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Abstract: In recent years, various studies have begun to use deep learning models to conduct research
in the field of human activity recognition (HAR). However, there has been a severe lag in the absolute
development of such models since training deep learning models require a lot of labeled data. In
fields such as HAR, it is difficult to collect data and there are high costs and efforts involved in
manual labeling. The existing methods rely heavily on manual data collection and proper labeling of
the data, which is done by human administrators. This often results in the data gathering process
often being slow and prone to human-biased labeling. To address these problems, we proposed
a new solution for the existing data gathering methods by reducing the labeling tasks conducted
on new data based by using the data learned through the semi-supervised active transfer learning
method. This method achieved 95.9% performance while also reducing labeling compared to the
random sampling or active transfer learning methods.

Keywords: human activity recognition; active transfer learning; semi-supervised learning; semi-
supervised active transfer learning; labeling reduction

1. Introduction

Human activity recognition (HAR) technology is a field of research in which a person’s
specific activity is recognized based on sensor data such as gyroscope and acceleration,
camera images, and video data [1]. There are various studies on HAR that are currently
being conducted. Recognizing human activity can be applied to surveillance systems that
can detect health risks, safety, and emergency situations. For example, the number of
caregivers who can care for elderly people living alone cannot keep up with the increase
in the number of households living alone. This problem can be solved by detecting the
behavior of the elderly living alone. HAR technology is used in various areas and it is
also appropriate for applications in smart homes and health care services of the Fourth
Industrial Revolution. Thus, HAR techniques have been continuously studied. Deep
learning is a technology that trains machines that are not capable of conventional cognitive
thinking to naturally recognize patterns using multiple processing layers without informing
them of the data features through a neural network structure. The application of deep
learning techniques has begun to produce better performance compared to methods used
in existing studies, and have also begun to be applied naturally to HAR techniques. Most
machine learning and deep learning are theoretically ill-informed for all activities, but
they can achieve sufficient performance for labeled activity recognition with appropriate
learning and models. Deep neural networks (DNNs) are models underlying various
artificial intelligence-based models, and are machine learning algorithms that have been
used in various studies. Therefore, various studies using deep neural networks have been
conducted with aim of solving problems using less data or in different domains based
on the knowledge held by the learned model. Transfer learning is a technology that can
apply the solutions to new problems by utilizing or applying existing learned weights.
However, deep learning requires a large number of data that must be labeled in order to be
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learned. In the field of HAR, there is the disadvantage that the individual sensors have to
attach and act on their own. In addition, unlabeled data must be identified and labeled
directly by the domain’s experts or administrators. As the data collected increases and
becomes more diverse, the cost of these labeling tasks continues to rise. Active learning can
be used to reduce the number of labeling tasks by asking the administrator to determine
what data are needed to solve a problem. Active learning can solve problems in such
a way that the deep learning models learn by judging the data that need labeling and
requesting labeling for the most necessary of these data. Semi-supervised learning is a
method of deriving performance by conducting first-order learning with small datasets
where the labels exist as well as second-order learning, where there are large datasets
without correct labels. This work proceeds with semi-supervised active learning, which
combines semi-supervised learning with transfer learning and active learning to request
labeling from administrators for the necessary data and no labeling if the labels can be fully
predicted based on the previously learned data. While these technologies alone are not
entirely novel, no study has examined the combination of the two techniques. This work
addresses the idea of reducing the number of labeling requests to administrators through
deep neural network models and transition models of learned deep neural networks, and
also evaluates how using fewer labeling requests can lead to higher performance. We
also propose and analyze new algorithms utilizing this idea in fields that are challenging
and involve high costs for labeling tasks such as HAR. The rest of the paper proceeds as
follows. Section 2 describes the previous work done in this field. Section 3 discusses the
fundamentals of deep neural networks (DNN) and active learning (AL) as well as semi-
supervised learning (semi-SL). Section 4 proposes our method and experiment. Section 5
assesses the performance according to the number of labels through evaluation metrics.
Finally, Section 6 provides a summary of this work and future directions.

2. Related Research
2.1. Human Activity Recognition

In recent years, there have been many studies and approaches examining HAR. Find-
ing patterns in HAR is complex and challenging, and is still an active area of research [2,3].
This section describes previous work on HAR using deep learning. HAR can be used in
various fields such as smart health care, smart home, and elderly care. Wearable sensors,
radio frequencies (RF), cameras, and sensors have been used to identify behavior. Ad-
vances in network technology have led to research on HAR data collection and activity
recognition through the use of sensors. Lara, O. D. et al. had participants wear various
wearable sensors, then recognized the human activity of these participants using external
data such as environmental signals, location information, etc. [4]. As such, it is difficult
to collect data in the field of human activity recognition as various data from wearables,
cameras, and location information data must be merged for human activity recognition. In
addition, video methods based on images have been used to address the problem of sensor
attachment and portability [5]. Robertson, N. et al. developed a system for HAR in video
sequences and derived rules for scenes through the hidden Markov model (HMM) [6].
However, given that attaching or holding wearable sensors can cause discomfort to hu-
mans, studies have examined how to naturally recognize activity using sensors mounted
on devices such as smartphones [7,8]. In addition, San-Segundo, R. et al. also recognized
human activity through HMM-based models using smartphones for HAR [9].

2.2. Deep Learning for Human Activity Recognition

Recently, the application of deep learning-based models in HAR [10–12] has been
on the increase. Recent approaches in deep learning machine learning are mainly based
on studies using deep neural network (DNN), long short-term memory (LSTM) [13],
convolution neural network (CNN) [14] and others. As deep learning began to be studied
in the field of activity recognition, Zhang, L. et al. combined HMM and DNN models to
study human activity recognition [15]. Hassan, M. et al. extracted the characteristics of
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smartphone sensor data through kernel principal component analysis (KPCA) and linear
discriminant analysis (LDA) and compared the performance of artificial neural network
(ANN), support vector machine (SVM), and deep belief network (DBN) [16]; they showed
that DBN performed the best for human behavior recognition. Wan, S. et al. compared
SVM, CNN, LSTM, bidirectional LSTM, and MLP models for deep learning applications of
human activity recognition, which led to the best performance of CNN models on the HCI-
HAR dataset and PAMAP2 dataset [17]. Ullah, S. et al. presented a lightweight FCN-LSTM
model using the HCI-HAR dataset [18]. These studies have only attempted to capture
changes in sensors or changes in discriminant models for human activity recognition.
Valuable data refers to data that can be used to produce good performance, even for smaller
amounts. This can eventually lead to savings in labeling tasks. To this end, research is
being conducted through various approaches.

2.3. Labeling Reduction Technologies

However, we typically collect data and then perform labeling tasks on all data. One
study attempted to solve the labeling work to reduce the cost and effort required [19].
Active learning is one of the studies to solve this problem. Active learning is mainly studied
to derive a high performance from a better number of methods for data sampling [20].
Tomanek, K. et al. reduced the effort for many sequence labeling tasks by 60% compared
to random selection through semi-supervised active learning methods [21]. Liu, R. et al.
sought to recognize human activity by learning the C4.5 decision tree classification model
using acceleration sensor data from the human hip and wrists [22]; they also derived
confidence levels for the data samples and compared the performance for both methods
when confidence was both high and low. Bota, P. et al. conducted a study to predict human
activity recognition by applying both semi-supervised learning and active learning for
human activity recognition [23]. In addition, Stickic, M. et al. conducted comparisons
through active and semi-supervised learning to reduce the labeling of PLCouple1 datasets
for behavior recognition [24]. Gudur, G. K. et al. conducted a study applying active learning
to reduce labeling of HAR data, resulting in good performance in reduced labeling [25].
However, deep learning models have yet to be applied to models for prediction. To this
end, in this paper, we introduce semi-supervised active transfer learning based on a deep
learning model to reduce labeling in the field of human activity recognition, wherein data
labeling tasks are somewhat difficult.

3. Basic Theory for Labeling Reduction
3.1. Active Transfer Learning (ATL)

Active learning (AL) is a technique in which a learned machine learning model selec-
tively reviews unlabeled data for labeling tasks guided by humans. In practice, machine
learning systems are trained with thousands or millions of data with human-processed
labeling. However, machine learning procedures and performance can be made more
accurate and efficient if humans only work with appropriate data to attach labels, and
not all data. As such, AL performs the labeling work by sending a query requesting
labeling to an administrator after sampling according to the rules or procedures based
on a machine learning model, instead of humans labelling all the data. Data sampling
that is used for active learning consists of two methods: diversity sampling and uncer-
tain sampling. Uncertain sampling targets confusing data compared to the amount of
information the current model has, and diversity sampling targets data that broadens the
model’s knowledge. Transfer learning (TL), which is used for this, is not a newly created
special technology for deep learning. Traditionally, traditional approaches were used to
build and train machine learning models for each dataset. However, these approaches
had the disadvantage of creating a new model if the dataset was insufficient or when the
distribution of the data changed. Transfer learning is a method of utilizing the learned
model to solve these problems. Comparing it to a person, a person who knows how to ride
a bicycle can learn how to ride a motorcycle more easily than a person who cannot ride
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a bicycle. Transfer learning mainly consists of methods used with existing well-trained
models that do not alter or fine-tune the learned weights. This allows trained models to
benefit from extracting features, exploiting weights, and reducing learning time. As shown
in Figure 1, ATL generates a correct classifier with information about the learning data
based on the trained basic model and replaces the sampling scheme for active learning.
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Figure 1. Transfer learning flow for labeling reduction.

As shown in Figure 2, the active transfer learning flow consists of a machine learning
model, transfer learning, and active learning [26]. Machine learning models such as the
deep neural network (DNN) model or convolutional neural network (CNN) model can
always be exploited. The DNN model learns to derive the desired output values by
properly adjusting the weights according to the values entered in the input layer, and is
based on the theory that the neural network can automatically understand a pattern of data.
Many existing studies and literature have been used based on the underlying DNN theory.
The DNN consists mainly of a fully connected layer and the entered value is calculated
according to the weight of the node connecting each layer. The CNN model is used based
on the theory that patterns can be understood and defined using the input matrix. CNN
models consist of convolution and max pooling, etc., which extract visual information or
low-dimensional features that appear in time series into high-dimensional features and
utilize them to predict labels. Convolution is a sparse operation in which parameters are
shared and reused. CNN are mathematical operations in which composite products can be
applied to matrices.
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3.2. Semi-Supervised Learning

Deep learning techniques infer labels from numerical operations of input data values
and model weight values to predict labels. Supervised learning (SL) is a technique used
in various domains such as classification and regression by learning data and labels. SL
learns and utilizes labeled data and is widely used for large classification and regression
problems. Since early machine learning was used to classify certain data or predict values,
supervised learning was a large axis of machine learning. However, there can be dozens to
millions of learning data to train SL, and labels are essential for each data. Due to these
problems, SL cannot be utilized without much adequate learning data. Semi-supervised
learning (semi-SL) is a technique designed to compensate for these shortcomings. Based
on the predicted values of the learned model, as shown in Figure 3, it is a technique that
is used to label unlabeled data with simple rules such as threshold and to train machine
learning models afresh with existing learning data to enhance performance
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4. Proposed Methods

This section describes the details of the proposed method. We break down the pro-
posed method into two main sections for illustration purposes. The first section contains
the HAR dataset description. The second section deals with how to process the semi-
supervised active transfer learning models.

4.1. Human Activity Recognition Dataset Description

Deep learning models have the disadvantage of low performance if they have inade-
quate learning and are not constructed with appropriate data. In this paper, we used the
HCI-HAR dataset, which collected data using smartphones for human behavior recogni-
tion [7,27]. The dataset was collected among 30 volunteers aged between 19 to 48 years old,
with each participant having a smartphone (Samsung Galaxy S2). Using the accelerometer
and gyroscope built into the smartphone, three-axis linear acceleration and three-axis
angular velocity were recorded at a speed of 50 Hz. The sensor data were pre-processed by
the application of noise filters and then sampled in fixed-width sliding windows of 2.56 s
and 50% overlap. The data contain 561 characteristics including the average, maximum,
and minimum values; there are 10,299 data in total. The data are spread across six cate-
gories: Walking, Walking_Upstairs, Walking_Downstairs, Sitting, Standing, and Laying. The
Walking_Downstairs data had the fewest labels (986), while the Laying data had the most
labels (1407); there was an average of 1225 data for each label. However, the use of all 562
features of this dataset can include information that is too much learning for deep neural
network models, and has the disadvantage of requiring a long time to learn. To address
this, we extracted and used key features that determined the decision base using XGboost’s
tree-based model [28].

Table 1 lists the parameters used to extract key features, while Table 2 presents the
key feature names extracted. Previously, the decision tree using 562 features showed 90.2%
accurate performance, while the decision tree using 50 features extracted showed 87.9%
accurate performance, thus reducing the number of features by about 512 with only a 2.3%
difference in performance.

Table 1. Feature extraction with XGboost Tree-based decision model parameter.

Parameter Value

Booster gbtree
Scale pos weight 1

Learning rate 0.01
Col-sample by tree 0.4

Subsample 0.8
N estimators 200
Max depth 4

Gamma 10
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Table 2. List of extracted key features.

Extracted Features

fBodyAcc-skewness()-X tBodyGyro-sma() tGravityAccMag-std() fBodyAccJerk-bandsEnergy()-9,16.1
tGravityAcc-min()-X fBodyAcc-std()-Z angle(X,gravityMean) fBodyAccJerk-bandsEnergy()-1,24.1
fBodyAccJerk-std()-Y fBodyAcc-max()-X fBodyAccMag-std() fBodyAcc-bandsEnergy()-17,24.2

tGravityAcc-energy()-X fBodyAcc-mad()-X tGravityAcc-max()-X fBodyAcc-bandsEnergy()-1,8.1
fBodyAcc-max()-Z angle(Y,gravityMean) tBodyAccMag-std() fBodyAcc-bandsEnergy()-1,24
tBodyAcc-iqr()-X tBodyAcc-mad()-X tBodyGyroMag-sma() fBodyAcc-bandsEnergy()-1,16.2

tBodyAcc-max()-X tGravityAcc-mean()-Y tBodyAccJerk-std()-X fBodyAcc-bandsEnergy()-9,16.2
fBodyAcc-kurtosis()-X tBodyAccJerk-mad()-Y tBodyGyro-energy()-Z fBodyAccJerk-bandsEnergy()-1,16.2
fBodyAccMag-mad() tGravityAcc-max()-Y tBodyGyroJerk-std()-X fBodyAccJerk-bandsEnergy()-17,24.2

tGravityAcc-mean()-X tBodyGyroJerk-sma() tBodyAccJerk-max()-Y fBodyAccJerk-bandsEnergy()-33,48.2
tGravityAcc-arCoeff()-Z,1 tBodyGyroJerkMag-mean() tBodyGyroJerkMag-entropy() fBodyAcc-bandsEnergy()-1,8.2

fBodyAccMag-energy() tBodyGyroMag-mean() fBodyBodyAccJerkMag-max() fBodyGyro-bandsEnergy()-17,24
tBodyGyroJerk-mad()-X tBodyGyroJerk-energy()-X

To proceed in the experiment with a refined dataset using this process, we continued
by splitting it into the same configuration as shown in Table 3.

Table 3. Training/validation/testing/unlabeled separation statistics (DNN, HCI-HAR).

Total Data Training Data Validation Data Testing Data Unlabeled Data

10,299 500 1000 1000 7799

The validation dataset derives predictive labels by inputting them to learned DNN-
based models. We compared the derived predictive labels with the correct answers to
compare whether or not the model fit the label, and we created a new correct dataset. To
create the correct dataset, we created a dataset with ‘0′ if the actual and the predicted labels
were similar, and ‘1′ if they were not similar. The correct dataset was then used to learn the
transferred classifier that was correct.

4.2. Proposed Process

In this research, we constructed a DNN model as a base model for semi-supervised
active transfer learning. The basic model consisted of four layers, where each layer con-
sisted of (input size, 256), (256, 128), (128, 128), and (128, output size). The input size was
50 and the output size was 6, which represents the number of actions to be predicted. A
ReLU activation function was used for each layer, and a drop-out technique was used to
prevent overfitting. Semi-supervised active transfer learning consists of two main models,
as shown in Figure 4. The DNN-based basic model learns the training dataset, and a
transferred model-based correct classifier model transfers the basic model. Table 4 presents
the details of the DNN-based basic model and the transferred correct classifier model, and
weight freezing. Next, a DNN-based basic model learned from the existing configured
train dataset. The learned basic model’s two-layer layers freeze weights and biases. The
final layer is constructed to produce two output values (CORRECT, INCORRECT), and
the transferred model learns the correct dataset. The unlabeled dataset enters this learned
correct classifier model to verify the probability of the data, labels the data that have the
highest probability for the labeling without queries, and adds the data with the lowest
probability to the training dataset by querying the administrator. The experimental results
from this study were derived using this process. Algorithm 1 illustrates the approach of
semi-supervised active transfer learning.
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Algorithm 1. Semi-Supervised Active Transfer Learning Algorithm

Input: HAR Dataset
BEGIN
Step 1: Train the basic model with the training set
Step 2: Create correct classifier that transfers the learned basic model
Step 3: Input validation dataset into the learned basic model
Step 4: Create a correct dataset according to the prediction of the basic model compared with the
output and the actual value
Step 5: Train the correct classifier model with the correct dataset (validation set)
Step 6: Input the unlabeled dataset to the classifier to compare probability
Step 7: Correct high probability data are sampled for semi-supervised learning
Step 8: Incorrect high probability data are sampled for learning
Step 9: Add sampled data to training set to retrain the basic model
Step 10: Repeat the following process to efficiently label the unlabeled dataset to proceed with
learning
END

Table 4. Fully connected layer based basic model.

DNN Based Basic Model Transferred Correct Classifier

Layers Output
Shape

Weight
Freeze Layers Output

Shape
Weight
Freeze

FC Layer
(Linear) 50, 256 False FC Layer

(Linear) 50, 256 True

ReLU 50, 256 False ReLU 50, 256 True
FC Layer
(Linear) 256, 128 False FC Layer 256, 128 True

ReLU 256, 128 False ReLU 256, 128 True
Dropout 0.2 False Dropout 0.2 False
FC Layer
(Linear) 128, 128 False FC Layer 128, 128 False

ReLU 128, 128 False ReLU 128, 128 False
Dropout 0.2 False Dropout 0.2 False
FC Layer
(Linear) 128, 6 False FC Layer 128, 2 False

Figures 5 and 6 illustrate the semi-supervised active transfer learning (SATL) that we
propose in this paper. Figure 5 illustrates the tendency of the sampled data to reflect the
trend of the sampled data by adding the correct classifier after sampling the data with
the results derived through the model to perform the SATL. Figure 6 illustrates the data
sampled through the semi-SL and AL methods of the entire flow of SATL, respectively, by
requesting labeling from the administrator to obtain labels or adding them to the training
set with the predicted labels. We produced machine learning models from learning data
that had existing labeling such as the sequence of Algorithm 1. The trained model predicts
activity based on the learned data by entering a validation dataset. We generated a correct
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dataset by comparing the actual and predicted values of the validation dataset. Next, we
generated a transferred correct classifier based on weight-freezing and modification of
the last layer of the learned machine learning model. We then learnt the correct classifier
using the correct dataset. This allowed the algorithm to identify trends for unlabeled
datasets. The correct classifier predicts either the correct or Incorrect label based on the
unlabeled data input, which allows for a comparison of probability based on the knowledge
of existing models. First, if the probability for correct is greater than 0.5, we can assume
that we know the unlabeled data entered, but we hypothesized a threshold of 0.9 or higher
because accuracy may be reduced early in the learning. If we have a figure above the
threshold for correct, we can add a tendency by adding a dataset, assuming that it is correct
in the correct dataset for semi-supervised learning. Subsequently, the sampled data for
semi-supervised learning is added to the training set as the activity label predicted by the
basic model. Second, probability for incorrect is sampled one by one in order of the highest.
The data with the greatest probability that the correct classifier predicts as incorrect are
added to the correct dataset by labeling it as correct, that is, assuming that the administrator
receives a query and labels it as a real value. This process is repeated until there are no
values predicted as incorrect. However, we initially restricted the underlying model to
perform up to 100 active learning to solve the problem of insufficient information in order
to reduce the value predicted by incorrect. We iterated this sampling to sample data that
can provide the correct classifier with the maximum unlabeled dataset and added it to the
training dataset to re-learn the underlying model.
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5. The Performance According to the Number of Labeling

The neural networks used to implement the proposed method in this paper were
developed using Python bases. Python makes it easy to implement networks by reducing
the reliance on virtual environment configurations and libraries. Thus, the decentralized
configuration of the Python-based environment can be useful in other real-world domains.
The proposed DNN-based model and transferred model were constructed using the Pytorch
library, which has a GPU-based optimization for parallel learning. The environment for
this research was studied using high-performance server computers consisting of an Intel
i9 X-series Processor, 128 GB RAM, Ubuntu 18.04, and NVIDIA GPU RTX 3090. The
main parameters for the learning of all models consisted of 30 epochs, 30 batch sizes,
drop out of 0.2, learning rates of 0.01, and early stopping of 15, and were trained with
Adam optimization and cross entropy. The pre-processing of the dataset was done with
regularization. We compared the random sampling performance, active transfer learning,
and semi-supervised active transfer learning model with the number of learning data to
assess the accuracy. Table 5 presents the number of data queries and maximum accuracy
requested from the administrator, which show that the proposed method had a 0.3% lower
performance than active transfer learning, while also reducing the number of queries for
labeling requests by 12%.
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Table 5. Comparison of the number of queries and maximum accuracy (DNN, HCI-HAR).

Random Sampling Active Transfer Learning Proposed Method

Number of
Queries Accuracy Number of

Queries Accuracy Number of
Queries Accuracy

1000 92.9% 224 95.8% 198 95.5%

We derived the performance of this SATL via the 1D CNN model using both the
HCI-HAR data features as well as the DNN-based model. DNN-based models are heavily
influenced by the number of features or amount of information in the existing data. The 1D
CNN-based model is a model that recognizes behavior by deriving features over time based
on data information. For the application of the 1D CNN model of HAR data, 561 datasets
corresponding to five times were configured and used for learning. The configuration of
the HAR dataset is different from the DNN-based model and is shown in Table 6. The initial
learning data were tested for the performance of SATL with 400 fewer components than
the DNN-based models. The CNN-based model was constructed as shown in Table 7. The
training parameters of the CNN-based basic model and the CNN-based correct classifier
model were 20 epochs, respectively, consisting of a 32 batch size, 0.01 learning rate, 0.5
dropout, and 15 early stopping. For optimization of the proposed model, we trained
with Adam optimization and cross entropy. The performance of the model is shown
in Figure 7a. We learned labeling data via 281 queries and 220 predicted labeling data
using semi-supervised learning properties to derive a 96.1% accuracy. Figure 7b shows an
accuracy graph of a CNN-based model and a predictive labeling data using 281 queries
and 220 semi-supervised learning out of the 501 data learned.

Table 6. Training/validation/testing/unlabeled separation statistics (CNN, HCI-HAR).

Total Data Training Data Validation Data Testing Data Unlabeled Data

10,239 100 1000 1000 8139

Table 7. Convolution neural networks based basic model.

DNN Based Basic Model Transferred Correct Classifier

Layers Output Shape Weight Freeze Layers Output Shape Weight Freeze

1D CNN 5, 8, kernel_size = 5 False 1D CNN 5, 8, kernel_size = 5 True
ReLU 5, 8, kernel_size = 5 False ReLU 5, 8, kernel_size = 5 True

1D CNN 8, 16, kernel_size = 5 False 1D CNN 8, 16, kernel_size = 5 True
ReLU 8, 16, kernel_size = 5 False ReLU 8, 16, kernel_size = 5 True

1D CNN 16, 8, kernel_size = 5 False 1D CNN 16, 8, kernel_size = 5 True
ReLU 16, 8, kernel_size = 5 False ReLU 16, 8, kernel_size = 5 True

Dropout 0.5 False Dropout 0.5 False
MaxPooling1D Kernel_size = 5 False MaxPooling1D Kernel_size = 5 False

FC Layer
(Linear) 872, 100 False FC Layer

(Linear) 872, 100 False

ReLU 872, 100 False ReLU 872, 100 False
FC Layer
(Linear) 100, 6 False FC Layer

(Linear) 100, 2 False
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In addition to the HCI-HAR dataset used in this paper, we validated the performance
using the mHealth dataset [29]. The mHealth dataset consists of acceleration and gyro
sensor data (23 pieces) attached to the chest, ankle, and arm with Standing still, Sitting and
relaxing, Lying down, Walking, Climbing stairs, Waist bends forward, Frontal elevation of arms,
Knees bending, Cycling, Jogging, Running, Jump front & back labeled data. The DNN-based
model adds two linear full connected layers to add depth over the existing model. The
dataset configuration for training DNN-based models that have learned mHealth datasets
is the same as shown in Table 8 and the performance is represented in Table 9. The DNN-
based model learned using active transfer learning was trained with 766 queries to derive
94.9% accuracy. However, the model using the proposed method learned 693 queries and
70 predicted labeling data, resulting in 95.9% performance.

Table 8. Training/validation/testing/unlabeled separation statistics (DNN, mHealth).

Total Data Training Data Validation Data Testing Data Unlabeled Data

16,384 1000 2000 2000 11,384

Table 9. Comparison of the number of queries and maximum accuracy (DNN, mHealth).

Active Transfer Learning Proposed Method

Number of Queries Accuracy Number of Queries Accuracy

766 0.949% 693 0.959%

6. Conclusions

The semi-supervised active transfer learning model proposed in this paper is a tech-
nique that uses existing semi-supervised learning, active learning, and transfer learning.
Although it is not novel, no technology has previously applied it. Although the demand
for data is increasing as research into deep learning continues expanding, labeling remains
a challenging area as it is expensive. Labeling tasks are inevitably challenging, particularly
in areas where humans need to collect data directly such as in HAR. To compensate for
these shortcomings, the model used in the proposed work was able to guarantee 95.9% per-
formance on the mHealth dataset while reducing the number of data labeling by 10% and
the HCI-HAR dataset with 2.6% more accuracy and 80% less labeling than ATL. Therefore,
the proposed semi-supervised active transfer learning is an effective way to reduce the cost
of labeling tasks. The proposed research can be used in industries that require labeling
tasks by administrators but need to effectively build data such as the medical field and the
field of HAR.
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