avoid cross-contamination between experiments. Peracetic
acid (PAA) (15%) was applied to clean and disinfect the device with a contact time of two
hours [19]. After rinsing with deionized (DI) water, the sensors were dried using hot air
(100 °C/24 h) and slowly cooled down to room temperature. Thereafter, the resistances
of the heating structure and the thermistor were measured again to verify the lack of
functional alterations. Furthermore, the thermal sensor connection setup components were
autoclaved for 20 min at 121 °C [60].

2.9. White Light Interferometry

Selected strains were incubated for 24 h at 37 °C under static conditions in the sample
chamber of the thermal sensor connection setup, as described before. After careful removal
of the supernatant and disassembling of the sample chamber from the thermal sensor, the
chip was dried for one hour at 37 °C to remove residues of the liquid. Subsequently, 3D
images of the bacterial structures of the biofilm were taken with the Zygo newView 9000
(AMETEK Germany GmbH, Weiterstadt, Germany). The measurements’ raw data were
determined by the graphic program Gwyddion (Department of Nanometrology, Czech
Metrology Institute, Czech Republic).

2.10. Thermal Sensor Connection Setup

The PCB was placed in a bracket made of polyether ether ketone (PEEK), which
consists of three parts (top cover, central part, and bottom cover): A top cover to prevent
fluid loss due to evaporation with an O-ring (MVQ 50 red 8 mm x 2 mm, Arcus GmbH,
Germany) to improve the sealing against oxygen access, a central part with a cylindrical
sample chamber (141 pL) with an indentation for fixation of the PCB and another smaller
indentation to accommodate an O-ring to seal between the sensor die and the sensor board,
and four threaded holes for mounting screws for the top cover and bottom cover.

The bottom part was divided into two pieces, which pressed the PCB onto the central
part, and was connected via two screws (Figure 2).

(3
\ e
® o e ®

Figure 2. Thermal sensor connection setup. (1) Top cover with an O-ring and two screws, (2) central
part with an O-ring on the underside (not shown) and two screws, (3) cylindrical sample chamber
with a volume of 141 puL, (4) bottom part divided in two pieces, (5) printed circuit board with bonded
sensor die (not shown).
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The measurement setup is reusable; all parts are made of durable, biocompatible
materials and are completely autoclavable.

The thermal sensor measurement setup (Figure 3) consists of an incubator (ES-20,
Biosan, Riga, Latvia) in which the temperature was set to 37 °C to provide a stable thermal
environment. Two sensor brackets, shown in Figure 2, and two preamplifiers with power
supply boards were placed in the incubator. The preamplifier and power supply boards
in one were used to provide a stable voltage of —250 mV. The signal from the thermistor
was converted into a voltage signal by a trans-impedance amplifier (current-to-voltage
converter). The excitation voltage, the measurement data, and the power supply voltage
were fed in and out through the incubator wall with cable feedthroughs using shielded
coaxial cables (RG303, Harbour Industries, Shelburne, VT, USA). Outside the incubator, two
lock-in amplifiers (SR-810 und SR-830, Stanford Research Systems, Sunnyvale, CA, USA),
a power supply, two analog-to-digital (ADC) converters (NI 9215, National Instruments,
Austin, TX, USA), and a laptop were placed. The power supply was connected to the
preamplifier and power supply boards to provide a stable voltage. The excitation of the
heater was generated by the integrated function generators of the lock-in amplifiers. The
unmodified sinusoidal signal applied to the heater was also connected to the reference
input of the lock-in amplifier. The lock-in amplifiers were connected to a laptop via a
GPIB-USB adapter (488-USB2, ICS Electronics, Hayward, CA, USA). The signals of the
preamplifier were routed to the two digital lock-in amplifiers, converted to a DC voltage,
and the signal amplitude of the 40 Hz signal was filtered out, digitalized, and sent to the
laptop. The digitized sinusoidal signal was read out, sent through a low-pass filter, and
written to a file by a program written in LabVIEW (Version 2010, National Instruments,
Austin, TX, USA). The program also read out the previously measured resistance of the
heating structure of the sensor from a file and adjusted the voltage of the excitation signal
so that its power was 0.5 mW. As a result, thermal influence on the adhering bacteria was
prevented. More details about the theoretical measurement setup can be found in the
publication of Diego F. Reyes-Romero et al. [44].

Incubator 37 °C

Sensor bracket

Medium

Bacteria

Biofilm
" / Amplifier Amplifier
eater
Thermistor | VV | l/ A ’—i NI 9215 |
AARAAR
VYWY — Lock-In
L Function Bt Amplifier —  Lockin ||
generator Refl  Amplifier

Figure 3. Thermal sensor measurement setup with all components for carrying out the experiments. Integrated function

generator shown separately for clarity.

3. Results and Discussion
3.1. Results of MIC Experiments and Whole-Genome Sequencing

The S. aureus strain IMT37556 showed phenotypic AMR to erythromycin, oxacillin,
penicillin G, and pirlimycin. Methicillin resistance was proven by the resistance against
oxacillin and the presence of the mecA gene. Consequently, IMT37556 was determined to be
resistant against all 3-lactam antibiotics. Furthermore, IMT37556 harbored the 3-lactamase
gene blaZ-like and the two tetracycline efflux pumps tet(K) and tet(M).
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The E. coli strain IMT37453 showed AMR to ampicillin, cefazolin, cefoperazone,
cefquinome, and marbofloxacin. The WGS revealed the 3-lactamase genes blapxa-1 and
blatpm-14, the chloramphenicol acetyltransferase catAl, the trimethoprim resistance gene
dfrAl, floR, and the two sulfonamide resistance genes sull and sul2.

As expected, MICs determined for the tested AMPs protamine and OH-CATH-
30 revealed species and isolate specificity (Table 4). Protamine MICs ranged between
15.63 pug/mL (S. aureus ATCC29213), 31.25 ug/mL (E. coli ATCC25922, S. aureus IMT37556),
and 62.5 pg/mL (E. coli IMT37453). These MICs are in accordance with previously de-
scribed MICs of protamine, which ranged from 7.8-31.25 pg/mL for different S. aureus
strains and were determined with 50 pug/mL for E. coli in other studies [62,63].

MICs of OH-CATH-30 span a wider range, with MICs of 15.63 ug/mL (E. coli
ATC(C25922), 31.25 ug/mL (E. coli IMT37453), 250 ug/mL (S. aureus IMT37556), and
>1000 pg/mL (S. aureus ATCC29213) (Table 4). OH-CATH-30 displayed inhibitory activity
against the two E. coli strains, comparable to previously published MICs of OH-CATH-30
for different E. coli strains which ranged between 2 pg/mL and 16 pg/mL [55]. In com-
parison, the antimicrobial activity against the MRSA mastitis isolate was, with an MIC
of 250 ug/mL, considerably low. In addition, the peptide lacked detectable antimicrobial
activity in the tested concentration range (7.8-1000 ng/mL) against S. aureus ATCC29213
(Table 4). The relatively large difference between the MICs for the two S. aureus isolates
could be due to differences in membrane structure described for MRSA and methicillin-
sensitive S. aureus (MSSA) [64] that might influence AMP efficacy [65]. The determined
MIC values were rounded up for the sensor experiments for better handling.

Table 4. Results of AMP minimum inhibitory concentration (MIC) experiments. Results determined
in at least three independent repetitions.

Bacterial Strains Protamine MIC in pg/mL OH-CATH-30 MIC in pg/mL
E. coli (ATCC25922) 31.25 15.63
S. aureus (ATCC29213) 15.63 >1000
E. coli (IMT37453) 62.5 31.25
S. aureus (IMT37556) 31.25 250

3.2. White Light Interferometry Results of Biofilm Thickness Measurements

White light interferometry was performed to verify the results obtained by the thermal
sensor on bacterial growth in detail and to gain insights about the entire sensor surface.
White light interferometry showed that the bacterial strains adhered and grew partially
differently on the surface, as shown in Figure 4. Table 5 shows a comparable biofilm
formation for the S. aureus reference strain and the mastitis isolates after 24 h. The exception
was E. coli ATCC25922, which showed a thinner bacterial layer than the other strains.

Since the sensor membrane is flat, the bacterial adhesion on the entire surface should be
almost identical. However, the sensor membrane structures, which were vapor deposited
on the front side, were visible through the transparent membrane when using white light
interferometry. Consequently, the light reflection by the structures led to measurement
errors (phase jumps), interpreted by the software as an increased adherence of the bacteria,
which shows up on the images as an apparent thickness variation, and can occur with
thin membrane layers. The measurement errors were included in the calculation of the
maximum and average thickness of adhering bacteria. The relation between the different
isolates was not changed because the errors were identical for all measurements and the
comparability of their adherence properties was still possible.
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Figure 4. 3D model of four representative white light interferometry measurements. Results of the reference strains E. coli
ATCC25922 (a) and S. aureus ATCC29213 (b) as well as the mastitis isolates E. coli IMT37453 (c) and S. aureus IMT37556 (d)
are shown. The dimensions of the sensor membrane are represented by the x-axis and y-axis. The z-axis represents the
maximum height of the biofilm. The color scheme (dynamic) shows the different heights of adhering bacteria in pm.

Table 5. Representation of the z-axis detected after 24 h of incubation by white light interferometry
measurement. Mean values, their standard deviations, and the maximum level of biofilm formation
of n = 4 measurements (z-axis). The values are given in pm.

Bacterial Strains Max. Value (Z-axis) in um Mean Value (Z-axis) in pum
E. coli (ATCC25922) 12.14 £ 1.80 2.66 £ 1.12
S. aureus (ATCC29213) 16.58 + 7.12 8.61 + 5.07
E. coli (IMT37453) 21.48 + 2.06 11.70 £ 143
S. aureus (IMT37556) 22.31 +1.00 12.97 £ 0.58

Compared to the values obtained for E. coli IMT37453 (Figure 4c, the biofilm formed
by E. coli ATCC25922 (Figure 4a) showed a reduced max. height (approx. 50%). The
mean height of E. coli ATCC25922 was approx. 75% less in comparison to E. coli IMT37453
(Table 5). Since all experiments were carried out according to the same protocol, this
observation might indicate that E. coli ATCC25922 adherence is less effective with respect
to the experimental growth conditions (medium and substrate).

3.3. Thermal Sensor Results

The coefficient between the electrical and the thermal amplitude was determined by a
series of calibration measurements (Figure 5). The relation between the logarithm of the
resistance and the inverse temperature would ideally be linear, but the accuracy of the
incubator and the slight temperature difference between the thermocouple and the sensor
limited measurement accuracy.

Visible differences in precipitation and the corresponding rise in amplitude between DI
water, MH1 medium, and MH1 medium with added AMPs were observed in the negative
controls. DI water always showed the least increase, with the latter two being similar,
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depending on the applied dose of AMP. The signals in the negative control experiments
with MH1 medium might be caused by the components of MH1 medium, especially casein
hydrolysate (1.75%) and beef extract (30%) as well as the AMP itself, as shown by the dose
dependency. The progression throughout the experiment showed a short rise followed by
a constant amplitude during the measurement, indicating fast completion of precipitation
compared to bacterial adherence.

The offset correction was conducted by setting the zero point at 60 min, as the amount
of signal noise was too large before that time.

1 Y-intercept -3.9323E-6 £ 2.68836E-6
0.00328 -| Slope 2.46944E.4 + 2.05105E.7
Residual sum of squares 6.31671E-9 -’./.
1  PearsonR 0.99894 ' o
g 0.00326 4 R-square 0.99789 /./,
A Adj. R-square 0.99789 .{
£ e
e /../
T 0.00324 .
g -
=2 ’
© P ’i
= -
o 0.00322 /../
o P
e
2 ot
< 500320 4 rFa
g = Average value 1/T
v Linear fit
0.00318 { m
T T T ; .
12.9 13.0 13.1 132 13.3

Average value In(R,)

Figure 5. Calibration curve for amorphous Ge thermistor. Measured from 32—42 °C with a sampling
rate of 1 Hz, the resistance is calculated based on the DC voltage and the temperature is measured
with an NI USB-TC-01 (National Instruments, Austin, TX, USA) thermometer placed in the incubator.
The Ge thermistor’s resistance and the temperature measured by the digital thermometer are recorded
by a LabVIEW application. The incubator temperature has to be set manually by 0.1 °C every 30 s to
minimize deviations. The average initial resistance at 32 °C is 593.9 k(). The slope of the logarithm of
dimensionless thermistor resistance in relation to the inverse temperature is the second Steinhart—
Hart coefficient (B), while the y-intercept is the first (A), both coefficients are dimensionless [66,67].
The calibration curve is calculated from the average values of three experiments. The temperature
coefficient of resistance can be calculated through « = —1/(B % T)2 . As the slope of the linear fit is
2.47 x 104, the resulting « at 300 K is —4.49% /K. This is higher than the expected —2.2%/K, which is
probably due to thermal stress between the membrane and the thermistor. For visual clarity, only
every hundredth point is displayed.

3.3.1. Thermal Sensor Results of Inhibition of Protamine

Considering the thermal sensor measurement results, E. coli ATCC25922 showed
strong growth without AMPs, in contrast to the results obtained using white light inter-
ferometry. Inhomogeneous bacterial growth on the surface might be an explanation for
this discrepancy considering the sensor geometry, as the sensor is limited to measuring
the adhesion between the heater and the thermistor. The large deviations in the amplitude
measurement results were caused by inhomogeneous growth on the sensor surface, as well.
In the case of white light interferometry, adhesion on the complete sensor membrane can
be detected optically (Figure 4). Overall, the E. coli strain IMT37453 showed much weaker
biofilm growth with the maximum amplitude of 7 mK being approximately 50% that of the
other strains. The measurement results of E. coli IMT37453 were confirmed with more than
10 measurements with different thermal sensors, unlike the other thermal measurements.
The large deviations at the beginning of the positive controls in Figure 6a,b were caused
by unavoidable variations in the onset of biofilm growth and the limitation of the thermal
sensor measurement.

The difference in bacterial growth between the E. coli strains might be due a different
composition and structure of adhering bacteria. E. coli IMT37453 might form more water
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channels within the biofilm, which could be a possible explanation for the lower amplitude
compared to E. coli ATCC25922 in the positive control as water has a higher thermal
conductivity and volumetric heat capacity, resulting in a lower measurement signal [68].

Colonization of the sensor surface and biofilm growth of E. coli IMT37453 was almost
completely inhibited by a concentration of 128 ug/mL protamine, while it was only partially
and temporarily inhibited at 64 pug/mL of protamine, with strong growth starting at 8 h,
overtaking even the positive control at 14 h and continuing to rise until 24 h. This indicates
a promotion of biofilm growth, probably as a defensive mechanism or a consequence of
the depletion of AMPs (Figure 6¢) [13,69].
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Figure 6. Representation of the thermal sensor measurement (at least n = 3). Different bacterial strains were incubated
for 24 h at 37 °C in a thermal sensor setup. The amplitude was measured every second and filtered by a low-pass filter
integrated in a lock-in amplifier. The offset was corrected by setting the zero point at 1 h. For clarity, the error bars were
staggered. The displayed results were averaged from at least three experiments and the standard deviation is shown as well.
The used strains were E. coli ATCC25922 (a) and IMT37453 (c) as well as S. aureus ATCC29213 (b) and IMT37556 (d). The
strains were incubated in Mueller-Hinton-1 (MH1) medium, either pure medium for positive control (red), with a high or a
low dose of the AMP protamine (both green). The negative controls (purple and blue) were also conducted with either dose
to exclude the effect of AMP precipitation, as well as pure MH1 medium (black) and deionized (DI) water (gray) to exclude
the effect of precipitation of medium.
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The growth of ATCC25922 was incompletely but permanently inhibited using a
concentration of 32 ug/mL protamine, whereas the inhibition using 64 ug/mL protamine
was initially stronger but lasted for 10 h only (Figure 6a). These results suggest that
both protamine concentrations are insufficient to prevent adherence of all bacteria to the
sensor surface. Attached bacteria may be not inhibited by the AMP and form a protective
environment [13].

E. coli produces proteases directed against protamine, such as outer membrane pro-
teases OmpT [70] and OmpP [71]. E. coli ATCC25922 and IMT37453 yield the ompT gene.
The transcription of these enzymes might be induced only at high AMP concentrations.
This phenomenon seems to be isolate specific. That might be an explanation for the higher
inhibition of the bacterial growth when incubated with the lower AMP concentrations,
which may not induce protease production (Figure 6a,c). The differences in bacterial
growth between the E. coli strains might be due to a different composition and structure of
adhering bacteria. Furthermore, cationic peptides like protamine can induce phenotypic
changes in S. aureus, which might lead to a higher tolerance towards this AMP [72]. These
phenotypic switches might be induced only at high AMP concentrations.

S. aureus reference strain ATCC29213 (Figure 6b) without AMPs also showed an
attachment to the surface and adherence characteristics comparable with those recorded for
E. coli ATCC25922 with a maximal amplitude of 14 mK, as seen in Figure 6a. Both reference
strains (ATCC25922 and ATCC29213) and the isolate S. aureus IMT37556 showed partial
inhibition of adherence using higher dose protamine and permanent inhibition with lower
dose protamine. Attached bacteria may not be affected by the AMP and form a protective
environment [13].

The discrepancy in the dose-activity relationship might indicate that adhering bacteria
shield the cells residing in inner layers, and/or that bacteria recognize the presence of
AMPs and increase their adherence as a response [69]. The S. aureus strains IMT37556
and ATCC29213 showed comparable growth for the positive controls. For both isolates,
the higher concentrations of protamine tested (64 pg/mL and 32 pg/mL, respectively)
inhibited the biofilm growth partially for the entire duration of the experiment, but the
inhibition was a bit stronger at the lower dose again, which might be an indicator for a
defense mechanism like the production of proteases (Figure 6d) [13]. Correa et al. used the
peptides Pep19-2.5, Pep19-2.5LF, Pep19-4, and Pep19-4LF for their studies and recognized
that at concentrations from 8 to 128 pg/mL, a lower dose led to a better antibacterial
effect [73], which corresponds with the results gained in this study for protamine. To
consolidate the results and the thesis of the defense mechanism, further experiments with
additional protamine concentrations are needed.

The discrepancies between the results of the MIC determination and the thermal sensor
measurements might be explained by the different detection limits of the two methods. This
limit seems to be lower for the thermal sensor because of the higher sensitivity in contrast
to MIC determination, so that even small amounts of bacteria adhering to the surface can
be detected. The behavior of the different combinations of AMPs, AMP concentrations, and
strains or isolates can lead to different results and must be regarded as an isolate-specific
variable.

In addition, special inert microtiter plates made of polypropylene were used in the
MIC determination protocol. Since the sensor is not made of such a material, it cannot
be excluded that some of the AMPs interact with the surfaces [74] and are thus no longer
available to destroy the adhering bacteria. Nevertheless, strain-specific higher inhibition
of lower AMP concentrations was detected in the presented study. For this reason, exper-
iments with additional higher and lower AMP concentrations may be necessary in the
measurement setup of the sensor to guarantee complete inhibition of the bacterial adhesion
and growth.
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3.3.2. Thermal Sensor Results of Inhibition of OH-CATH-30

The E. coli ATCC25922 experiments with 32 pg/mL of OH-CATH-30 showed per-
manent inhibition of the bacterial adhesion and biofilm formation while the growth at
16 ug/mL was partially inhibited (Figure 7a). The large deviations at the beginning of
the positive controls in Figure 7a,b were caused by unavoidable variations in the onset of
biofilm growth and the limitation of the thermal sensor measurement. Both OH-CATH-30
concentrations tested (64 pg/mL and 32 ug/mL) were not sufficient to inhibit the adherence
of E. coli IMT37453 in this particular setup (Figure 7c).

The growth and surface colonization of S. aureus IMT37556 (250 pg/mL and 500 ug/mL)
and ATCC29213 (1000 pg/mL and 2000 pg/mL) were completely inhibited at both concen-
trations of OH-CATH-30 tested, as seen in Figure 7b,d. The effect of this AMP might be
more efficient at these high concentrations against members of Gram-positive species, a hy-
pothesis that needs to be verified in further studies. The differences between the cell walls
of Gram-positive and -negative bacteria according the murein layer and the composition
might be an explanation for the higher MIC values of the two S. aureus strains compared
the tested E. coli [75]. Furthermore, Gram-positive bacteria are able to partially neutralize
their cell wall to resist AMPs [76,77]. The variations between the MIC determination and
the sensor measurement are due to the different detection limits.

In this setting, OH-CATH-30 could be identified as the more efficient of the two
analyzed AMPs, especially regarding its efficacy at high concentrations against S. aureus
strains. Protamine does not interact with the bacterial membrane, resulting in its disruption,
as OH-CATH-30 does, but penetrates the bacterial cell and possesses an intracellular mode
of action [78]. These two completely different modes of action seem to lead to different
efficiencies against the tested strains. The structure of the cell wall of both S. aureus strain
isolates seems to lead to an increased tolerance against OH-CATH-30, which might be an
explanation for the high MIC values of these two strains.

Certain fragments of an AMP can be sufficient to lyse bacterial membranes. This can
enhance the bactericidal effect and reduce the molecular weight and therefore the cost of
production due to the shortened primary sequence.

In the case of the AMP OH-CATH-30, the first four N-terminal amino acids of the
original peptide were removed to reduce the hemolytic effect without affecting its activity
against bacteria. However, the removal of the C-terminal amino acids leads to a loss of
bactericidal activity. The AMP fragment OH-CATH-30 (amino acid 5-34) showed the
highest bactericidal activity against 11 tested bacterial strains, especially ATCC25922 [55].
Further experiments with modified and optimized AMPs or combinations of different
AMPs could lead to a higher antimicrobial activity against a broad panel of different
bacterial species.

Another promising approach would be to use the AMP Magainin H2 because of its
higher degree of hydrophobicity than Magainin 2. It also showed a strong permeabilization
activity on lipid bilayers. First, the lateral expansion of the membrane induced by the
interaction with the AMP is inhibited. Further, it proceeds to create new bilayer regions
with many defects in the membrane [79,80].
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Figure 7. Representation of the thermal sensor measurement (at least n = 3). Different bacterial strains were incubated
for 24 h at 37 °C in a thermal sensor setup. The amplitude was measured every second and filtered by a low-pass filter
integrated in a lock-in amplifier. The offset was corrected by setting the zero point at 1 h. For clarity, the error bars are
staggered. The displayed results were averaged from at least three experiments and the standard deviation is shown as
well. The used strains were E. coli ATCC25922 (a) and IMT37453 (c) as well as S. aureus ATCC29213 (b) and IMT37556 (d).
The strains were incubated in MH1 medium, either pure medium for positive control (red), with a high or a low dose of
the AMP OH-CATH-30 (both green). The negative controls (purple and blue) were also conducted with either dose to
exclude the effect of AMP precipitation, as well as pure MH1 medium (black) and DI water (gray) to exclude the effect of

precipitation of medium.

4. Conclusions

A new and promising thermal sensor ¢

onnection setup that is not affected by ionic

strength can be used for measurements of bacterial adhesion and biofilm formation in real

time [44].

The thermal sensor measurement was performed for 24 h at 37 °C under static con-
ditions in the sample chamber of the thermal sensor connection setup. White light inter-
ferometry was used for optical control to determine the amount of bacterial adhesion and
demonstrated the formation of a biofilm after 24 h on the sensor surface. The thermal
measurement allows the detection of structural differences in a bacterial population and
adherence on the sensor membrane. Structural differences in the biofilm architecture can be
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identified with this system in real time. In the case of the thermal measurements, the E. coli
strain IMT37453 showed much weaker biofilm growth than the other strains. The different
bacterial growth between the E. coli strains might be due a different composition and
structure of adhering bacteria. Further, it was shown the lower concentrations of the AMP
protamine had a stronger effect on bacterial adhesion of three of the tested isolates. The
effect could not be detected for the AMP OH-CATH-30. High concentrations of protamine
might enhance the secretion of specific proteases. These very interesting results will be part
of future studies. Furthermore, the tested concentrations of OH-CATH-30 were sufficient
to inhibit the growth and adhesion of S. aureus.

Overall, the system can be used not only for the investigation of the effect of various
biological or chemical disinfectants but also for the characterization of the adhesion of
different bacterial species/strains or mixed cultures and different media.

The authors have searched for comparable technologies that can detect the effect of
AMPs on bacteria in real time, but could not find any equivalent experiments with AMPs
in solution utilizing other sensor technologies.

5. Outlook

In one of the next development stages, it would be useful to integrate the sensor into
the wall or lid of the sample chamber to distinguish between adhering bacteria and other
influences such as sedimentation of non-motile bacteria or components of the medium in
the current setup, as any influence of sedimentation would be mostly eliminated if the
sensor was operated in a vertical orientation.

Furthermore, the sensor could be integrated into the wall of a pipe in milking systems
or subsystems to measure the growth of adhering bacteria and subsequent biofilm forma-
tion under flow conditions and for real-time monitoring of potential pathogen adhesion.
Dairy industry equipment is extremely sensitive to all kinds of microorganisms and re-
maining milk residue in the pipeline provides a source of nutrients and favors the survival
of the biofilm. This is the main reason for the contamination of milk storage tanks and milk
process lines [81].

Additionally, the sensor can also monitor contaminants such as limestone scale or
other deposits, which provides significant advantages for its use in the food and dairy
industry.

Another option would be to manufacture the entire evaluation electronics system as
an integrated circuit on a wafer with the sensor, allowing, for example, the installation of a
separate sensor in each well of a 96-well microwell plate and thus parallelization of the
experiments.

A thin polymer coating also has the advantage that the top side could be used for the
measurements and would no longer have to be measured in the cavity, which is currently
not possible due to pinholes in the PECVD silicon nitride. A measurement on the upper side
would have the benefit that the sensitivity of the sensor is less restricted by the membrane
since the thermal waves no longer have to penetrate it on their way into the medium.

It is also possible to manufacture the chip from a polymer such as polyetherimide,
except for heaters, conductors, and thermistors. These changes would be useful due to
increased toughness and lower thermal conductivity of the membrane.

Another option is to integrate additional sensors such as impedimetric or optical sen-
sors on the chip. The thermal sensor measures different parameters than an impedimetric
sensor, which is why being able to detect both types of parameters may result in synergy.
This allows a better understanding of the composition and structure of the biofilm.

Finally, it should also be possible to measure the biofilm formation on a physical
plasma-generated antibacterial surface coated with AMPs embedded in a nanocomposite.
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