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Abstract: In this article, we address the problem of prolonging the battery life of Internet of Things
(IoT) nodes by introducing a smart energy harvesting framework for IoT networks supported by
femtocell access points (FAPs) based on the principles of Contract Theory and Reinforcement Learning.
Initially, the IoT nodes’ social and physical characteristics are identified and captured through the
concept of IoT node types. Then, Contract Theory is adopted to capture the interactions among the
FAPs, who provide personalized rewards, i.e., charging power, to the IoT nodes to incentivize them
to invest their effort, i.e., transmission power, to report their data to the FAPs. The IoT nodes’ and
FAPs’ contract-theoretic utility functions are formulated, following the network economic concept of
the involved entities’ personalized profit. A contract-theoretic optimization problem is introduced
to determine the optimal personalized contracts among each IoT node connected to a FAP, i.e., a
pair of transmission and charging power, aiming to jointly guarantee the optimal satisfaction of
all the involved entities in the examined IoT system. An artificial intelligent framework based on
reinforcement learning is introduced to support the IoT nodes’ autonomous association to the most
beneficial FAP in terms of long-term gained rewards. Finally, a detailed simulation and comparative
results are presented to show the pure operation performance of the proposed framework, as well as
its drawbacks and benefits, compared to other approaches. Our findings show that the personalized
contracts offered to the IoT nodes outperform by a factor of four compared to an agnostic type
approach in terms of the achieved IoT system’s social welfare.

Keywords: network economics; energy harvesting; wireless powered communications systems;
contract theory; artificial intelligence; reinforcement learning; Internet of Things

1. Introduction

Internet of Things (IoT) has gained great research and industrial interest in the last
decade, as it enables the operation and collaboration of a large number of devices with
different communication and computing capabilities, such as sensors, actuators, smart-
phones, and others [1]. Those IoT devices collect and report information to several types of
application in order to support the end-users’ needs and deliver meaningful services, such
as environmental monitoring, social networking and surveillance systems [2]. The exploita-
tion of the IoT devices’ physical and social characteristics can create efficient coalitions
among them, to better serve a common goal in the system, e.g., crowdsourcing, surveil-
lance of an area of interest, and in-home healthcare [3]. A common characteristic of the IoT
devices is their frequent transmission of data to a receiver, e.g., access point, a multi-access
edge computing server, for further processing and planning of the delivered services [4].
Even though the amount of transmitted data is usually small, the frequent transmissions
reduce the battery life of the IoT devices, which often have limited power resources, and
their battery replacement is a difficult and costly task [5]. Thus, the energy harvesting
solution from radio frequency signals by deploying a wireless powered communication
system has arisen as a suitable means to prolong the IoT devices’ battery life [6]. In this
paper, we introduce a smart energy harvesting method by exploiting the principles of
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Contact Theory, and an artificial intelligent model to support the autonomous IoT nodes’
association to femtocell access points based on Reinforcement Learning.

1.1. Related Work

The topic of energy harvesting by IoT devices has been thoroughly studied in the
literature, mainly focusing on the technical and implementation aspects of the problem [7].
The authors in [8] identify the problem of the limited battery of the IoT nodes and they
provide a short survey regarding the existing energy harvesting technologies, and the
corresponding power management techniques to sparingly use the harvested energy. In [9],
the authors aim to jointly optimize the data flow from the IoT nodes to the users and
the IoT nodes’ battery usage, by deploying IoT gateways and energy transmitters to save
the energy used for the transmissions and charge the IoT nodes in parallel, respectively.
Furthermore, a game-theoretic approach is adopted based on the theory of Stackelberg
games, where the IoT gateways optimize the data caching and incentivize the energy
transmitters to charge the IoT nodes, by determining their optimal transmission power
strategy. A detailed survey study is presented in [10] that identifies the currently available
IoT energy harvesting systems, the corresponding energy distribution approaches, and the
energy storage devices and control units that facilitate the IoT nodes’ energy harvesting
process. The provided categorization of the energy harvesting systems enables the reader
to identify the differences among the existing energy harvesting techniques and the corre-
sponding energy distribution approaches, concluding with the most appropriate selection
per realistic use case scenario. A predictive energy harvesting model is introduced in [11]
by exploiting the extended Kalman filtering method and jointly guaranteeing the Quality
of Service (QoS) requirements and several security protection levels in the IoT system. The
proposed predictive energy harvesting model can enable the IoT system to plan its energy
harvesting needs per connected IoT node and proactively adapt its operation and energy
consumption based on the trade-off of energy demand and energy availability.

The exploitation of multiple energy harvesting sources and techniques, such as solar,
radio frequency, thermal, artificial light, is studied in [12], by introducing a hybrid energy
harvesting model for the IoT nodes that can jointly support the energy harvesting from
several sources of energy. The authors provide a mathematical analysis to prove the energy
harvesting benefits in terms of the amount of the harvested energy and the efficiency in the
energy harvesting process via multiple and hybrid energy harvesting sources compared
to a single source of energy harvesting. Focusing on wireless powered communications
systems and radio frequency energy harvesting, the authors, in [13], describe a game-
theoretic and labor economics-based approach to deal with the optimal energy harvesting
under complete and incomplete information scenarios, respectively, regarding the channel
conditions among the IoT nodes and the energy transmitters. A Lyapunov optimization-
based approach is formulated in [14] to jointly optimize the frequency and the stability of
the sampling rate of the IoT energy harvesting nodes showing the increase in the amount
of harvested energy. The main novelty of the proposed method is its real time operation
and adaptation to the IoT system’s conditions and energy availability of the nodes and the
access points without making any assumptions nor predictions on future energy availability
patterns. Furthermore, an on-demand energy harvesting model is proposed in [15] towards
improving the delay performance of the radio frequency energy harvesting process by
introducing two associated discrete time Markov chain models that jointly optimize the
average packet delay, the packet loss probability, and the network throughput. The novel
concept of directed radio frequency signals charging in a unicast manner each IoT node is
also introduced in [15]. The proposed method can charge each IoT node in a personalized
manner by transmitting directed radio-frequency beams to the node, thus, increase the
amount of harvested energy by the IoT node.

A deep reinforcement learning approach of the actor-critic deep Q-network reinforce-
ment learning algorithms [16] is presented in [17] to jointly address the access and power
transmission and harvesting problem of the IoT nodes by considering the sum rate and
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prediction loss. The importance of IoT energy harvesting nodes in public safety scenarios
is discussed in [18], where the IoT nodes create coalitions among each other based on
their physical and socio-technical characteristics, which are further exploited by a mobile
Unmanned Aerial Vehicle (UAV) in order to select the IoT node cluster that will be charged.
This research work is extended in [19] by jointly optimizing the nodes’ transmission power
to further report their data to an access point. Additionally, an energy-harvesting-aware
routing algorithm is presented in [20] to jointly improve the IoT nodes’ battery life and
the IoT network’s Quality of Service under different traffic loads and energy availability
conditions. A practical application on IoT energy harvesting nodes is introduced in [21],
where the IoT nodes measure the vibration conditions of railway tracks, and report them
to a reader, in order to monitor the railway track conditions. The IoT nodes are installed on
the railway tracks and harvest radio frequency energy from a reader installed on the train.

Following the above analysis, it is concluded that great attention has been devoted to
the technical and implementation aspects of energy harvesting in IoT systems. Specifically,
the most recent approaches that have been reviewed above mainly focus on the improve-
ment in the amount of harvested energy, either by providing directed radio-frequency
beams from the transmitter to the receiver, or by improving the efficiency of the allocated
charging power to the IoT nodes, or even by optimizing the energy consumption of the IoT
nodes; thus, greater energy availability is achieved. However, the reviewed approaches
have not fully exploited the IoT nodes’ physical and social characteristics during the energy
harvesting process, and their interactions with the energy transmitters [22], in order to
ultimately optimize the enrgy harvesting process.

To address these issues, in this paper, we design a contract-theoretic approach to
capture the interactions among the IoT energy harvesting nodes and the energy transmit-
ters [23,24]. Our goal is to determine the optimal IoT nodes’ harvested energy with respect
to the amount of data that they transmit, and the energy transmitters’ optimal charging
power. We also introduce an artificial-intelligence-based mechanism to enable the IoT
devices to select the most beneficial energy transmitter based on their energy harvesting
experience [25].

1.2. Contributions & Outline

The increasing number of Internet of Things (IoT) nodes and their corresponding
need to extend their battery life in order to support IoT services have highlighted, which
has elevated the need to address the problem of energy harvesting from radio frequency
signals in a wireless powered communication system. The ultimate goal of this approach
is to guarantee the smooth operation of the overall IoT system and prolong its seamless
operation. To the best of our knowledge, this is the first research work that systematically
studies the energy harvesting process in an IoT system from a techno-economics and
artificial intelligent point of view. We introduce the concept of IoT energy harvesting node
types, which are expressed as a function of their communication interest, proximity to the
energy transmitter and each other, and their energy conversion efficiency. The IoT nodes’
and the access points’ utility functions are designed to represent the profit of the different
entities from the energy harvesting and data acquisition process, respectively. The main
contributions of this paper are summarized as follows:

1. Based on the principles of Contract Theory, an optimization problem is formulated
and solved to determine the IoT nodes’ transmission power, transmitted data to the
associated access point, and the energy transmitters’ optimal charging power, in order
for the overall system to converge to an optimal and stable point of operation;

2. An artificial-intelligence-based reinforcement learning mechanism is introduced,
which targets the most beneficial long-term energy transmitter selection from each
IoT energy harvesting node in an autonomous and distributed manner.

The rest of this paper is organized as follows. The system model is discussed in
Section 2. The IoT node types and all the involved entities’ utility functions are presented
in Section 3.1. The contract-theoretic optimization problem is formulated in Section 3.2
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and solved in Section 3.3. The artificial intelligent energy transmitters’ selection by the
IoT nodes is discussed in Section 4. Numerical results are presented in Section 5, and the
conclusions are drawn in Section 6.

2. System Model

A femtocell-based communications network is considered consisting of |F| femtocells
with overlapping coverage range in the examined communications environment and their
set is F = {1, . . . , f , . . . , |F|}. The femtocell access points (FAPs) jointly act as data receivers
from the connected IoT nodes and energy transmitters [26]. A set of IoT energy harvesting
nodes I = {1, . . . , i, . . . , |I|} is considered. The distance among two IoT nodes i, i

′ ∈ I is
denoted as di,i′ [m], while the distance of an IoT node from a FAP is di, f [m], ∀i ∈ I, ∀ f ∈ F.
The overall system operates as a wireless powered communication network (WPCN),
where the Wireless Energy Transfer (WET), and the Wireless Information Transmission
(WIT) phases are executed within a timeslot τ[sec]. The WET and WIT phases’ duration is
denoted as τWET [sec] and τWIT [sec], respectively, with τ = τWET + τWIT . The considered
system model is presented in Figure 1.

The IoT nodes can communicate among each other in order to exchange the informa-
tion needed to perform a task, e.g., temperature sensors measuring the temperature in a
smart building [27]. We define the relationship factor ri,i′ ∈ [0, 1] among two IoT nodes.
A higher value of the relationship factor shows a higher level of communication interest
among two IoT nodes. The communication channel gain conditions among two IoT nodes
and among an IoT node and a FAP are defined as Gi,i′ =

λ
d2

i,i′
, Gi, f = µ

d2
i, f

, respectively,

where λ, µ > 0 capture the fading phenomena. At each timeslot τ, each IoT node has some
available energy E(τ)

av.i[J], which indicates its maximum possible transmission power during

the WIT phase, as PMax(τ)
i = E(τ)

av.i · τWIT [W]. Each IoT node harvests E(τ)
harv.i[J] energy

during the WET phase, and invests E(τ)
tr.i [J] energy to transmit its data to the FAP during

the WIT phase. Thus, the available energy of each IoT node for the next timeslot τ + 1, is
determined as E(τ+1)

av.i = E(τ)
av.i + E(τ)

harv.i − E(τ)
tr.i . The transmission power of the IoT node i, in

order to report its data to the FAP f , is denoted as Pi, f [W], while the personalized FAP’s
charging power for the IoT node i is Pf ,i[W]. The FAP uses directional beams in order to
improve the efficiency of the energy’s harvesting [15]. Considering the non-orthogonal
multiple access (NOMA) technique in the uplink communication from the IoT nodes to
the FAPs, and the Successive Interference Cancellation (SIC) technique implemented at
the FAPS, each IoT node’s achievable data rate is given as follows based on Shannon’s
formula [28]

Ri, f = W · log(1 +
Pi, f · Gi, f

∑
i′≥i+1

Pi′ , f · Gi′ , f + σ2 ) (1)

where W [Hz] is the system’s bandwidth and σ2 is the power of zero-mean Additive
White Gaussian Noise (AWGN). It is noted that without loss of generality, we consider
G|I|, f ≤ · · · ≤ Gi, f ≤ · · · ≤ G1, f , thus, by implementing the SIC technique, the signal
of the IoT node with the highest channel gain is decoded first at the corresponding FAP,
as presented in Equation (1). Given that the IoT devices reside in a small area, we account
for the interference stemming from all the IoT nodes’ transmissions, even if they are
connected in different FAPs [29]. The acronyms and the notation adopted in this paper are
presented in Tables 1 and 2, respectively.
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Figure 1. Smart Energy Harvesting for Internet of Things Networks.

Table 1. List of Acronyms.

Acronym Meaning

IoT Internet of Things
FAP Femtocell Access Point
QoS Quality of Service
UAV Unmanned Aerial Vehicle

WPCN Wireless Powered Communication Network
WET Wireless Energy Transfer
WIT Wireless Information Transmission

NOMA Non-Orthogonal Multiple Access
SIC Successive Interference Cancellation

AWGN Additive White Gaussian Noise
IC Incentive Compatibility
IR Individual Rationality
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Table 2. Summary of Key Notations.

Notation Description [Units]

F Set of femtocells
f Index of femtocell
I Set of IoT nodes

di,i′ Distance among two IoT nodes i, i
′ ∈ I [m]

di, f Distance of an IoT node from a FAP
τWIT WIT phases’ duration [sec]
τWET WET phases’ duration [sec]

τ timeslot [sec]
ri,i′ Relationship factor ri,i′ ∈ [0, 1] among two IoT nodes
Gi,i′ Channel gain among two IoT nodes i, i

′ ∈ I
Gi, f Channel gain among an IoT node and a FAP

E(τ)
av.i IoT node’s available energy [J]

PMax(τ)
i IoT node’s maximum possible transmission power [W]
E(τ)

tr.i IoT node’s consumed energy for data transmission [J]
E(τ)

harv.i IoT node’s harvested energy [J]
Pi, f IoT node’s transmission power [W]
Pf ,i FAP’s charging power for the IoT node i [W]
Ri, f IoT node’s achievable data rate [bps]
W System’s bandwidth [Hz]
σ2 Power of zero-mean Additive White Gaussian Noise (AWGN)
SPi Socio-physical factor of the IoT node i
ρi, f Proximity factor of the IoT node i to FAP f
ηi Energy conversion efficiency factor of the IoT node i

GΣ Channel quality vector
G̃Σ Normalized channel quality vector

CIi,i′ Communication interest factor
ti, qi, ri, Ui IoT node’s type, effort, reward, utility function

k IoT node’s data transmission cost
e(ri(ti)) Evaluation function

w FAP’s cost to provide the rewards
U f FAP’s utility function

3. Contract Theoretic Energy Harvesting

In this section, we will exploit the principles of Contract Theory towards capturing the
interactions among the IoT energy harvesting nodes and the FAPs, in terms of transmitting
data and harvesting energy and charging the nodes, respectively. Assuming that each IoT
node has selected the FAP that it will communicate with and harvest energy from (details
in Section 4), each FAP acts as a virtual “employer”, offering personalized rewards to each
connected IoT node, in terms of charging power towards incentivizing the nodes, which
act as virtual “employees”, to invest an effort—translated in their transmission power—to
report their collected data to the FAP for further exploitation by the IoT service that is
offered to the end-users, e.g., smart heating systems.

3.1. Types, Utility Functions, and Contracts

Each IoT node is characterized by its type, which depends on the node’s physical
and social characteristics within the IoT network. Those characteristics are summarized
in the socio-physical factor SPi, the proximity factor ρi, f , and the energy conversion ef-
ficiency factor ηi. Towards building the socio-physical factor SPi for each node i, we
initially consider the channel gain symmetric matrix G = {Gi,i′}|I|×|I|, ∀i, i′ ∈ I, and cre-
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ate the channel quality vector GΣ = [
|I|
∑

i=1
G1,i, . . . ,

|I|
∑

i=1
G|I|,i]. The latter is a simple and

indicative factor of the communication channel conditions of each node i with all the
other IoT nodes within the examined IoT network. We normalize the channel quality

vector, as G̃Σ = [G̃1, . . . , G̃|I|], where G̃i =
G(i)

Σ
|I|
∑

i=1
G(i)

Σ

∈ [0, 1] and G(i)
Σ =

|I|
∑

j=1
Gi,j. Further-

more, we consider the communication interest factor CIi,i′ ∈ [0, 1] among two IoT nodes
i, i′, ∀i, i′ ∈ I, capturing the need of two IoT nodes to exchange information among each
other in order to perform an IoT service. We define the communication interest sym-
metric matrix CI = {CIi,i′}|I|×|I|, ∀i, i′ ∈ I and create the communication interest vector

CI = [
|I|
∑

i=1
CI1,i, . . . ,

|I|
∑

i=1
CI|I|,i]. Thus, we obtain the normalized communication interest vec-

tor C̃I = [C̃I1, . . . , C̃I|I|], where C̃Ii =

|I|
∑

i′=1
CIi,i′

|I|
∑

i=1

|I|
∑

i′=1
CIi,i′

∈ [0, 1] shows the relative communication

interest of each node i with all the other IoT nodes in the network. By jointly combining
the normalized communication interest and channel quality indicators, we conclude with
the socio-physical factor SPi = G̃i · C̃Ii, SPi ∈ [0, 1].

Additionally, each node i being associated with FAP f is characterized by the proximity
factor ρi, f ∈ [0, 1], which expresses the node i’s normalized distance from the FAP f ,
with respect to the FAP’s maximum coverage range. Each node is characterized by its
energy conversion efficiency factor ηi ∈ [0, 1], which shows how efficiently the node can
convert the harvested energy from the FAP’s directed radio frequency beam to energy that
can be exploited for its operations, e.g., data transmission. Considering the aforementioned
three factors, the type of each IoT node is defined as follows

ti = SPi · ρi, f · ηi (2)

Each node invests an effort qi ∈ [0, 1] in order to transmit its data to the FAP, which is
translated to its uplink transmission power Pi, f = qi · PMax

i . For simplicity in the notation,
we have omitted the timeslot τ indicator in the rest of the analysis. Furthermore, the FAP
incentivizes each IoT node, which is connected to this FAP, to report its data by charging
it with directed radio frequency beams. The FAP’s personalized reward to the node i
is denoted as ri ∈ [0, 1], and the corresponding power of the directed radio frequency
beam is Pf ,i = ri · Pf , where Pf [W] is the FAP f ’s available charging power. Thus, the IoT
node’s harvested energy in a timeslot τ during the WET phase, as discussed in Section 2, is
E(τ)

harv.i = ηiPf ,iGi, f · τWET , while the corresponding energy invested to its data transmission

during the WIT phase is E(τ)
tr.i = Pi, f · τWIT .

Each IoT node evaluates the received reward ri from the FAP based on the evaluation
function on e(ri(ti)), which is a strictly increasing function with respect to the received
reward, e.g., e(ri(ti)) =

√
ri(ti). In practice, the evaluation function captures the node’s

required charging power. Therefore, each IoT node’s utility function is defined by the
revenue that the IoT node enjoys from the charging process (first term of Equation (3)),
while considering the cost of its data transmission due to its invested transmission power
(second term of Equation (3))

Ui(ti, ri, qi) = tie(ri(ti))− kqi(ti) (3)

where k ∈ R+ is the IoT node’s experienced cost to transmit its data by investing its
transmission power.

Focusing on the benefit of each FAP from collecting data from the IoT nodes, we
express its utility as the profit gained from the IoT nodes’ invested effort, while considering



Sensors 2021, 21, 2755 8 of 19

the cost to provide the rewards. Each FAP is not aware of the IoT nodes’ type; thus, we

define the probability Pri(ti), with
|I|
∑

i=1
Pri(ti) = 1, that node i is of type ti. Therefore, each

FAP’s f , ∀ f ∈ F, utility function is defined as follows

U f (t, r, q) =
|I|

∑
i=1

[Pri(ti)(qi(ti)− wri(ti))] (4)

where t = [t1, . . . , t|I|], r = [r1, . . . , r|I|], q = [q1, . . . , q|I|] are the IoT node types, rewards
and effort vectors, respectively, and w ∈ R+ is the FAP’s cost of providing the rewards,
due to the spending energy required to perform the node charging.

3.2. Problem Formulation

In this section, we will formulate the problem of optimal energy harvesting and
charging as a contract-theoretic optimization problem, as follows.

max
{ri ,qi}
∀i∈I

U f (t, r, q) =
|I|

∑
i=1

[Pri(ti)(qi(ti)− wri(ti))] (5a)

s.t. tie(ri)− kqi ≥ 0, ∀i ∈ I (5b)

tie(ri)− kqi(ti) ≥ tie(ri′)− kqi′ , ∀i, i′ ∈ I, i 6= i′ (5c)

0 ≤ r1 < · · · < ri < · · · < r|I| (5d)

The solution to the optimization problem (5a)–(5d) is the optimal contract {r∗i , q∗i } for
each IoT node i ∈ I.

In the following description, we discuss the physical meaning of thed optimization
problem formulated above in detail. To determine the optimal harvested power by the IoT
nodes, and the optimal charging power provided by each FAP to each connected IoT node,
the profit/benefits of the FAPs and the IoT nodes should be jointly optimized, as presented
in (5a)–(5d). Each FAP aims to optimize its utility function (5a) towards determining the
optimal contract {r∗i , q∗i }.

It should be noted that the optimization problem (5a)–(5d) is solved by each FAP
and the corresponding IoT nodes connected to it. Thus, we solve as many optimization
problems as the number of FAPs in the examined system, while considering that each IoT
node should at least receive a positive utility (Equation (5b)) in order to be incentivized
to participate in the IoT network. The latter condition (Equation (5b)) is referred as
Individual Rationality (IR). Furthermore, each node achieves a higher utility when receiving
the contract designed for its unique characteristics, i.e., type, as compared to any other
contract designed for another node (Equation (5c)). This condition is referred to as Incentive
Compatibility (IC).

Additionally, for notation convenience, we sort the types of the IoT nodes as t1 <
· · · < ti < · · · < t|I|. Towards further elaborating on the constraint of Equation (5d), we
analyze and prove the conditions of fairness, monotonicity, and rationality in the following
three propositions.

Proposition 1. (Fairness) An IoT node of higher (or the same) type will receive a higher (or the
same) reward, i.e., ri > ri′ ⇔ ti > ti′ (ri = ri′ ⇔ ti = ti′).

Proof. See Appendix A.1.

Based on the fairness condition, an IoT node of a higher type, i.e., improved socio-
physical characteristics, will enjoy higher reward from the FAP, i.e., increased charg-
ing power.
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Proposition 2. (Monotonicity) An IoT node of higher type, i.e., t1 < · · · < ti < · · · < t|I|, will
invest a higher effort, i.e., q1 < · · · < qi < · · · < q|I|.

Proof. See Appendix A.2.

The physical meaning of the monotonicity property is that an IoT node of better socio-
physical characteristics, i.e., type ti, is expected to report greater amount of information
by investing more uplink transmission power, i.e., effort qi. Thus, the FAP will provide a
greater reward ri by an increased charging power. The last condition that is examined is
the rationality.

Proposition 3. (Rationality) An IoT node of higher type, i.e., t1 < · · · < ti < · · · < t|I|, will
eventually experience higher utility, i.e., U1 < · · · < Ui < · · · < U|I|.

Proof. See Appendix A.3.

The conditions of fairness, monotonicity, and rationality are presented in a combined
manner in Equation (5d).

3.3. Problem Solution

In this section, our goal is to solve the contract-theoretic optimization problem, as pre-
sented in Equations (5a)–(5d), under the scenarios of complete and incomplete information
from the FAPs perspective regarding the IoT nodes’ socio-physical characteristics, i.e., types.
The solution of the contract-theoretic optimization problems, which are solved by each
FAP along with its connected IoT nodes, will result in determining the optimal contracts
{r∗i , q∗i }, ∀i ∈ I. Based on this solution, the optimal charging power Pf ,i of each FAP to each
connected node will be determined, as well as the optimal transmission power Pi, f of each
IoT node.

Complete Information Scenario: In this scenario, the FAPs know the types of the IoT
nodes in a deterministic manner, thus, the contract-theoretic optimization problem (5a)–(5d)
can be rewritten, as follows.

max
{ri ,qi}
∀i∈I

[qi − wri(qi)] (6a)

s.t. tie(ri)− kqi ≥ 0 (6b)

Theorem 1. (Optimal Contract under Complete Information) The optimal contract {r∗i , q∗i }
among an IoT node i connected to the FAP f considering complete information of the IoT nodes’

types is {( ti
2wk )

2, t2
i

2wk2 }.

Proof. See Appendix A.4.

The complete information scenario is an ideal case, and will mainly be used for bench-
marking purposes. In practice, the FAPs have limited information regarding the IoT nodes’
socio-physical characteristics, i.e., types. Thus, in the following analysis, we examine the
scenario of incomplete information regarding the IoT nodes’ types.

Incomplete Information Scenario: In the following analysis, we examine the contract-
theoretic optimization problem that was presented in (5a)–(5d) under the incomplete
information scenario. Initially, we perform a reduction in the individual rationality condi-
tions in Equation (5b). Based on the monotonocity and incentive compatibility conditions,
we have that: tie(qi) − kqi ≥ tie(qi′) − kqi′ ≥ tie(q1) − kq1. Given that ti > t1, we can
rewrite the above inequality as follows: tie(qi)− kqi ≥ tie(q1)− kq1 ≥ t1e(q1)− kq1 ≥ 0.
Thus, we conclude that the individual rationality condition holds true for all the IoT
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nodes, if t1e(q1) − kq1 ≥ 0 holds true. The latter constraint can be further reduced to
t1e(q1)− kq1 = 0, as the FAP will provide the minimum sufficient reward to the IoT nodes
to participate in the IoT network. Thus, the constraint (5b) is equivalent to t1e(q1)− kq1 = 0.

Next, our goal is to reduce the incentive compatibility (IC) constraints, as presented in
Equation (5c). The following terminology is used in order to represent the IC constraints:
(i) i, i′, i′ ∈ {1, . . . , i− 1}: downward IC constraints; (ii) i, i− 1, i ∈ I: local down IC con-
straints; (iii) i, i′, i′ ∈ {i + 1, . . . , |I|}: upward IC constraints; and (iv) i, i + 1, i ∈ I: local
upward IC constraints.

Lemma 1. All the downward IC constraints are equivalent to the local downward IC constraint.

Proof. See Appendix A.5.

Following the same philosophy, we state the following Lemma.

Lemma 2. All the upward IC constraints are equivalent to the local downward IC constraint.

Proof. See Appendix A.6.

Based on the above analysis of reducing the constraints, we can rewrite the initial
contract-theoretic optimization problem as follows:

max
{ri ,qi}
∀i∈I

U f (t, r, q) =
|I|

∑
i=1

[Pri(ti)(qi(ti)− wri(ti))] (7a)

s.t. t1e(q1)− kq1 = 0, (7b)

tie(qi)− kqi = tie(qi−1)− kqi−1 (7c)

0 ≤ r1 < · · · < ri < · · · < r|I| (7d)

We observe that the optimization problem (7a)–(7d) is a convex optimization problem.
Therefore, to determine the optimal contracts {r∗i , q∗i }, ∀i ∈ I, we can use standard convex
optimization techniques [30].

4. Artificial Intelligent Association

In this section, we introduce an artificial-intelligence-based reinforcement learning
mechanism to enable the IoT nodes to make the most beneficial long-term energy transmit-
ter (i.e., FAP) selection in an autonomous and distributed manner. Our study focuses on the
Log-Linear reinforcement learning algorithms, such as the Max Log-Linear and the Binary
Log-Linear algorithms, which are able to converge to the best equilibrium point (if one
exists) of the system with high probability. Additionally, the Log-Linear algorithms allow
the IoT nodes to deviate from their probabilistically optimal decisions and make some sub-
optimal decisions in order to thoroughly explore their available actions. In this paper, we
adopt the Max Log-Linear mechanism that requires no exchange of information among the
IoT nodes and the FAPs. Each IoT node aims to learn, in the long-term, the most-beneficial
choice of FAP; thus, its strategy space is Si = {s1, s2, . . . , s f , . . . , s|F|}. Initially, each IoT

node selects a strategy si ∈ Si with equal probability P(ite=0)
i (s(ite=0)

i ) = 1
|Si |

, where ite
presents the iteration of the Max Log-Linear algorithm. Then, at each iteration, one IoT
node is randomly selected to explore an alternative strategy s′(ite)i with equal probability

1
|Si |

, and receives a corresponding utility U′(ite)i . The selected IoT node updates its strategy
following the probabilistic learning rules in Equation (8a) and Equation (8b), while the rest
of the IoT nodes keep their previously selected strategies unchanged, i.e., learning phase.

P(ite)
i (s(ite)i = s′(ite)i ) =

eβ·U′(ite)i

max{eβ·U(ite−1)
i , eβ·U′(ite)i }

(8a)
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P(ite)
i (s(ite)i = s(ite−1)

i ) =
eβ·U(ite−1)

i

max{eβ·U(ite−1)
i , eβ·U′(ite)i }

(8b)

The pseudo-code of the introduced Max Log-Linear algorithm that enables the IoT
nodes to select a FAP, which they can harvest energy from and communicate with the
selected FAP, is presented in Algorithm 1. The outcome of the Max Log-Linear algorithm
will be the stable selection of FAPs from the IoT nodes.

Algorithm 1: Max Log-Linear Algorithm
Input: I, F
Output: FAP selection by IoT nodes: s∗i , ∀i ∈ I

Initialization ite = 0, Convergence=0, s(ite=0)
i , β = 500, ε = 0.05, T

while Convergence == 0 do
ite = ite+1;
IoT node i selects s′(ite)i with equal probability 1

|Si |
, observes U′(ite)i ,

and updates s(ite)i based on Equation (8a) and Equation (8b).
The rest of the IoT nodes keep their previous selections of FAPs,

i.e., s(ite)−i = s(ite−1)
−i

if |

T
∑

ite=0

|F|
∑

f=1
U(ite)

i

T −
|F|
∑

f=1
U(ite)

i | ≤ ε then

Convergence = 1
end

end

5. Numerical Results

In this section, a detailed numerical evaluation analysis is presented based on simu-
lations in order to show the effectiveness and performance of the proposed smart energy
harvesting framework for Internet of Things networks. First, in Section 5.1, we focus on
validating the operation of the proposed contract-theoretic energy-harvesting mechanism,
in terms of determining the optimal contracts under the scenarios of complete and incom-
plete information regarding the IoT nodes’ socio-physical characteristics. The benefits
of adopting Contract Theory and exploiting the IoT nodes’ characteristics are presented
in Section 5.2. Having verified and analyzed the pure operation of the proposed frame-
work, a detailed comparative evaluation is presented in Section 5.3 to show the superior
performance of the overall system by enabling the IoT nodes with artificial intelligence,
against other approaches that have been used in the literature.

Throughout our evaluation, we consider |F| = 5, |I| = 100, τ = 1 s, τWIT = 0.3τ,
τWET = 0.7τ, di,i′ ∈ [0, 50] m, di, f ∈ [0, 50] m, λ = 1, µ = 1, η ∈ [0, 1], W = 5 · 106 Hz,

σ2 = 10−15, E(t=0)
av,i ∈ [0, 20]mJoule representing a typical IoT system consisting of IoT nodes,

such as temperature sensors [31]. The proposed framework’s evaluation was conducted in
an ACER laptop, with Intel Core i7, 3.9GHz Processor, and 16GB available RAM. In the
following results, unless otherwise explicitly stated, the above values of the simulation
parameters are used.

5.1. Pure Operation Performance

In this section, we present the pure operation performance of the proposed contract-
theoretic energy harvesting model by examining the scenarios of complete and incomplete
information of the IoT nodes’ characterises from the FAPs’ perspective. The results pre-
sented below are derived from one indicative timeslot, where the overall framework was
executed, i.e., IoT nodes’ association to FAPs, and determining the IoT nodes’ transmission
power Pi, f (effort) and the FAPs’ charging power Pf ,i (reward) based on the introduced
contract-theoretic model.
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Figure 2a–c present the IoT nodes’ effort qi, the FAPs’ reward ri, and the IoT nodes’
achieved utility Ui as a function of the IoT nodes’ types ti considering the scenarios of
complete and incomplete information. It is noted that the IoT nodes’ types ti are sorted
for presentation purposes, i.e., t1 < t2 < . . . ti < · · · < t|I|. The results reveal that the IoT
nodes of higher type, i.e., better socio-physical conditions, invest more effort (Figure 2a)
by transmitting with higher transmission power to report more data to the corresponding
FAPs that they are associated with. Thus, following the fairness (Proposition 1) and
monotonicity (Proposition 2) conditions, the IoT nodes of higher type enjoy a higher
reward (Figure 2b) from the FAPs, i.e., higher charging power. Therefore, based on the
rationality (Proposition 3) condition, the IoT nodes of higher type achieve a higher utility,
as shown in Figure 2c. Furthermore, it should be noted that the FAPs provide the minimum
possible rewards to the IoT nodes under the complete information scenario given that they
know their socio-physical characteristics; thus, Ui = 0,∈ I (Figure 2c).
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Figure 2. IoT nodes’ (a) invested effort, (b) gained reward, and (c) achieved utility under the proposed contract-theoretic energy
harvesting framework—Complete versus Incomplete information scenarios.

Additionally, Figure 3a,b illustrate the FAPs’ cumulative utility and the overall IoT
system’s social welfare, respectively. The results show that the overall IoT system operates
better under the complete information scenario. Specifically, it is observed that the social
welfare of the overall IoT system is reduced, on average, by 67 % under the incomplete
information scenario, where the latter is a realistic situation in an IoT system. The latter
observation confirms that the proposed smart energy harvesting framework operates in an
acceptable manner under the realistic conditions of complete lack of information regarding
the IoT nodes’ socio-physical conditions.
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Figure 3. (a) FAPs’ cumulative utility and (b) the overall IoT system’s social welfare under the proposed contract-theoretic
energy harvesting framework—Complete versus Incomplete information scenarios.

5.2. Benefits of Socio-Physical Approach

In this section, a detailed comparative analysis is presented in order to highlight
the benefits of introducing a contract-theoretic approach to perform the smart energy
harvesting and considering the unique socio-physical characteristics of each IoT node.
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The realistic incomplete information scenario is considered and compared to a type agnostic
scenario, where each FAP offers proportional rewards to the IoT nodes based on their

invested effort, i.e., ri(qi) =

|I|
∑

i=1
ti

|I| qi.
Figure 4a,b presents the IoT nodes’ received rewards and their corresponding achieved

utility, respectively, as a function of the IoT nodes’ IDs. Figure 5a,b depicts the FAPs’ cu-
mulative utility and the overall IoT system’s social welfare, respectively, as a function of
the number of IoT nodes in the examined system. The results reveal that the proposed
contract-theoretic smart energy-harvesting model exploits the nodes’ socio-physical char-
acteristics in a personalized manner, as compared to the type agnostic model. Thus, the IoT
nodes receive rewards tailored to their type (Figure 4a), and the IoT nodes’ that invest a
higher effort, given their higher type, receive higher rewards. The achieved benefits are
also depicted in the IoT nodes’ achieved utility (Figure 4b), which respects the individual
rationality condition under the proposed contract-theoretic model. Thus, the IoT nodes
always achieve a positive utility for their invested effort in contrast to the type agnostic
scenario. The FAPs’ cumulative utility is similar in both cases (Figure 5a), given that the
FAPs gain from under-rewarding some IoT devices, while they spend a great amount of
charging power by over-rewarding some other IoT devices in the type agnostic scenario.
By studying the overall IoT system (Figure 5b), we observe that the contract-theoretic
smart energy harvesting framework outperforms the type agnostic approach by a factor of
four on average, given the personalized rewarding mechanism that enables the offering of
personalized rewards to the IoT nodes tailored to their needs. Thus, the transmission and
charging power usage is intelligently exploited in the system.

5.3. Comparative Evaluation

In this section, we demonstrate the benefits of introducing an artificial intelligent
method based on reinforcement learning to facilitate the intelligent association of the IoT
nodes to the FAPs. Five comparative scenarios are considered in terms of enabling the IoT
nodes to select the FAP that they will be associated with: (i) the proposed reinforcement
learning mechanism (RL), as introduced in Section 4, the IoT nodes’ select (ii) the closest
FAP to connect (Min Distance), (iii) the FAP that offered the maximum charging power in
the previous timeslot (Max Charging Power), (iv) the FAP that the minimum number of
IoT nodes (Min Nodes) were connected to it in the previous timeslot, and (v) a random
FAP (Random). It is noted that all the IoT nodes are within the coverage area of all the
considered FAPs. The overall results were derived by performing a detailed Monte Carlo
analysis of 1000 executions of the overall framework for all the comparative scenarios.
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Figure 4. (a) IoT nodes reward and (b) achieved utility under the contract-theoretic versus the type agnostic framework of
energy harvesting.
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Figure 5. (a) FAPs’ cumulative utility and (b) the overall IoT system’s social welfare under the contract-theoretic versus the
type agnostic framework of energy harvesting.

Figure 6a–c present the IoT nodes’ invested effort, gained reward, and achieved utility,
respectively, as a function of the IoT nodes’ IDs. Figure 7a,b illustrate the FAPs’ cumula-
tive utility and the overall IoT system’s social welfare, respectively, as a function of the
number of IoT nodes within the overall system. The results show that the proposed frame-
work outperforms compared to all other scenarios, in terms of IoT nodes’ invested effort
(Figure 6a), gained reward (Figure 6b), and achieved utility (Figure 6c), FAP’s cumulative
utility (Figure 7a), and system’s social welfare (Figure 7b). This observation stems from the
proposed reinforcement learning mechanism’s inherent characteristics that enable the IoT
nodes to select the FAPs that hollistically provide them with a superior utility in the long
term, as compared to considering only fragmented selection criteria, such as the minimum
distance, the maximum charging power, and/or the minimum number of connected IoT
nodes to the FAPs. It is also observed that FAP selection based on the minimum distance
presents the next best results after our proposed reinforcement learning-based framework,
as the communication distance is a dominant factor in both the transmission and charging
signals’ power attenuation. The random selection scenario presents the worst results,
as the IoT nodes make a non-sophisticated selection of FAPs without considering their
physical and social characteristics. The Max Charging Power and Min Nodes FAP selection
scenarios present similarly mediocre results, as all the IoT nodes tend to select only one
FAP per timeslot, and this type of selection creates a burden on the selected FAP to serve
all the connected IoT nodes efficiently.
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Figure 6. (a) IoT nodes’ invested effort, (b) gained reward, and (c) achieved utility — A Comparative Evaluation.

Furthermore, Figure 8a–c illustrates the total transmission power and utility of all
the IoT nodes, and the total charging power of all the FAPs, respectively, for all the
examined comparative scenarios. The results demonstrate that the proposed reinforcement
learning-based FAPs’ selection mechanism enables the IoT nodes to transmit with low
power (Figure 8a) and efficiently exploit the FAPs’ charging power (Figure 8c), in order to
achieve superior utility (Figure 8b) within the examined IoT system. On the other hand,
the single selection criterion of FAPs scenarios present worse results, as they provide a
myopic view to the IoT nodes regarding the IoT system, and their most beneficial choice of
FAP to be connected and transmit information, while also harvesting power. Additionally,
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the random scenario provides the lowest utility to the IoT nodes, as it is not able to
efficiently balance the trade-off between the energy spent to transmit the IoT nodes’ data
and the corresponding harvested energy from the FAPs’ radio frequency signals.
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Figure 7. (a) FAPs’ cumulative utility and (b) the overall IoT system’s social welfare — A Comparative Evaluation.

Additionally, Figure 9a,b illustrates the IoT nodes’ total achieved data rate and their
corresponding total achieved energy efficiency under all the examined comparative scenar-
ios. The results illustrate that the intelligent IoT nodes’ association to the FAPs by exploiting
the introduced artificial intelligent framework, results in the better exploitation of the low
transmission power (Figure 8a) in order to achieve a superior data rate (Figure 9a) and
improved energy efficiency (Figure 9b), compared to the rest of the examined scenarios.
It is also illustrated that the comparative scenarios, which perform a myopic selection of
FAP for the IoT nodes, achieve low data rate and energy efficiency. Thus, it is concluded
that a multi-parameter consideration in the selection of the FAP and providing to the IoT
nodes with the intelligence needed to perform the FAP selection, provides better results in
terms of the transmission power and achieved data rate, and correspondingly improves
the overall energy efficiency of the IoT nodes.



��

�� 
�

�
��

��
���

�
��

�
�

���
�

���
��

�	�
��

�

�
��

��
��

��

��	������������������

#

$

%

&

'

(

)

��
�

���
�

��
�

���
��

��
	�

�
��

� �
�! ��

	
��

�� 	�

�
��

��
���

�
��

�
�

���
�

���
��

���
��

�

�
��

��
��

��

����
����������������

# #

# $

# %

# &

��
�

���
���

���

!�"



��

�� 
�

�
��

��
���

�
��

�
�

���
�

���
��

�	�
��

�

�
��

��
��

��

��	������������������

#�#

#�&

$�#

$�&

%�#

%�&

��
�

���
�

��
��

��
	�

�
��

�!�
�"

�� 

Figure 8. (a) Total transmission power and (b) utility of all the IoT nodes, and (c) total charging power of all the FAPs — A
Comparative Evaluation.
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Figure 9. (a) Total achieved data rate and (b) energy efficiency of all the IoT nodes — A Comparative Evaluation.

6. Conclusions

In this paper, a smart energy harvesting framework for Internet of Things is intro-
duced based on Contract Theory and Reinforcement Learning. Initially, a wireless powered
communication system model is introduced, which exploits the IoT nodes’ physical and
social characteristics in order to define their types. Then, the IoT nodes’ transmission
power and the FAPs’ personalized charging power based on the IoT nodes’ characteristics
are determined by introducing a contract-theoretic framework to capture the interactions
among the IoT nodes and the FAPs. The scenarios of incomplete and complete information
regarding the IoT nodes’ types are examined in detail. Furthermore, an artificial intelli-
gence mechanism is proposed based on reinforcement learning in order to enable the IoT
nodes to select the most beneficial choice of FAP to connect to in the long-term. Finally,
detailed simulation and comparative results are presented to show the pure operation
performance of the proposed framework, as well as its drawbacks and benefits, compared
to other approaches.

Our current and future work aims to extend the proposed framework in a 6G operation
wireless environment enriched with reconfigurable intelligent surfaces in order to improve
the channel conditions among the IoT nodes and the FAPs. To quantifying the benefits
introduced by adopting the reconfigurable intelligent surfaces, we perform a detailed
experimental analysis to measure the transmission and charging power savings.
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Appendix A. Proofs

Appendix A.1. Proof of Proposition 1

In the following proof, we examine both the sufficiency, i.e., ti > ti′ ⇒ ri > ri′ , and the
necessity, i.e., ri > ri′ ⇒ ti > ti′ of the condition. Starting with the sufficiency of the
fairness condition and based on the Incentive Compatibility (IC) condition Equation (5c),
we have ∀i, i′ ∈ I, i 6= i′:

tie(ri)− kqi ≥ tie(ri′)− kqi′ (A1)
ti′ e(ri′)− kqi′ ≥ ti′ e(ri)− kqi (A2)

By adding Equation (A1) and Equation (A2), we have the following expression:

tie(ri) + ti′ e(ri′) ≥ tie(ri′) + ti′ e(ri) (A3)

By recognizing the terms in Equation (A3), we have: (ti − ti′)e(ri) ≥ (ti − ti′)e(ri′),
and given that ti > ti′ , we conclude that e(ri) > e(ri′). Given that the evaluation function
e(ri) is strictly increasing with respect to the reward ri, we conclude that ri > ri′ . Thus, we
have shown so far that ti > ti′ ⇒ ri > ri′ holds true.

Continuing with the necessity condition, we know that ri > ri′ and the evaluation func-
tion is strictly increasing; thus, e(ri) > e(ri′)⇔ e(ri)− e(ri′) > 0. Based on Equation (A3),
we have: ti(e(ri)− e(ri′)) ≥ ti′(e(ri)− e(ri′)); thus, we conclude that ti > ti′ . Therefore, we
have shown that ri > ri′ ⇒ ti > ti′ holds true. Finally, it is noted that ri = ri′ ⇔ ti = ti′ ,
by easily following the above reasoning.

Appendix A.2. Proof of Proposition 2

Based on Proposition 1, we have r1 < · · · < ri < · · · < r|I| ⇔ t1 < · · · < ti < · · · < t|I|.
The reward is defined as a strictly increasing function of the IoT node’s invested ef-
fort. The physical meaning of this definition is that an IoT node which spends more
energy to transmit its data to the FAP, should be charged more by the FAP in order
to remain active in the IoT network. Thus, we can easily conclude with the outcome
t1 < · · · < ti < · · · < t|I| ⇔ r1 < · · · < ri < · · · < r|I| ⇔ q1 < · · · < qi < · · · < q|I|.

Appendix A.3. Proof of Proposition 3

For two representative IoT nodes, i, i′, ∀i, i′ ∈ I, i 6= i′, we write their incentive

compatibility conditions as follows: ti · e(ri) − kqi ≥ tie(ri′) − kqi′
ti>ti′⇐==⇒ te(ri) − kqi >

ti′ e(ri′)− kqi′ . Thus, we concluded that Ui > Ui′ . By generalizing this analysis, we conclude
that t1 < · · · < ti < · · · < t|I| ⇔ U1 < · · · < Ui < · · · < U|I|.

Appendix A.4. Proof of Theorem 1

Based on the individual rationality constraint Equation (6b), we consider the minimum
achieved utility that is acceptable by the IoT node, i.e., tie(ri) − kqi = 0, in order to
participate in the IoT network. Thus, for e(ri) =

√
ri, we have ri = ( kqi

ti
)2. Based on

Equation (6a), by taking the first-order derivative with respect to qi equal to zero, we have

q∗i =
t2
i

2wk2 , thus, r∗i = ( ti
2wk )

2.

Appendix A.5. Proof of Lemma 1

We consider three indicative IoT nodes: i− 1, i, i + 1, and we write the IC conditions,
as follows

ti+1e(qi+1)− kqi+1 ≥ ti+1e(qi)− kqi (A4)

tie(qi)− kqi ≥ tie(qi−1)− kqi−1 (A5)

The evaluation function is strictly increasing; thus, we have: e(qi)− e(qi−1) ≥ 0. We
also have: ti+1 > ti ⇔ ti+1(e(qi)− e(qi−1)) ≥ ti(e(qi)− e(qi−1)) ≥Equation (A5) k[qi − qi−1].
We recursively perform the latter analysis and we have: ti+1e(qi+1)− kqi+1 ≥ ti+1e(qi−1)−
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kqi−1 ≥ ti+1e(qi−2)− kqi−2 ≥ · · · ≥ ti+1e(q1)− kq1. Thus, we conclude with the equivalent
local downward IC constraint.

tie(qi)− kqi ≥ tie(qi−1)− kqi−1 (A6)

Appendix A.6. Proof of Lemma 2

We consider three indicative IoT nodes: i− 1, i, i + 1, and we write the following IC
constraints:

ti−1e(qi−1)− kqi−1 ≥ ti−1e(qi)− kqi (A7)

tie(qi)− kqi ≥ tie(qi+1)− kqi+1 (A8)

Based on Equation (A8) and the fairness condition, we have:

k(qi+1 − qi) ≥ ti[e(qi+1)− e(qi)] ≥ti>ti−1 ti−1[e(qi+1)− e(qi)] (A9)

Based on Equations (A7) and (A9), we write: ti−1e(qi−1)− kqi−1 ≥ ti−1e(qi)− kqi ≥
ti−1e(qi+1)− kqi+1. Thus, we have ti−1e(qi−1)− kqi−1 ≥ ti−1e(qi+1)− kqi+1, which shows
that if the local downward IC constraint holds true, then all the upward constraints also hold
true, and we have: ti−1e(qi−1)− kqi−1 ≥ ti−1e(qi+1)− kqi+1 ≥ · · · ≥ ti−1e(q|I|)− kq|I|.
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