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Abstract: Motor learning is associated with functional brain plasticity, involving specific functional
connectivity changes in the neural networks. However, the degree of learning new motor skills varies
among individuals, which is mainly due to the between-subject variability in brain structure and
function captured by electroencephalographic (EEG) recordings. Here, we propose a kernel-based
functional connectivity measure to deal with inter/intra-subject variability in motor-related tasks.
To this end, from spatio-temporal-frequency patterns, we extract the functional connectivity between
EEG channels through their Gaussian kernel cross-spectral distribution. Further, we optimize the
spectral combination weights within a sparse-based `2-norm feature selection framework matching
the motor-related labels that perform the dimensionality reduction of the extracted connectivity
features. From the validation results in three databases with motor imagery and motor execution
tasks, we conclude that the single-trial Gaussian functional connectivity measure provides very
competitive classifier performance values, being less affected by feature extraction parameters, like
the sliding time window, and avoiding the use of prior linear spatial filtering. We also provide
interpretability for the clustered functional connectivity patterns and hypothesize that the proposed
kernel-based metric is promising for evaluating motor skills.

Keywords: functional connectivity; Gaussian kernel; motor imagery; motor execution

1. Introduction

Motor imagery (MI) is understood as an act wherein an individual contemplates
motor execution’s mental action without apparent action. MI as a higher cortical function
is increasingly postulated as an innovative and valid learning tool that allows simulated
solutions for motor tasks in the learning phase [1,2]. Alternatively, Motor Execution (ME)
is the actual practice of the movement. MI and ME share common sensorimotor areas, and
they both involve planning and executing the same motor plan, but their neural mecha-
nisms have some differences [3,4]. In practice, to indicate that motor learning had taken
place and retained after a training phase, motor execution performance is measured [5,6].
Moreover, the brain plasticity that is induced by motor learning can be associated with
significant changes in electroencephalographic (EEG) features, particularly in the pre-
execution phase [7,8]. However, the degree of learning new motor skills varies among
individuals, which is mainly due to the between-subject variability in brain structure and
function captured by EEG recordings [9]. Thus, because of the inter-session/subject vari-
ability, about 15–30% of users do not gain enough control over Brain–Computer Interfaces
(or BCI illiteracy) , seriously limiting the widespread use of MI-BCI [10].

A solid reason for BCI illiteracy is that subjects with poor control performance do not
exhibit discriminative task-related changes over the modulation of Sensorimotor Rhythms
(SMR) within the resting-state as well as in the interval of MI responses [11]. In particular,
BCI faces real-world challenges, which are mostly caused by the low spatial resolution
of EEG that, along with the nonstationarity present in the recorded neurophysiological
signals, results in a poor signal-to-noise ratio (SNR). To enhance SNR, a regular pipeline of
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MI/ME processing involves the feature extraction stage using spatial filtering to increase
mental states’ discriminability, for which several methods are reported, like Riemannian
geometry-based algorithm [12], `1-norm unsupervised Fukunaga–Koontz transform [13],
Spectrum-weighted Tensor Discriminant Analysis [14], Bayesian spatio-spectral filter opti-
mization [15], and common spatial patterns (CSP), which maximize the variance of one
class to another [16], among others. Although CSP is the most widely employed algorithm,
several factors may hinder the extraction of highly separable features in terms of spatial
patterns. Namely, while spatial filters are efficient on clean datasets that were obtained
in constrained environments, they need a convenient artifact removing from EEG signals
because of distorting artifacts and outliers of real-world acquisition contexts [17], the in-
terval of neural responses is generally chosen heuristically. Additionally, features that
are extracted by CSP are dense with patterns repeatedly selected [18], small datasets [19],
and unsuitability to analyze task-free (unlabeled) EEG data (like resting-state), due to
the sources being identified by CSP representing the summed activity from multiple dis-
tinct neural electrodes that, together, allow for differentiation by contrasting two or more
labeled MI conditions [20]. Consequently, for solving the MI-BCI inefficiency problem,
several efforts are to be conducted to extract new MI-related features to obtain meaningful
representations with spatially separated patterns, as suggested in [21].

In general, the brain functional connectivity of motor-related tasks is related to syn-
chronization mechanisms within (or sometimes between) different SMR, mainly emerging
in the sensorimotor cortex [22]. Thus, most of the approaches for assessing brain regions’
relationships rely on covariance matrices computed from the input EEG signal. Because
of the nonlinearity and nonstationarity inherent to the MI neural activity, the baseline
Euclidean distance-based covariance estimation tends to be highly inaccurate. For dealing
with inter and intra-individual variability, the covariance matrix is enhanced by using
mapping approaches, which account for specific geometric relationships through proper
distances, and factorize the multivariate EEG data into its stationary nonstationary com-
ponents [23]. Still, selecting the most appropriate distance to encompass the brain signal
variability remains challenging [24]. Meanwhile, using features that were extracted from
the EEG dynamic brain network analysis is feasible for increasing the classification accu-
racy [25–27]. Nonetheless, dealing with EEG variability because of evoked nonstationary
responses remains challenging, particularly in MI-BCI inefficient subjects [28,29]. Some
single-trial functional connectivity measures have been introduced from EEG signals,
i.e., Cross-Correlation Coefficient (CCF) and Phase Lag Value (PLV) [30], to support motor-
related classification tasks. However, different researchers point to the fact that single-trial
connectivity can only be used to obtain more interpretable results, but not satisfactory
discrimination [31,32].

Here, we propose a single-trial kernel-based functional connectivity measure as an
EEG-based feature extraction method to deal with inter/intra-subject variability in motor-
related tasks. To this end, from spatio-temporal-frequency patterns, we extract the func-
tional connectivity between the EEG channels through a novel kernel-based cross-spectral
distribution estimator. Namely, the Gaussian kernel is used to compute the pairwise kernel-
based channel dependencies because of its universal approximating ability. Further, we
optimize the spectral combination weights within a sparse-based `2-norm as a feature
selection framework matching the motor-related labels that perform a dimensionality
reduction of the extracted Gaussian Functional Connectivity features. We also interpret the
extracted functional connectivity patterns by clustering them into ensembles of individ-
uals with common behavior. Although our proposal is a data-driven approach, as other
well-known motor-related feature extraction methods, i.e., CSP [18], it does not require
the full trial set to compute discriminative EEG channel dependencies. The latter can
benefit the implementation of real-time brain-machine interfaces. We contrast the proposed
Gaussian functional connectivity measure with the baseline CSP method, two commonly
used single-trial FC measures (Cross-Correlation Coefficient and Phase Lag Value), and
more elaborated feature extraction approaches in the state-of-the-art. The validation results
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that were accomplished in three EEG databases (two with MI and one with ME) show
that the proposed connectivity measure allows for reaching very competitive classifier
performance with less affected values by feature extraction parameters, like the tuning of
sliding time window. Besides, the introduced connectivity measure does not demand a
prior linear spatial filtering as a preprocessing procedure. Additionally, the interpretation
of subject clusters using our functional connectivity patterns benefits in understanding the
inter/intra-subject variability in motor-related tasks.

The agenda is as follows: Section 2 discusses Kernel-based covariance’s fundamentals
that ground the Gaussian functional connectivity. Section 3 describes the experimental set-
up, including the parameter tuning of time-frequency representations that were extracted
from the EEG datasets evaluated. Section 4 presents the extraction of the compared
connectivity measures and their influencing parameters on accuracy estimation, addressing
subject clusters’ interpretation while using their functional connectivity patterns. Finally,
Section 5 concludes the paper.

2. Methods
2.1. Kernel-Based Covariance Function

Let x be a wide-sense stationary stochastic process with real-valued auto-correlation
function, Rx(τ), which is defined as below [33]:

Rx(τ) =
∫
R

exp(j2πτ f )dPx( f ), (1)

where Px( f )∈R[0, 1] is a monotonic spectral distribution function absolutely continuous
and differentiable over frequency f ∈R.

The univariable relationship in Equation (1) that operates over positive-definite func-
tions can be expanded to a pairwise correlation between random vectors x, x′∈RT through
a generalized, kernel-based covariance, if and only if the following assumption holds
between both spectral representations [34]:

κ(x, x′) =
∫
R

exp (j2π∆x> f )Sxx′( f )d f , (2)

where ∆x = x− x′ is the vector delay that is defined over an infinitely long interval T
(i.e., ∆x∈RT), f ⊆ Ω is the frequency domain that contains the bandwidth set of analysis
Ω, and Sxx′( f ) ∈ C is the cross-spectral density that preserves the following equality:
Sxx′ ( f ) = dPxx′ ( f )/d f , with Pxx′( f )∈R[0, 1] being the cross-spectral distribution that is
related to the mapping kernel, κ:RT ×RT → R.

As regards κ(x, x′) = 〈φ(x), φ(x′)〉H, it is a positive-definite stationary kernel inducing
the nonlinear feature mapping φ(·) to a Reproducing Kernel Hilbert Space,H. Notation
〈·, ·〉 represents the dot product.

Therefore, we compute the cross-spectral distribution Pxx′( f ) within a bandwidth Ω,
as below:

Pxx′( f ) = 2
∫

f∈Ω
Sxx′( f )d f

= 2
∫

f∈Ω
F
{

κ(x, x′)
}

d f . (3)

Notation F{·} stands for the Fourier transform.
As a result, Equation (3) preserves the frequency-based interpretation of the kernel-

based pairwise dependencies that were estimated between vectors of random functions.
Furthermore, the imposed stationary kernel favors the extraction of nonlinear data
dependencies [35].
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2.2. Gaussian Functional Connectivity from Kernel-Based Spectral Distribution

Let {XXXt
rn ∈ RC×T , yr ∈ R[0, 1] : n ∈Ω, t ∈ ∆ : r ∈ R} be a EEG data that hold R ∈ N

trials and C∈N channels within the frequency bandwidth set |Ω| and time window set |∆|,
lasting T∈N instants, and yr is the class-probability label set assumed to be binary without
a loss of generality, and assigned to r-th trial. Notation | · | stands for set cardinality.

Provided the EEG data described above, we propose the Gaussian function to compute
the pairwise kernel-based dependencies between electrodes c, c′∈C, c 6= c′ in Equation (2),
termed Gaussian Functional Connectivity (GFC), defined as follows:

κG

(
xct

rn − xc′t
rn ; σ

)
= exp

(
−‖xct

rn − xc′t
rn‖2

2/2σ2
)

, (4)

where the vector xct
rn ∈RT (with XXXt

rn = [xct
rn]
>) denotes each filtered channel c of trial r

within bandwidth n, at time window t, and σ ∈R+ is the length scale hyperparameter.
Notation ‖ · ‖q stands for `q-norm. The Gaussian kernel is preferred in pattern classification
because of its universal approximating ability and mathematical tractability [36].

With the aim to implement the single-trial extraction, we compute the pairwise func-
tional connectivity matrix P̂PPn∈RC×C as a kernel-based cross-spectral distribution estimator
of Equation (3). Hence, from the spatio-temporal-frequency patterns, the functional con-
nectivity matrix has elements that are extracted from r-th trial, as below:

P̂cc′(r; ucc′ , κG) = ∑
r∈Ω

∑
t∈∆

ucc′
nt κG

(
xct

rn − xc′t
rn ; σ

)
, (5)

where xct
rn, xc′t

rn ∈ XXXct
rn, P̃cc′(r; ucc′ , κG) ∈ P̂PPr and ucc′

nt ∈ ucc′ , with ucc′ ∈ R|Ω|+|∆|, holds the
relevance weight value that is estimated at t, n-th time-frequency split, coding the pairwise
undirected dependency between channels.

Using the single-trial kernel-based spectral distribution representation in Equation (5),
we propose extracting the sparse functional connectivity, aiming to finding discriminative
and interpretable brain activity patterns. Particularly, the sparse-based `2-norm matching
is carried out after a vector concatenation of the relevance weights in v = [ucc′ ], as follows:

v∗ = arg min
v
E

{
‖ ∑

c<c′
P̃c,c′(r; ucc′ , κG(·, σ))− yr‖2

2 : ∀r, c, c′
}
+ α1‖v‖1 + α2‖v‖2, (6)

where α1, α2∈R+ are the regularization hyperparameters.
Consequently, the optimization framework in Equation (6) allows for computing the

spectral combination weights from the extracted filter-bank representations that match the
MI class-probability set, resulting in a sparse, relevant kernel-based functional connectivity
between couples of EEG channels.

3. Experimental Set-Up

The evaluation of the considered functional connectivity measures for enhanced
feature extraction is performed according to the following stages:

(i) Preprocessing and trial-based extraction of t-f representations. For extracting the
subject EEG dynamics over time accurately, the sliding window length of feature extraction
is fixed to the next values: τ = [0.5, 1.0, 1.5, 2.0] s, having an overlap of 75%;

(ii) The estimation of the single-trial functional connectivity from the extracted t-
f features. For comparison, we contrast the proposed GFC with two commonly used
single-trial FC measures that can be estimated from a couple of channels {c, c′}, (with
c 6= c′, ∀c, c′ ∈ C), respectively, as follows [30]:

ρ(xct
n , xc′t

n )= 〈xct
n , xc′t

n 〉 (7a)

∆φ(xct
n , xc′t

n )= | exp(j(φct
n −φc′t

n ))| (7b)
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where xct
n and xc′t

n is the real-valued EEG data from the corresponding electrodes (within
temporal window t and frequency band n) with instantaneous phases φct

n and φc′t
n , re-

spectively. The pairwise relationships in Equations (7a) and (7b) are referred as Cross-
Correlation Coefficient (CCF) and Phase Lag Value (PLV), respectively.

For feeding the classifier procedure, we evaluate two feature representation ap-
proaches that are extracted from each tested FC measure: Firstly, the feature represen-
tation is the CSP’s pattern vector (linear projection of the sample covariance), computed
as detailed in [37]; in particular, the well-known CSP’s eigendecomposition is applied by
replacing the covariance matrix with the corresponding FC measure. Secondly, the concate-
nated (vectorized) triangular representation of the symmetrical FC matrices is extracted, as
detailed in [38]. Both of the approaches comprise a filter-bank-based concatenation strategy
through a fixed sliding window size and overlap values; that is, the temporal dependencies
between windows are not directly modeled.

(iii) Sparse feature selection and classifier performance computation. Here, for imple-
mentation purposes, the optimizing problem is solved through the well-known Elastic-net
algorithm to deal appropriately with redundant information. It is worth noting that we pre-
fer Elastic-net over the Lasso-based regularization, because, when the number of features
is greater than the number of training samples, Lasso behaves erratically [39].

For comparative purposes, we also perform feature extraction using the baseline CSP-
based spatial filtering that is widely used for filtering measures of synchronization [40,41].
To this end, we perform the CSP feature extraction, adjusting the sliding time window
length at each evaluated value of τ and fixing the variance of the surrogate space to the first
three eigenvectors of the spatial filtering matrix, as suggested in [42]. It is worth mentioning
that we evaluate the FC measures in Equations (7a) and (7b), as well the CSP-based feature
extraction scheme, through the sparse model presented in Equation (6) using a vector
concatenation approach through temporal windows and frequency bands.

(iv) Clustering of subject inefficiency and interpretation analysis. For enhancing the
interpretive analysis, we cluster the differences in neural responses that depend on the
users’ motor skills. The intra/inter-subject variability affects the FC estimators’ robustness
properties, becoming stronger for the worst-performing individuals.

Regarding the performance measure, the classifier accuracy ac ∈ [0, 1] is computed,
as follows:

ac = (TP + TN)/(TP + TN + FP + FN),

where TP, TN , FP, and FN are true-positives, true-negatives, false-positives, and false-
negatives, respectively. The training and testing sets are randomly partitioned by a stratified
10-fold cross-validation strategy.

3.1. EEG Data Description

In order to appraise the properties of the single-trial Gaussian functional connectivity
measure, we test the following databases of motor-related tasks:

BCI2a Motor Imagery—DBI MI: We test the BCI competition IV dataset IIa available
at (http://www.bbci.de/competition/iv/index.html (accessed on 15 March 2021)). This
competition contains EEG data from nine subjects (M = 9) that were instructed to perform
four MI tasks: left hand, right hand, feet, and tongue. Data were gathered in two days
within six runs, yielding three runs per day. One run contains 12 trials per task, which
were recorded by C = 22 channels, for a total of R = 144 trials of each label per subject
where each channel was sampled at 250 Hz. The beginning of each trial, lasting T = 7 s,
was indicated by a short acoustic warning, and a cross on a black screen for 2 s, then an
arrow pointing either left, right, down, or up appear to indicate subjects to perform the
desired MI task. Besides, the subjects were requested to accomplish the MI task until the
cross disappeared, six seconds later. Afterward, a black screen indicates a short break until
the beep and the cross appeared again, and a new trial starts. In this study, we consider a
bi-class (left and right hand) classification task.

http://www.bbci.de/competition/iv/index.html
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Gamma Motor Execution—DBII ME: We explore the data that are publicly available
at (https://gin.g-node.org/robintibor/high-gamma-dataset (accessed on 15 March 2021)).
This collection is a 128-channel dataset sampled at 500 Hz (of which we later only use 44
sensors covering the motor cortex), obtained from 14 healthy subjects (6 female, 2 left-
handed, age 27.2± 3.6) with four-second trials of executed movements divided into 13 runs
per subject and R = 40 trials of each label per subject. The four classes were movements of
either the left hand, the right hand, both feet, and rest (no movement, but the same type of
visual cue as the other classes). Visual cues were presented while using a monitor outside
the cabin, which was visible through the shielded window. A fixation point was attached
at the center of the screen. The subjects were instructed to relax, fixate the fixation mark,
and keep as still as possible during the motor execution task. The tasks were as follows:
Depending on the direction of a gray arrow that was shown on the black background, the
subjects had to clench their toes (downward arrow), repetitively, perform sequential finger-
tapping of their left (leftward arrow) or right (rightward arrow) hand, or relax (upward
arrow). The movements were selected to require little proximal muscular activity, while
still being complex enough to keep subjects involved. Within the 4 s trials, the subjects
performed the repetitive movements at their own pace, which had to be maintained as
long as the arrow was showing. Per run, 80 arrows were displayed for 4 s each, with 3 to
4 s of continuous random inter-trial interval [43].

Giga Motor Imagery—DBIII MI: This collection publicly available at (http://gigadb.
org/dataset/100295 (accessed on 15 March 2021)) holds EEG data that were obtained
from fifty-two subjects (although only M = 52 are available for evaluation) using a 10–10
placement electrode system with C = 64 channels. Each channel x(c) lasted T = 7 s, and it
was sampled at Fs = 512 Hz. At the beginning of the test, a fixation cross was displayed
on a black screen during 2 s. Subsequently, being linked to either MI label [0, 1], a cue
instruction appeared randomly on the screen within 3 s. The cue asked each subject to
imagine moving his fingers, starting to form the index finger and reaching the little finger,
and touching each to his thumb. A blank screen was then displayed at the beginning of a
break period, which ran randomly between 4.1 and 4.8 s. This procedure was repeated over
20 times to complete a single run and stopped at the end to complete a written cognitive
quiz. Every subject performed between R = 100–120 trials of either labeled task, being
acquired in five or six runs. In addition, a single-trial resting-state recording, lasting 60 s,
was collected from each subject.

Of note, for evaluating the proposed connectivity measure, we test the baseline DBI
MI data that are frequently used to appraise MI processing algorithms [44]. However,
a reliable group analysis can barely be performed, since this collection holds few subjects.
Thus, we also evaluate the frequently reported DBIII MI data with more subjects. Alongside
the MI data, we present the experimental results on a similar motor execution paradigm,
employing the DBII ME data as one of the most cited collections of ME [45].

3.2. Preprocessing and t-f Extraction

As a preprocessing stage, the raw EEG data of the three evaluated motor-related
collections are band-pass filtered. In the particular case of MI data, we fix |Ω| = 17 five-
order overlapped Butterworth filters that contain bandpass frequencies between 4 Hz and
40 Hz, having a bandwidth of 4 Hz and overlapping rate of 2 Hz. In the case of ME, as
suggested in [46], we fix |Ω| = 4 with the following non-overlapped bandpass frequencies,
f ∈Ω: f α = 8–12 Hz, f β = 12–30 Hz, f γ = 30–50 Hz, and f γ = 50–125 Hz. Next, the attained
filter-banked featuresn that are extracted from all motor-related data are time-windowed
onto |∆| intervals with a 75% overlap of samples, and window size of τ s. Of note, the EEG
data are not Laplacian-filtered, since there is no significant difference in the classification
performance, as suggested in [47].

https://gin.g-node.org/robintibor/high-gamma-dataset
http://gigadb.org/dataset/100295
http://gigadb.org/dataset/100295
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4. Results and Discussion
4.1. Influencing FC Parameters on Accuracy Estimation

Impact of prior CSP filtering: for interpretation purposes, Figure 1 presents the subjects’
accuracy in decreasing order by all evaluated EEG data collections. Each data set is tested
in two configurations to feed the sparse feature selector: using feature concatenation
(odd rows) and linearly mapping through CSP (even rows). The FC measures’ accuracy
is estimated at each τ (PLV—left column, CCF—middle column, GFC—right column),
adjusting the parameter σ to the median averaged over the input distances for kernel-based
functional connectivity computation.

The top plots display the results that were performed by the databases with a sim-
ilar amount of subjects: DMBI MI (first and second rows) and DB DBII ME (third and
fourth rows). As seen, PLV yields the most scattered outcomes, with a significant portion
accomplishing low accuracy. A similar situation holds for DBIII MI with a more visible
subject variability: PLV discriminates the worst, followed by CFF, and GFC performs a bit
better, still outperforming the other FC when compared and having the accuracy values
less spread throughout the subject set. However, the accuracy estimates are significantly
more dispersed across the individuals than in DBII ME, regardless of the FC measure.
Several factors may account for the higher variability of MI data. The EEG montage of MI
protocols is more complex (64 MI channels vs. 44 ME channels). Besides, the ME signals
are reported as having a higher degree of regularity than MI practicing, at least in terms of
motor-related discriminability [48]. Consequently, even if the DBIII MI collection doubles
the number of trials compared with DBII ME, the subject variability of MI data remains
high enough to limit the CSP effectiveness (see the bottom row). Moreover, numerous
subjects achieve accuracy values that are below 60%, which is, under the BCI-inefficiency
level reported [49].

Influence of sliding window: Figure 2 summarizes the sliding window’s impact on the
classifier discrimination ability using each evaluated measure of FC. In the case of DBI
MI, the first row shows that PLV and CCF both obtain very close performance if the CSP
filtering is not involved at all tested window values. Otherwise, the latter measure notably
improves in performance. Nevertheless, the proposed GFC outperforms, and this behavior
remains valid in the second row that presents the accuracy of DBII ME with more subject
variability, as shown by the average bars. However, some fluctuations in the PLV and CCF
performance are more evident after applying CSP, depending on the window. Instead, the
GFC measure presents performance nearly invariant across the range of considered sliding
window lengths, being slightly enhanced by the CSP filtering algorithm.

On the other hand, the bottom row presents the classifier performance that is obtained
by MI activity (DBIII MI) with the most challenging subject variability, showing that the
accuracy of all FC measures drops, particularly in the case of PLV. As seen, the PLV and CCF
accuracy values are more sensitive to the sliding window influence, while the proposed
GFC assessments remain constant over the range of τ. One more aspect to highlight is
that the CSP-based filtering effectiveness becomes more dependent on the specific sliding
window selected. Furthermore, under increased subject variability, this spatial filtering
method’s application noticeably decreases the GFC performance.

4.2. Estimated Classifier Accuracy of Individuals

The following consideration is linked to the quality of individual FC assessments
because of their diverse variability. For this purpose, Figure 3 illustrates the individual
classifier performance at each window length, for which the subjects are displayed on the
horizontal axis in decreasing order of the CCF accuracy achieved at τ = 2 s (the continuous
line outlined in blue color). The rationale for choosing this specific FC estimation case as
the baseline is that the cross-correlation coefficient that is presented in Equation (7a) can be
directly associated with the conventional Pearson estimate with the simplest interpretation
regarding pairwise relationships [50].
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Figure 1. Subject accuracy at each window length τ performed by the evaluated FC measures:
PLV, CCF, and GFC. Subjects are displayed on the horizontal axis in decreasing order of each FC
accuracy at τ = 2 s. Notation CSP stands for the accuracy estimated after the spatial CSP filtering.
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Figure 2. Accuracy performed at each τ by the evaluated measures of FC: PLV( ), CCF( ), and GFC
( ). The full-filled colored bars stand for concatenate representation, while the bars with horizontal
lines present the results after CSP filtering.

At first sight, besides being distinctive from the CCF and GCF, the variability of
accuracy estimates that are achieved by PLV (green line) becomes visible across the subject
set of DBII ME: the shorter the window length, the more variable the subject estimates.
Rather, the CFF and GFC measures produce accuracy values following a similar order of
subjects, for which the enhancing effect of CSP-based filtering can be observed. In the case
of DBIII MI, the variability in classifier performance that is provided by the FC metrics
grows noticeably, regardless of applying the CSP filtering. Thus, the order of subjects
provided by each FC measure is particular and dissimilar to each other. Nevertheless,
when compared with the baseline CCF-based accuracy (blue line), the proposed GCF
measure without CSP allows for enhancing almost every single subject’s discrimination
ability, regardless of the window length applied. Moreover, the kernel-based FC measure
ensures that several subjects exceed the BCI-inefficiency level, as previously assessed
using CCF. It is noteworthy that using the CSP algorithm appreciably reduces the GFC
effectiveness for dealing with the subject variability of DBIII MI.
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Figure 3. Individual classifier performance at different window lengths using FC: PLV ( ), CFF ( ),
and GFC ( ). The accuracy assessments performed without CSP are outlined with a continuous
line, after CSP filtering—with a dashed line. The subjects are displayed on the horizontal axis in
decreasing order of their CCF-based accuracy.

4.3. Interpretation of Subject Clusters Using Functional Connectivity Patterns

The main goal can be framed as the grouping of subjects having similar spatial net-
works involved in the motor-related tasks under consideration, aiming to properly interpret
the evaluated functional connectivity measures. To this end, we cluster the extracted FC
sets into partitions, each one with resembling subjects in terms of FC dynamics, being coded
in the relevance vector v of Equation (6), and the motor-related accuracy. However, because
of the poor clustering performance in high dimensional spaces, we accomplish a previous
dimensional reduction stage on the normalized subject’s relevance vector set (fixing a 2D
low-dimensionality) through t-Distributed Stochastic Neighbor Embedding (t-SNE), which
preserves the spatial relationships in the higher space (nearest-neighbors) [51]. Subse-
quently, we concatenate the t-SNE low-dimensional representation with the corresponding
individual accuracy to perform a k-means-based clustering. At each window length, the
latter approach is carried out, as proposed in [52].

One concern is how a subject may switch between the assigned clusters when ac-
counting for the influence of extracted FC measures at each window length. To clarify this
aspect, Figure 4 displays the clustering results achieved by each functional connectivity
measure using a matrix that illustrates the cells colored according to the individual group
assessed, ranking the assessed groups in decreasing order of accuracy averaged over the
corresponding subset. The three groups are colored, as follows: Group I, giving the best
accuracy I (in yellow), Group II with regular accuracy (purple), and Group III, performing
the worst accuracy (Turquoise).
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Figure 4. Clustering variability of individuals that belong to Group I (cells in yellow), Group II
(Turquoise), and Group III (purple), depending on the extracting window length τ.

As seen for DBII ME, the intragroup similarity remains comparable in groups I and III
over the values of τ, while Group II has noticeable volatile behavior. This result may be
explained because of the low number of database subjects (only 14), making any exchange
seriously affect the intergroup distribution. In DBIII MI, the high subject variability that is
reflected by the functional connectivity extracted yields high changeability between groups,
at least for the PLV and CCF measures. Rather, the proposed GFC measure is less affected,
as seen at window values of 2 and 1.5 s. Further, groups II and III become scrambled,
meaning that the subject variability extracted at the shorter window lengths remains hard
to overcome.

The last aspect of the study is the interpretability of motor-related tasks as reliable
sources of neural responses in the assessed clusters of dynamic behavior (the groups are
denoted as I, II, and III).

Figure 5 presents the topographic channel plots (topoplots) that contain the relevant
activated scalp areas that are inferred from the extracted FC measures, principally con-
tributing to the discriminability between labeled motor-related tasks. We also include the
most relevant pairwise functional connectivity links between electrodes that are estimated
to fulfill the 99 percentile of the normalized relevance weights values (between 0 to 1)
computed from Equation (6). The background stands for the accumulated relevance that is
mapped to the channel positions. In DBII ME, only the SMR area is depicted according to
the electrode set configuration above-described.

PLV performs in DBII ME the first three plots in the top row. The topoplots reflect high
evoked response amplitudes that are densely spread over the SMR area, which means that
the PLV variability hampers the sparse feature selection framework to obtain a reduced set
of extracted FC features. Still, a few links surpass the 99 percentile, which enables some
information regarding the relevant electrodes. Contrary to this, the three topoplots that
are delivered by CCF (middle row) and GFC (bottom row) show low amplitudes of neural
activity in Group I, slightly increased activity of Group II, and increased amplitudes of the
worst-performing group of individuals (III). However, the latter FC measure clearly shows
two foci that are symmetrically located over each hemisphere, as expected in motor-related
tasks, at least for GI and, to a less extent, for GII. Besides, the amount of relevant links
estimated is low. Consequently, the sparse-based `2-norm framework enables the effective
dimensionality reduction of the extracted GFC features. Moreover, the accuracy using
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GFC assessed by every group of individuals outperforms the other compared functional
connectivity metrics: PLV and CCF.
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Figure 5. Spatial relevance mapped to topoplots estimated for each group of individuals from the FC measures (regarding
the relevance weights v and the classification accuracy). The normalized relevance weights values (between 0 to 1) are
computed from Equation (6). The background stands for the accumulated spatial relevance mapped to the EEG channel
positions. The colored links represent the normalized FC relevance weights that hold a value higher than the 99 percentile
of vector v. Above each plot, the average accuracy is shown over the corresponding group.

In DBIII ME, the full electrode montage is employed and, thus, the estimated neural
responses are all spread over the scalp, as seen in the three last topoplots of every row.
Likewise, the number of relevant links increases. Nonetheless, the compared FC measures’
performance has some similarities with DBII MI: PLV presents high background activity,
CCF has amplitudes with fewer amplitudes, and GCF achieves a very focalized activity
over the SMR hemispheres, which play a critical role in MI tasks. Once again, the proposed
GFC measure outperforms the values of accuracy attained by other compared FC metrics.
However, G III produces highly increased response amplitudes abnormally confined over
the frontal zone (outside the SMR zone) and numerous links going to different electrodes.
This issue may be explained because of acquisition artifacts, which may introduce noise
and distortions, severely damaging the EEG data quality.

5. Concluding Remarks

We introduce a single-trial kernel-based functional connectivity measure to deal
with inter/intra-subject variability in motor-related tasks. To this end, from the spatio-
temporal-frequency patterns, we extract the functional connectivity between EEG channels
through a novel kernel-based cross-spectral distribution estimator. Namely, the Gaussian
kernel is used to compute the pairwise kernel-based channel dependencies because of its
universal approximating ability. Further, we optimize the spectral combination weights
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within a sparse-based `2-norm feature selection framework matching the motor-related
labels to the extracted GFC features. The validation results that are accomplished in
three EEG databases (two with MI and one with ME) show that the proposed single-trial
connectivity measure allows for reaching very competitive classifier performance with less
affected values by feature extraction parameters like the tuning of sliding time window
length. The introduced connectivity measure does not demand a prior linear spatial
filtering as a preprocessing procedure and holds spatial and connectivity interpretation.
Additionally, the interpretation of subject clusters using our functional connectivity benefits
from understanding the inter/intra-subject variability in motor-related tasks. From the
obtained results, the following aspects are to be highlighted:

Selecting the sliding time window. The window length selected for extracting the EEG
dynamics over time is a pivotal parameter. From the results obtained, both contrasted
single-trial FC measures (Cross-Correlation Coefficient and Phase Lag Value) show several
fluctuations over the evaluated values of τ that diminish the performed accuracy, becoming
worse in databases with increased subject variability, as is the case of DBIII MI. On the other
hand, the proposed Gaussian Functional Connectivity measure enables accuracy estimates
that are less affected by the sliding time window and, thus, GFC allows for extracting the
subject’s dynamics more accurately within wider ranges of τ.

Prior spatial filtering versus to feed the concatenation of FC feature sets. Because of the
poor signal-to-noise ratio of scalp EEG measurements, the baseline CSP-based spatial
filtering is very frequently accomplished. Meanwhile, the evaluating results indicate that
the CSP effectiveness degrades noticeably as the inter/intrasubject variability increases.
Thus, a big partition of subjects in DBIII MI turns out to be below the BCI-inefficiency level.
These findings are according to the reported CSP variability from trial-to-trial [53], and the
subject-dependent choice of its extraction window [37].

One more restriction is that CSP is more oriented to power-based features [41], so that
its validity of the combination with PLV is questionable, as the achieved results definitely
indicate. The combination of CSP with CCF and GFC allows for enhancing the performed
accuracy, but in DBI MI and DBII ME with a relatively moderate number of subjects. The
testing of DBIII MI with the largest considered intra/inter-subject variability tends to
nullify CSP filtering before CCF feature extraction. Moreover, the proposed GFC measures’
performance improves if avoiding using the spatial filtering algorithm, which means
that FC feature sets’ straightforward concatenation is enough to feed the sparse-based
`2-norm feature selection framework. Table 1 displays the evaluated MI data’s accuracy
(i.e., DBI MI, and DBIII MI) using functional connectivity measures that have been reported
recently, noting that the proposed GFC approach provides very competitive classifier
performance values.

Table 1. Classifier accuracy comparison of approaches using functional connectivity features recently reported against
the Gaussian FC performance in discriminating MI tasks. Notation TSGSP is temporally constrained sparse group spatial
pattern, STR is space-time recurrence, and OPTICAL is Optimized CSP with long short term memory (LSTM). The best
value performed for each database is marked in bold.

Data Time Window Filter Band Interpretation Feature Extraction Accuracy (%)

D
BI

-M
I X X X TSGSP [54] 82.50 ± 12.2

- - X STR connectivity [30] 69.56±15.02
X - X Renyi’s α-entropy [55] 72.40 ± 6.50
X X X Proposed GFC 81.92 ± 9.44

D
BI

II
-M

I - X X CSP [56] 67.60 ± 13.17
X X - OPTICAL [57] 68.19 ± 9.36
- - X STR connectivity [30] 62.00 ± 13.00
X X X Proposed GFC 74.12 ± 12.13
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Interpretability of clustered functional connectivity patterns. We validate the suitability for
interpreting the extracted feature sets concerning the spatial networks that are assessed
by the introduced sparse feature selection framework. To achieve this particular aim,
we perform the clustering of the extracted FC measures together with the corresponding
accuracy outcomes into three partitions of individuals with similar FC dynamics that are
evoked by the motor-related tasks. This approach of clustering is increasingly accepted for
appraising the BCI-inefficiency. In this regard, the benefit of interpreting PLV sets seems
to be limited by its vulnerability to the subject variability, resulting in blurry topographic
channel representations. Besides, PLV provides the worst classifier performance. Rather,
the application of the CCF method results in topoplots with increased activity over the
SMR electrodes. However, the proposed GFC measure clearly represents two foci over
SMR electrodes that are symmetrically located over each hemisphere as expected in motor-
related tasks. At the same time, the accuracy using GFC assessed by every group of
individuals outperforms the other compared functional connectivity metrics. Therefore,
we hypothesize that the application of single-trial kernel-based functional connectivity for
evaluating motor skills is more promising.

The authors plan to enhance the Gaussian functional connectivity that was developed
for feature extraction as future work, allowing a better understanding of their impact
and interaction on BCI-related tasks. To identify potential non-learners, the efforts can
be directed toward a twofold aim: to enhance the feature extraction by profiting from
more elaborate methods for measuring multivariate similarity, like centered kernel align-
ment [58,59], and to explore the robust estimation approaches based on information metrics
(like correntropy) for dealing better with the variability [55,60,61]. Besides, modeling the
temporal-dependencies within each trail to compute the FC is an exciting research line.
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