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Abstract: Damage classification is an important topic in the development of structural health moni-
toring systems. When applied to wind-turbine foundations, it provides information about the state
of the structure, helps in maintenance, and prevents catastrophic failures. A data-driven pattern-
recognition methodology for structural damage classification was developed in this study. The
proposed methodology involves several stages: (1) data acquisition, (2) data arrangement, (3) data
normalization through the mean-centered unitary group-scaling method, (4) linear feature extraction,
(5) classification using the extreme gradient boosting machine learning classifier, and (6) validation
applying a 5-fold cross-validation technique. The linear feature extraction capabilities of principal
component analysis are employed; the original data of 58,008 features is reduced to only 21 features.
The methodology is validated with an experimental test performed in a small-scale wind-turbine
foundation structure that simulates the perturbation effects caused by wind and marine waves by ap-
plying an unknown white noise signal excitation to the structure. A vibration-response methodology
is selected for collecting accelerometer data from both the healthy structure and the structure sub-
jected to four different damage scenarios. The datasets are satisfactorily classified, with performance
measures over 99.9% after using the proposed damage classification methodology.

Keywords: structural health monitoring; principal component analysis; extreme gradient boosting;
machine learning; classification; wind-turbine foundation

1. Introduction

Structural health monitoring (SHM) allows identifying the states of structures to
prevent damage that can occur because of operational and/or environmental conditions.
It is possible to detect the beginning of a possible damage/failure in a structure and its
components using methods associated with SHM systems [1]. Damage identification
includes several levels including damage detection [2,3]. However, disturbances for robust
damage identification need to be considered using algorithms for data-driven strategies [4].
Damage detection under changing environmental and operational conditions (EOC)—as
in reality—is very complicated because the damage effects on the measured signals are
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masked by the EOC effects on the signals. The environmental conditions to which the
structure is subjected has a stochastic nature; hence, the aim is to develop reliable methods
for monitoring structures [5].

Wind power plants are a good example of systems exposed to environmental influ-
ences. Offshore wind power is clean energy that exploits high and uniform wind speed
conditions with even larger offshore wind turbines [6]. However, it is necessary to lower the
operations and maintenance (O&M) costs by anticipating potential wind-turbine damage.
Therefore, SHM systems are a helpful tool in the wind power industry that help provide
early damage alerts and reduce maintenance costs [7].

Recently, sensors and signal processing techniques have been successfully applied
for the analysis and evaluation of structures for obtaining significant and reliable results
when the state of structures is evaluated [8]. The EOC effects on signals can be filtered
or considered using pattern-recognition techniques. These data-based methods rely on
pattern recognition and artificial intelligence techniques to differentiate a healthy structure
from a damaged one.

Damage diagnosis for offshore wind-turbine foundations remains an open field of
research. Common SHM approaches are based on guided waves with a known input
excitation; however, in this type of structure, the applicability of guided waves is not
functional because external perturbation effects caused by wind and marine waves are
ignored. An approach based only on vibration-response accelerometer signals needs to be
considered to address the challenge of online and in-service SHM for wind turbines. Some
variants of the vibration-response-only SHM strategy for wind-turbine foundations have
been reported. Vidal et al. [7] developed a data-driven approach with the following four
stages: the wind is simulated as Gaussian white noise [9] and the data from accelerometers
are collected; the data are pre-processed via group-reshape and column-scaling; a feature
extraction approach based on principal component analysis (PCA) is used; and finally,
k nearest neighbors (kNN) and quadratic-kernel support vector machine (SVM) [10] are
tested as classifiers. The best classification accuracy is obtained using the SVM algorithm,
and it reaches 99.9%.

In contrast to the conventional data-driven SHM techniques, the deep learning ap-
proach has been demonstrated its successfully application to solve SHM problems [11,12].
An approach based on a deep learning strategy via convolutional neural networks (CNNs)
was presented in [13]. The deep learning approach is based on the signal-to-image conver-
sion of the accelerometer data to gray-scale multichannel images with as many channels
as the number of sensors in the condition monitoring system. Furthermore, it is based
on a data augmentation strategy to diminish the test set error of the deep CNN used to
classify the images. The CNN comprises seven convolutional layers performing feature
extraction, followed by three fully connected layers and a SoftMax block for classification;
an overall accuracy of 99.9% is obtained. Hoxha et al. [14] solved the identification and
classification damage problem in an experimental laboratory wind-turbine offshore jacket-
type foundation through a fractal dimension methodology that performs feature extraction
in a machine learning (ML) setting. kNN, quadratic SVM, and Gaussian SVM were used
as classifiers. The best algorithm was found to be the Gaussian SVM, which achieved a
classification accuracy of 98.7%.

This research seeks to solve the damage classification problem of in situ real struc-
tures exposed to strong changes in EOCs (e.g., offshore wind power plants) using ML
algorithms that use signals from sensor networks as inputs. The main goal of data-driven
algorithms is to analyze large or complex sensor networks that provide multivariate in-
formation using ML approaches. These complex sensor networks can be found in some
SHM solutions [15,16], classification of gases by means of electronic noses [17,18], and
classification of liquids by means of electronic tongues [19], among others. A common
problem for data-driven algorithms is that data captured by the network of sensors have a
high dimensionality [20], and therefore, algorithms are employed to handle and process
this large amount of information. Within the pattern-recognition process, the extraction of
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both linear and nonlinear characteristics reduces the dimensionality of the original data by
eliminating redundant characteristics and noise from the sensor signals [21]. Linear and
nonlinear manifold learning algorithms [22] can be used in the feature extraction stage and
as subspace learning algorithms [23] to minimize intraclass distances and maximize dis-
tances between classes in a clustering or cluster problem. This facilitates the classification
of the ML algorithm, which can be unsupervised, semi-supervised, or supervised.

Different strategies have been used to solve structural damage-detection problems.
There are traditional, machine learning methods with their parametric and non-parametric
variants and deep learning methods [24]. In 2020, Gardner et al. presents the power of
machine learning with methods such as compressive sensing and transfer learning to solve
different structural analysis [25]. In Chandrasekhar et al., a machine learning approach is
used to solve SHM in operational wind-turbine blades. This work uses Gaussian processes
(GPs) to predict the edge frequencies of one blade given that of another to identify the
healthy state of the blade [26]. A systematic review of machine learning algorithms in
structural health monitoring is presented in [27]. That work highlights the importance
of data manipulation in machine learning tasks, including topics as data cleaning and
feature engineering.

Previous studies focused on structural damage classification using multisensor sys-
tems; they used several ML algorithms and data reduction for pattern recognition. For
instance, PCA [28], self-organizing maps (SOM) [29], kNN [30], artificial immune systems
(AIS) [31], SVMs [32], and t-distributed stochastic neighbor embedding (t-SNE) [33,34].
This study presents a structural damage classification methodology for pattern recognition
and signal processing in sensor networks that achieves good classification performance
and advantages in calculation time to continue the improvement and development of
damage classification methodologies. This methodology is composed of different stages:
normalization of the signal considering the differences in magnitudes obtained by the
sensors; linear feature extraction; and dimensionality reduction via the PCA method to
form a feature vector that will serve as input to an extreme gradient boosting ML classi-
fier algorithm. This methodology was validated using a small-scale wind-turbine jacket
foundation. In addition, a 5-fold cross-validation procedure was performed to determine
the average classification performance measures of an unbalanced classification problem
showing excellent results.

The remainder of this paper is organized as follows. Section 2 describes the main
problem considered in the current work. Then, in Sections 3 and 4, the proposed SHM
strategy is described in detail. Section 3 lists the steps performed in the training data
preparation. Section 3 describes the small-scale wind-turbine foundation with all its parts,
the excitation system, sensors, and data acquisition process. Then, Section 4 describes the
XGBoost classifier as an ensemble method (Section 4.1). Section 5 summarizes the flow of
the real-time classification of a new observation from a wind turbine (WT) that must be
diagnosed. In Section 6, the obtained results are compiled, and they indicate exceptional
performance for all considered metrics. Finally, the main conclusions are presented in
Section 7, in addition to the future research directions.

2. Problem Statement

This study aims to provide an accurate structural damage classification methodology
that can specify whether a wind-turbine foundation is damaged; if it is damaged, the
methodology can detect the nature of the damage. The classification methodology is
derived by first obtaining a training set of data from both damaged and non-damaged
structures (data acquisition). These data are properly pre-processed (data normalization
and unfolding), and data transformation and dimensionality reduction techniques are
applied to discard features that are not relevant to the classification problem (linear feature
extraction). These new small-dimensional data are used as inputs to train the supervised
machine learning classifier. Once the classification methodology is employed, given a
new experimental sample of the wind-turbine foundation, the classification algorithm can
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predict the structural state of the foundation. Figure 1 illustrates the process used to obtain
the damage classifier.

TRAINING DATA PREPARATION

Data
acquisition

Data
normalization
and unfolding

(MCUGS)

PCA
(dimensionality

reduction)

Machine
learning

(XGBoost)

CLASSIFIER

INPUT:
new sample

OUTPUT:
damage

prediction

Figure 1. Structural damage classifier construction process.

Before using the classification algorithm to classify new data, it is crucial to evalu-
ate the performance of the algorithm. This evaluation is a challenging problem because
the available data samples must be used to define the classifier and estimate its perfor-
mance when making predictions of new samples. The training dataset and test set must
be sufficiently large and representative of the underlying problem so that the resulting
performance of the classifier is not too optimistic or pessimistic. In fact, if the collected
dataset is very large and representative, one can split the dataset into two parts and use the
first part to train the model and the second part to test it. However, this is rarely the case,
and it is standard to use a k-fold cross-validation error estimation method.

The basic idea of this procedure is to split the full dataset into k folds (or subsets). This
allows the generation of k models, each of which takes the data from k− 1 folds to train
the algorithm and use the remaining data to set its performance. The overall performance
of the model is calculated from the mean of the estimates of these runs (see Figure 2).
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Figure 2. Model validation using 5-fold cross-validation.

3. Data Preprocessing: Training Data Preparation

This section details and provides a theoretical background for each step of the training
data preparation developed in this work, as shown in Figure 1. The experimental setup is
described succinctly in Section 3.1.

3.1. Experimental Setup

The structure of a small-scale wind-turbine foundation is used to validate the damage
detection and localization methodology developed in this study. This benchmark struc-
ture, based on the one designed by Zugasti [35], was considered by Hoxha et al. [36],
Vidal et al. [7], and Puruncajas et al. [13] to validate different approaches for structural
damage detection and classification experimentally. The benchmark structure—placed
in the CoDAlab laboratory (Escola d’Enginyeria de Barcelona Est, Universitat Politècnica
de Catalunya, Barcelona, Spain)—is shown in Figure 3a; it is composed of three parts: (i)
the nacelle on the top, (ii) tower in the middle, and (iii) jacket on the bottom. The total
height of the structure is 2.7 m. The jacket was made of steel bars and bolts. A 5 mm



Sensors 2021, 21, 2748 5 of 29

crack was introduced at four different bars located in the jacket structure, one at a time. It
can be said that the 5 mm crack damage is small for this structure [35] and therefore hard
to detect. Summarizing, four different damage scenarios are considered in this study, as
shown in Figure 3b.

Data used to validate the structural damage classification methodology were obtained
using the following experimental process. First, an arbitrary function generator (GW
INSTEK AFG-2005) was used to apply a white noise signal to the structure. Four different
wind speeds were simulated by applying different amplitudes of the white noise signal
with factors of 0.5, 1, 2, and 3. Then, the white noise signal was amplified and applied to an
inertial shaker (GW-IV47 from Data Physics) located at the nacelle top beam to simulate
the external perturbation effects caused by wind and marine waves. This signal produces a
vibration response that is captured using eight triaxial accelerometers (PCB Piezotronics,
Model 356A17) with a sensitivity: (±10%) 500 mV/g (51 mV/(m/s2)). The location
of the eight sensors was determined using the Sensor Elimination by Modal Assurance
Criterion (SEAMAC) method [35], and their final location is shown in Figure 3a. Taking as
reference Figure 3b as the front view of the structure, below in Table 1 the location of each
of the 8 sensors is detailed. Finally, the data acquisition process was performed using a
cDAQ-9188 chassis from National Instruments and six NI-9234 modules, each of which
has four channels, thereby conforming to a total of 24 channel data acquisition systems per
time instant.

sensor 1

sensor 2

sensor 3

sensor 4sensor 5

sensor 6

sensor 7

sensor 8

(a) Sensor location in the structure

damage 1

damage 2

damage 3

damage 4

(b) Introduced damage in different links of the structure

Figure 3. Small-scale wind-turbine foundation.
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Table 1. Description of the eight sensors location in the structure.

Sensor ID Location

1 Joint between the shaker and nacelle top beam
2 Joint between the nacelle and tower
3 Joint between middle and bottom tubular section of the tower
4 Joint between the four bars in the upper left side of the jacket
5 Joint between the four bars in the lower left side of the jacket
6 Joint between the four bars in the upper central side of the jacket
7 Joint between the four bars in the lower right side of the jacket
8 Joint between the four bars in the lower central side of the jacket

3.2. Data Acquisition

Data were obtained by performing several experiments applying different white noise
signals to the small-scale wind-turbine foundation, both to the undamaged structure and
the four different damaged structures. Table 2 show the five labels associated with each
structural state, the number of tests per structure for a particular amplitude of the input
signal, and the total number of tests related to the four excitation amplitudes that simulate
the behavior of wind and marine waves (0.5, 1, 2, and 3, respectively). The total number
of experiments was 5740, divided into five classes. The data are slightly imbalanced
because the number of samples per class is not equal (2460 undamaged data samples
versus 820 samples per damage class). Therefore, special care should be ensured when
computing the performance measures of the classification algorithm.

Table 2. Labels, number of tests per amplitude and total number of tests for each structure.

Structural State (Class) Number of Tests (per Amplitude) Total Number of Tests (4 Amplitudes)

undamaged 615 2460
damage 1 205 820
damage 2 205 820
damage 3 205 820
damage 4 205 820

5740

Each test had a duration of 8.789 s using a sampling frequency of 275 Hz to acquire the
acceleration measures; 2417 time instant measures were obtained for each of the 24 sensors.

These collected data are arranged into a three-dimensional matrix of size n× L× N,
where n = 5740 stands for the total number of tests, L = 2417 stands for the number of
time measures, and N = 24 stands for the number of sensors (8 triaxial accelerometers), as
shown in Figure 4. For normalization purposes, sensor measures are grouped into n× L
matrices X1, X2, . . . , XN .
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Figure 4. Initial arrangement of the collected data for mean centering unitary group scaling.

3.3. Data Normalization: Mean-Centered Unitary Group Scaling

A prerequisite for most linear and nonlinear extraction techniques is obtaining mean-
centered data. This requires the columns of matrix Xk, k = 1, . . . , N to have zero mean
for each sensor. Because the data acquired in the wind-turbine foundation come from
several sensors, they can have different magnitudes; therefore, scaling the data is key
before analyzing it. Among all existing normalization techniques, the mean-centered
group-scaling method (MCGS) [19,37–39] demonstrated very accurate behavior.

The MCGS group-scaling technique is devised as a two-step procedure. First, the
columns of all matrices are modified by computing the mean of each column and sub-
tracting this mean from its corresponding column values. This procedure is also called
column-wise scaling [7,36]. For each sensor k = 1, . . . , N and time instant j = 1, . . . , L,
we define

µk
j = mean(colj(Xk)) =

1
n

n

∑
i=1

xk
ij, (1)

to be the mean of all measures acquired by sensor k at time instant j; xk
ij is the (i, j)th

element entry of matrix Xk, colj(Xk) is the jth column of matrix Xk, and it introduces the
mean-centered matrices X̆k defined as

colj(X̆k) = colj(Xk)− µk
j 1n,

where 1n denotes the all-ones n-dimensional column vector.
Then, the matrix X̆k is scaled by dividing all data by the standard deviation of all

sensor k measurements. Thus, the elements of X̆k are divided by

σk
MCGS = std(Xk) =

√√√√ 1
nL

n

∑
i=1

L

∑
j=1

(
xk

ij − µk
)2

,

where µk denotes the mean of all sensor k measurements, i.e., µk = (∑L
j=1 µk

j )/L.
In this study, a novel alternative to the MCGS scaling technique is considered to yield

normalized data with both sensor-block and global unitary standard deviation. The key
idea is to scale the mean-centered data using the standard deviation, i.e.,

σk
MCUGS = RMS(X̆k) =

√√√√ 1
nL

n

∑
i=1

L

∑
j=1

(x̆k
ij)

2 =

√√√√ 1
nL

n

∑
i=1

L

∑
j=1

(
xk

ij − µk
j

)2
, (2)
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where the standard notation for the (i, j)th element entry of matrix X̆k, x̆k
ij, is used. The

difference between MCGS and the new mean-centered unitary group-scaling technique
is the definition of the block standard deviation σk: the MCGS method subtracts the
global block mean value of the data, whereas the MCUGS subtracts the mean value of
the corresponding column. As mentioned before, the standard deviation of both the total
MCUGS normalized data and the data contained in each sensor block is 1. In engineering
applications where the mean values per column µk

j are nearly constant in a block and

therefore close to µj, MCGS and MCUGS produce nearly equal normalized data. However,
in applications where the mean values per column have large variations, the final standard
deviation of the MCGS method may not be close to 1.

For simplicity, the MCUGS matrices X̆k are renamed simply as Xk; in other words, the
matrix values xk

ij are redefined without changing the notation as xk
ij := (xk

ij − µk
j )/σk

MCUGS.

3.4. Data Unfolding

After normalizing the data, the three-dimensional matrix experiments × time instants ×
sensors is rearranged into a two-dimensional matrix experiments × (time instants × sensors).
The sensor matrices Xk are placed one after another so that the data are collected into a
single n× (L · N) matrix.

X = (X1, X2, . . . , XN). (3)

Each row of matrix X is an L · N = 2470× 24=58,008 vector that contains the data
associated with a particular test (2470 times instances per 24 sensors). The ith row of matrix
X that collects the information of all sensors for the ith test is

rowi(X) = (x1
i1, x1

i2, . . . , x1
iL, x2

i1, x2
i2, . . . , x2

iL, . . . , xN
i1 , xN

i2 , . . . , xN
iL), i = 1, . . . , n = 5740. (4)

These rows (5740 rows describing 58,008 features) are the input samples for the feature
extraction technique described in Section 3.5 for obtaining transformed samples with a low
number of features that will be the input of the data-driven classification methodology.
The process of data arrangement, normalization, and unfolding is illustrated in Figure 5.

te
st

s
(n

)

time (L)

X1 X2
XN−1 XN

sensors (N)

MCUGS
X̆k

σk
MCUGS

µk
1 µk

2 µk
L

unfolding
X̆1 X̆2 · · · X̆N

X

n

L · N

Figure 5. Initial data arrangement, MCUGS, and unfolding.

3.5. Data Transformation and Data Reduction: Feature Extraction

Let X ∈ Rn×D, where D = L · N denotes the total number of features of the data and
is the matrix that collects all samples defined in Equation (3). Feature extraction techniques
aim to discover a low-order model of dimension d � D, which properly represents the
variability of X, thereby eliminating redundancies. The aim is to determine a reduced
d-dimensional manifold described by the transformed matrix Y ∈ Rn×d retaining most of
the information or variance of the original matrix X, where the variance of a matrix (which
coincides with its squared Frobenius norm) is defined as

var(X) = trace(X>X) = ‖X‖2
F.
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The PCA is one of the most effective techniques for-dimensionality reduction. This
technique discovers linear manifolds that characterize the data by diagonalizing the covari-
ance matrix C = 1

n−1 X>X = UΛU>, where the diagonal terms of Λ are λ1 > λ2 > · · · >
λD, and retaining only d eigenvectors of the decomposition yields

Y = X col1..d(U),

where the matrix col1..d(U) contains only the first d columns of matrix U associated with
the d eigenvectors with the largest eigenvalues. Because the total variance is given by the
sum of all eigenvalues multiplied by n− 1,

var(X) = (n− 1)
D

∑
i=1

λi,

and since

var(Y) = (n− 1)
d

∑
i=1

λi,

it is straightforward to compute the value of the variance retained by the PCA method as

d
∑

i=1
λi

D
∑

i=1
λi

.

In general, linear and nonlinear manifold learning algorithms are based on the idea
that the high dimensionality of the dataset is artificial, and that the samples are charac-
terized by a low-dimensional manifold (or subspace) embedded in a high-dimensional
space [40]. Manifold learning algorithms are used to identify these meaningful low-
dimensional structures in the data, which provides a small number of relevant features
that serve as input for the machine learning classification algorithms.

Manifold learning techniques introduce a transformation or map f from RD to Rd

such that the new samples are defined by yi = f (xi). To this end, samples associated
with the original and low-dimensional model are denoted as x>i = rowi(X) ∈ RD—where
rowi(X) stands for the ith row of matrix X— and y>i = rowi(Y) ∈ Rd for i = 1, . . . , n,
respectively. In the current application, the PCA method is recovered by setting f to be the
linear transformation given by yi = f (xi) = x>i col1..d(U).

The d components of the vector yi are the features Fj, j = 1, . . . , d, which are inputs of
the classifier described in Section 4. The d features associated with the ith sample are

Fi
j = y>i ej, (5)

where ej ∈ Rd is the jth vector of the canonical basis.

4. Damage Detection and Classification Procedure: Extreme Gradient Boosting

This section explains the main characteristics of the XGBoost classifier. First, a de-
tailed explanation of the XGBoost classifier as an ensemble method (providing a forest of
regression trees) is provided, followed by a description of the main XGBoost parameters
(see Section 4.2). Finally, Section 4.3 presents the validation procedure for evaluating the
performance of the classifier.

4.1. XGBoost as an Ensemble Method

Currently, one of the most popular and accurate machine learning classifiers is the
extreme gradient boosting technique (XGBoost) [41]. The gradient boosting method [42]
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can improve speed and performance. This section briefly describes the main characteristics
of the XGBoost method. Readers are referred to [41,43] for fully detailed explanations.

The XGBoost method is an ensemble method that involves sequentially creating and
adding regression trees. New trees are created to correct the errors in the predictions from
the existing set of trees, which boosts the attributes that lead to the misclassification from
the previous tree. Thus, multiple trees are built on top of each other to correct the errors in
the previous tree. The XGBoost classifier thus provides a forest of regression trees, where
the prediction of the forest is a weighted average of the predictions of its trees.

XGBoost exploits the limit of computational resources in the gradient boosting decision
tree algorithm [42]. The boosting approach employs random sampling to train several
classifiers, and then, the classifiers are assembled to synthesize a higher-performance
classifier [44]. Boosting assigns a weight to each observation and modifies the weight after
training a classifier. Observations with modified weights are employed to train the next
classifier. In addition, the gradient boosting method focuses on the gradient reduction of
the loss function in the previous tree-trained models. XGBoost is a scalable tree boosting
system that exploits a weighted quantile sketch for approximate tree learning [41].

Some important characteristics that make the XGBoost classifier one of the best classi-
fier algorithms are the use of inbuilt cross-validation, which handles missing values; the
use of regularization to avoid overfitting in the model; a novel tree learning algorithm for
handling sparse data; save resources and time with a cache access pattern mechanism; and
incorporate sharding and data compression.

The use of the XGBoost technique for multiclass classification purposes is shown here
for a particular example of a sample composed of 3 classes, {C1, C2, C3}; four features
{F1, F2, F3, F4} (continuous real values); and a forest obtained using an ensemble of two
boosting rounds (see Figure 6). In the first round of the XGBoost method, one regression tree
per class is trained {T11, T12, T13}. Unlike in decision trees, each regression tree produces a
continuous score on the ith leaf.

Given a new sample to be classified, the decision rules in each tree are used to produce
a set of three raw scores (one per class) {rs11, rs12, andrs13}, which are then transformed
into probability values {p11, p12, andp13} using the SoftMax function. This in turn yields a
(first-round) class prediction cp1 as

p1i =
ers1i

ers11 + ers12 + ers13
, i = 1, 2, 3,

cp1 = argmax
i=1,2,3

{p1i} ∈ {1, 2, 3}.

Predictions obtained in this first round are used to train the second round of trees in
the forest, thereby obtaining a new regression tree per class {T21, T22, T23}. After applying
the decision rules in each tree, it produces a set of three raw scores {rs21, rs22, andrs23}. The
computation of the probability per class based on the two-round forest is computed by first
adding the raw score values per class , i.e., rsi = rs1i + rs2i. Then, the SoftMax function is
used to obtain the probability of class membership and a new (second-round and final)
class prediction cp2 as

pi =
ersi

ers1 + ers2 + ers3
, i = 1, 2, 3,

cp2 = argmax
i=1,2,3

{pi} ∈ {1, 2, 3}.

The same technique applies if more boosting rounds are added. If the XGBoost
technique provides a forest {Tji}j=1,...,R, i=1,...,l where R denotes the number of boosting
rounds and l denotes the total number of classes, given a sample, the row scores per
class/tree are computed {rsji}j=1,...,R, i=1,...,l and added to obtain a final score per class
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{rsi}i=1,...,l . The final score is then transformed to the probability of class membership
{pi}i=1,...,l to obtain a final class prediction cp as [45]:

rsi =
R

∑
j=1

rsji, i = 1, . . . , l, (6)

pi =
ersi

l
∑

j=1
ersj

, i = 1, . . . , l, (7)

cp = argmax
i=1,...,l

{pi} ∈ {1, . . . , l}. (8)

Consider the specific example given in Figure 6, and a specific sample with features
F1 = 10.24, F2 = 3.57, F3 = 5.02, and F4 = 2.38. In this case, the decision rules of the forest
predict that this sample is associated with the leaves {2, 4, 2} of the first round and to the
leaves {2, 4, 6} of the second round. Therefore, the class prediction of the sample is C3
based on the computations listed in Table 3.

Table 3. Classification of the sample with features F1 = 10.24, F2 = 3.57, F3 = 5.02 and F4 = 2.38 based on a two-round
forest (Figure 6). The final score per class is then transformed to probability of class membership to obtain a final class
prediction (cell with gray background).

First-Round Scores Second-Round Scores Final Scores per Class Final Probabilities

rs11 = −0.22 rs21 = −0.20 rs1 = −0.42 p1 = 0.20
rs12 = −0.20 rs22 = −0.15 rs2 = −0.35 p2 = 0.21
rs13 = 0.40 rs23 = 0.29 rs3 = 0.69 p3 = 0.59

F3<2.45
leaf=0.43

leaf=-0.22

F3<2.45
leaf=0.30

leaf=-0.20

F3<2.45
leaf=-0.22

F4<1.75
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leaf=-0.20
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leaf=-0.19

F3<4.85
leaf=0.28

leaf=-0.15

F4<1.65
F3<4.95

leaf=0.40

leaf=-0.22

leaf=0.22

F3<4.75
F4<1.55

F4<1.75 leaf=0.06

leaf=0.29
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Figure 6. Forest of R · l = 2 · 3 = 6 trees, where R = 2 is the number of boosting rounds and l = 3 is the number of classes.
Given a specific sample with features F1 = 10.24, F2 = 3.57, F3 = 5.02, and F4 = 2.38, the decision rules of the forest predict
that this sample is associated with the leaves {2, 4, 2} of the first round and to the leaves {2, 4, 6} in the second round.

In addition to the great classification power of the XGboost method, the final classifier
provides two relevant additional benefits. The first benefit is that for a given sample,
the XGBoost classifier not only provides a prediction for the class of the sample, but also
provides a probability-like measure of the sample belonging to each class category. From
Equation (6), given a sample, the XGBoost classifier returns

• Class prediction cp = argmax
i=1,...,l

{pi};
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• Probability associated with the predicted class pmax = max
i=1,...,l

{pi};

• Probability associated with each class {p1, p2, . . . , pl}.
This additional information can be used to assess the reliability of the prediction

(values of pmax close to 1 provide very reliable predictions) and to show the behavior
of the classifier when discriminating between classes (for values of pmax not close to 1,
the probabilities associated with each class serve as additional information on possible
alternative class predictions).

The second extra benefit is that the random forest provides estimates of the feature
importance automatically. The more an attribute is used to make key decisions with
decision trees, the higher is its relative importance. More details can be found in ([45],
[Section 10.13.1]).

4.2. XGBoost Parameters

The performance, complexity, and overfitting properties of the XGBoost method de-
pend on the proper tuning of the hyperparameters. The best model should balance the
model complexity with its predictive power. This tuning can be performed via experimen-
tation or by using specific routines (Python scikit-learn gridsearchCV, for instance).

A brief description of the main XGBoost parameters used in this study is provided
here. The parameters can be set into categories as shown in Table 4; it is important to
highlight that in this work, any non-described parameter is set to its default value.

The first category of general parameters guides the overall function of the classifier. The
most important parameter in this category is the booster parameter that defines the type of
model (tree-based or linear model).

Table 4. Description of the key parameters used for XGBoost classification.

Parameter Value Default Description
General Parameters

booster gbtree type of learner (tree-based model)
Learning Task Parameters
objective multi:softmax multiclass classification/predicted class

multi:softprob multiclass classification/predicted probabilities
num_class N number of classes

seed Z seed used to generate the folds (reproducibility)
random_state Z seed for the random number generator (reproducibility)

Booster Parameters
n_estimators N 100 number of trees grown per class (rounds)
max_depth N none maximum depth of the trained decision trees

learning_rate (0,1] 0.3 learning rate or shrinkage parameter
reg_alpha [0, ∞) 0 L1 regularization in the objective loss function

reg_lambda [0, ∞) 1 L2 regularization in the objective loss function
subsample (0,1] 1 fraction of observations to be subsampled

colsample_bytree (0,1] 1 fraction of features to be subsampled

In the second category, learning task parameters, we find the parameters that specify
the learning task and corresponding learning objective. In particular, we set the value
of objective to be multi:softmax to predict the class of each data sample or multi:softprob
to predict the probabilities of each data sample belonging to each class category, and
the number of classes is defined by the parameter num_class. Once the probabilities are
computed, the results of multi:softmax can be directly obtained by selecting the class with a
higher probability, as shown in Section 4.1. Two relevant parameters in this category are the
seed and random_state parameters. The output of the XGBoost method is a random forest,
and as the name indicates, randomness is introduced in the process to avoid overfitting (for
instance, when growing the trees, randomness on the selected training samples, and feature
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selection is introduced). Setting specific values for random seeds allow for reproducibility
of the results. However, picking a convenient seed may result in over-optimistic results.
Therefore, the seed should only be fixed for reproducibility and not to increase performance.

The final category corresponds to the booster parameters that guide the individual
booster trees at each step. The three main parameters controlling the complexity of the final
random forest are n_estimators, max_depth, and learning_rate. The n_estimators parameter
determines the number of trees to grow per class (number of rounds); therefore, the final
number of trees in the forest is n_estimators times the number of classes. The max_depth
parameter controls the maximum depth of each decision tree. The maximum number of
nodes in the forest is n_estimators× num_class× 2max_depth. Increasing this value increases
the complexity of the model and makes it more likely to overfit because it allows the model
to learn very specific relations for certain samples. Finally, the learning_rate parameter or
shrinkage parameter is analogous to the learning rate in gradient-boosted models. The
learning rate corresponds to how quickly the error is corrected from each tree to the
next, and it is a simple constant learning_rate ∈ (0, 1]. The raw scores obtained in each
boosting round rsji are weighted by learning_rate to add smaller corrections in each round;
therefore, small learning rates slows down the learning and makes the boosting process
more conservative. Another set of interesting parameters in this category is reg_alpha and
reg_lambda, which introduce L1 and L2 regularization terms in the convex loss function to
avoid overfitting (see [41]). Increasing these values makes the model more conservative.
Finally, the parameters subsample and colsample_bytree control the fraction of items to be
subsampled to train a particular tree. Every time a new tree in the random forest is trained,
the algorithm selects a random sample from the complete training dataset and a random
subset of the features to train the tree. The subsample parameter is the ratio of training
instances to be selected; that is, if subsample= 0.8 at each boosting iteration, the classifier
randomly selects 80% of the training samples to train the trees in this round. Furthermore,
the colsample_bytree parameter is the fraction of features to be sampled randomly for each
tree. The default value of 1 indicates no subsampling. Lower values make the algorithm
more conservative and prevent overfitting.

4.3. k-Fold Cross-Validation and Unbalanced Classification Performance Measures

It is crucial to evaluate the performance of the machine learning model on unseen
data. A test dataset with new instances must be available to check the correctness of the
predicted classes for evaluating the performance of a model. In multiclass classification
problems (problems where each input sample must be classified into one, and only one,
non-overlapping class), each sample from the test dataset has a class label that is compared
to the predicted class label. A measure of correctly or incorrectly recognized classes must
be defined.

Therefore, model validation has two key points:

(1) how to define the test and training datasets so that no overfitting occurs (i.e., that no
too-optimistic estimates are obtained); and,

(2) how to define the performance/accuracy measure from the correctness/incorrectness
of the predicted classes.

k-fold cross-validation is one of the most used techniques to determine the training and
test data sets when a limited amount of data is available. This is because it avoids overfitting
and results in a less biased or less optimistic estimate of the model skill compared to a
simple train/test split [46]. In this study, a 5-fold cross-validation is used as the resampling
procedure to evaluate the XGBoost model (see Figure 2).

Each fold of the cross-validation procedure provides a measure of the performance
of the classification algorithms, i.e., {A1, A2, . . . , A5}; the total predicted performance is
given by its mean

Ā = (A1 + A2 + · · ·+ A5)/5.
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The standard deviation of these performance measures can also be computed as

σĀ =

√√√√ 5

∑
i=1

(Ai − Ā)2/5.

A large standard deviation σĀ indicates that the performance measures Ai, i = 1, . . . , 5
are far from its mean Ā. This suggests that samples were not selected appropriately or that
the method was too subsample-dependent.

In general, the classification performance for a given fold is defined by specific mea-
sures of the confusion matrices (see details below). Although this is not the approach used
in this work, it is common practice to obtain the total performance by first adding the five
confusion matrices associated with each fold directly and then computing the performance
of the total matrix, despite the performance measures being nonlinear.

Specific performance measures used in the present work are described as follows:
Given the classification results associated with a fold, the correctness of the classification
method associated with this fold is evaluated by first computing the number of correctly
recognized class samples (true positives, TP), the number of correctly recognized samples
that do not belong to the class (true negatives, TN), and samples that either were incorrectly
assigned to a class (false positives, FP) or that were not recognized as class samples (false
negatives, FN). This information is summarized in a multiclass confusion matrix [7,47].
Indeed, let {C1, C2, C3, C4, C5} denote the five class labels associated with the experiment
(undamaged, damage 1, damage 2, damage 3, and damage 4, respectively), and Cij denote
the number of samples belonging to class Ci, which have been classified as belonging to
class Cj. This information can be stored in the confusion matrix listed in Table 5.

Table 5. Multiclass confusion matrix. The colored cells correspond to the true positive (green), true
negatives (cyan), false negatives (orange) and false positives (magenta) associated with the C4 class.

Predicted Class
Class C1 Class C2 Class C3 Class C4 Class C5

A
ct

ua
lC

la
ss Class C1 C11 C12 C13 C14 C15

Class C2 C21 C22 C23 C24 C25
Class C3 C31 C32 C33 C34 C35
Class C4 C41 C42 C43 C44 C45
Class C5 C51 C52 C53 C54 C55

Then, for a given class Ci, we denote by tpi, tni, fni, and fpi, the number of samples
that, with respect to class Ci, are TPs, TNs, FNs, and FPs, respectively; these are computed
from the confusion matrix as

tpi = Cii, tni =
l

∑
k=1
k 6=i

l

∑
j=1
j 6=i

Ckj, fni =
l

∑
j=1
j 6=i

Cij, fpi =
l

∑
k=1
k 6=i

Cki,

where l denotes the total number of classes or labels, i.e., l = 5 in the present work. In
addition, following [47], we introduce the performance measures associated with class Ci as

accuracyi =
tpi + tni

tpi + tni + fni + fpi
,

precisioni =
tpi

tpi + fpi
,

recalli =
tpi

tpi + fni
,

specificityi =
tni

tni + fpi
,
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and

F1-scorei = 2
Precisioni × recalli
precisioni + recalli

=
2tpi

2tpi + fni + fpi
,

where tpi + tni + fni + fpi coincides with the total number of tested samples (n/5 = 1148
for a specific fold or n = 5740 if the global added confusion matrix is considered).

The quality of the classification strategy for the fold is assessed in this case because
of data imbalance, which uses macro-averaging global performance measures that treat
all classes equally instead of favoring the larger ones. Global measures are computed by
averaging the measures obtained in each class, namely

accuracy =
1
l

l

∑
i=1

accuracyi,

precision =
1
l

l

∑
i=1

precisioni,

recall =
1
l

l

∑
i=1

recalli,

specificity =
1
l

l

∑
i=1

specificityi,

F1-score = 2
precision× recall
precision + recall

,

the global F1-score measure is not computed by averaging the per-class F1-score measures
but by using the global precision and recall measures.

The final overall performance measure of the classifier is obtained by computing the
average and standard deviation of the five-fold performance measures.

5. Proposed Methodology: Real-Time Structural Damage Diagnose

Sections 3 and 4 describe the training and validation of the XGBoost classifier using the
samples obtained from the experiments under different white noise signals and different
structural states. However, the described strategy can be used for real-time damage
detection. Given a new sample associated with a specific wind turbine, a fast real-time
prediction of the structural state of the structure can be performed.

In this context, an offline strategy is adopted. In the offline stage, the baseline data (set
of initial samples used to generate the XGBoost classifier) was used to determine the pre-
trained XGBoost classifier. The offline stage stores the MCUGS normalization parameters,
the PCA projection matrix selects the relevant features, and the classifier is given in the form
of a forest regression tree. This information is then used in the online stage for real-time
classification of a new observation. A flowchart of the proposed approach to illustrate
how the SHM strategy is applied when a new wind turbine (WT) should be classified is
depicted in Figure 7.

Given a new single observation of the wind turbine to be diagnosed that contains
signals measured by the N = 24 sensors during the L = 2417 time instants, we construct a
new data row vector z> unfolded as any of the rows of matrix X in Equation (4), i.e.,

z> = (z1
1, z1

2, . . . , z1
L, z2

1, z2
2, . . . , z2

L, . . . , zN
1 , zN

2 , . . . , zN
L ).

The collected data were first normalized using the pre-stored MCUGS parameters (the
mean µk

j and the standard deviation σk
MCUGS given in Equations (1) and (2), respectively),

which produced the normalized raw vector z̆> defined as
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z̆k
j =

zk
j − µk

j

σk
MCUGS

, k = 1, . . . , N, j = 1, . . . , L.

The normalized data were then projected using the pre-stored PCA projection matrix
to select the relevant features to be used in the XGBoost classifier. z̆> is projected onto the
vector space spanned by the first d principal components stored in the matrix col1..d(U)
using the vector-to-matrix product

y> = z̆>col1..d(U) ∈ Rd.

y> is a d-dimensional vector that is the projection of z> into the PCA model. The
components of this vector are the d features Fj = y>ej, j = 1, . . . , d, which are the inputs of
the XGBoost classifier; see Equation (5).

PCA

real-time classification

o!ine trained model

L time steps
L x N

n

L x N

sensor #1 sensor #24

transformation

1

2

1

2

3

4

1

2

3

4

1

2

1

2

3

4

1

2

3

4

5

6

classifier

features

unfolding

MCUGS col1..d(U)

XGBoost

normalization reduction

training

normalization projection

baseline data

data from WT to be diagnosed

classification

probability

Figure 7. Flowchart of the proposed methodology of real-time structural damage diagnosis to classify a new wind turbine
(WT). Data from a structure were first normalized and then projected into the PCA model. Finally, XGBoost is applied to
obtain a class prediction and probability of class membership.

As shown in Section 4.1 and in Table 3, features Fj associated with the wind turbine to
be diagnosed are directly inserted into the forest classifier, which returns a set of probabilities
{pi}i=1,...,l , where l denotes the total number of different structural states and pi denotes the
probability that the sample belongs to the structural state i. Thus, the real-time classification
strategy provides the following: (1) the structural state/class prediction cp; (2) the related
probability of class membership pmax used for reliability (we can associate a higher or
lower level of confidence in our decision based on the value of pmax); and (3) probability
associated with each of the other structural states.

The problem considered in the present work is related to real-time structural damage
diagnosis and classification. A closely related problem is the early detection of incipient
damage (prognosis). Prognosis methodologies contribute a predictive maintenance option
that provide the decision-maker the flexibility to determine whether and when to act
before the structure is severely damaged [48]. To this goal, instead of a structural damage
classification problem, anomaly detection can be considered. In the case of anomaly
detection, a similar approach can be used to classify the structure as healthy or not healthy.

6. Results

The results of damage detection and classification for small-scale jacket-type wind
turbines are presented in this section. More precisely, Section 6.1 shows the time-history
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raw signals measured by the accelerometers and the corresponding normalized signals.
Section 6.1 emphasizes the existing differences between MCGS and MCUGS. The MCUGS
normalization technique is a novel technique introduced for the first time in this study.
Section 6.2 describes the data transformation and data reduction using PCA results, which
are key steps prior to the final classification. A detailed analysis of the capabilities and
limitations of PCA to discriminate between different structural states are presented in
Section 6.2. Finally, the results of damage detection and classification in terms of the
confusion matrices and the averaged performance measures are presented in Section 6.3,
along with a reliability study of the classification results.

6.1. Data Normalization: Raw Signal vs. MCUGS Signal

Figures 8 and 9 show random samples of data collected in matrix X (see Equation (3))
before and after normalization. Two samples associated with the undamaged structure
with minimum and maximum amplitudes are shown in Figure 8.
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Figure 8. Raw signal (left) versus MCUGS signal (right) for two undamaged samples (amplitudes 0.5 (top) and 3 (bottom).
Raw signals (blue) are shown along with the mean values µk

j (green) and the representation of the standard deviations

µk
j ± σk

MCUGS (cyan) and µk
j ± σk

MCGS (magenta). The normalized data have zero mean (yellow) and unitary deviation (red).
Dashed vertical lines separate the measures of the 24 sensors.



Sensors 2021, 21, 2748 18 of 29

–5

0

5

10 10-4 damage 1 - amplitude 1 

–5

–4

–3

–2

–1

0

1

2

3

4

5
damage 1 - amplitude 1 

–5

0

5

10 10-4 damage 2 - amplitude 2 

–5

–4

–3

–2

–1

0

1

2

3

4

5
damage 2 - amplitude 2 

–5

0

5

10 10-4 damage 3 - amplitude 0.5

–5

–4

–3

–2

–1

0

1

2

3

4

5
damage 3 - amplitude 0.5

–5

0

5

10 10-4 damage 4 - amplitude 3

–5

–4

–3

–2

–1

0

1

2

3

4

5
damage 4 - amplitude 3 

Figure 9. Raw signal (left) versus MCUGS signal (right) for four damaged samples. Raw signals (blue) are shown along
with the mean values µk

j (green) and the representation of the standard deviations µk
j ± σk

MCUGS (cyan) and µk
j ± σk

MCGS
(magenta). The normalized data have zero mean (yellow) and unitary deviation (red). Dashed vertical lines separate the
measures of the 24 sensors.
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Raw unpreprocessed data containing the values of the acceleration over time for each
sensor (recall that the values per sensor are placed one after another with a total of 24 blocks)
are shown along with its associated normalized MCUGS signal. The MCGS normalized
signal is not seen because it is nearly equal to the MCUGS signal. The raw data are shown
along with the time evolution of the mean value of all samples per time and sensor µk

j .
The mean value is nearly a piecewise-constant function (nearly constant per sensor), i.e.,
µk

j ≈ µk; therefore, the MCGS and MCUGS provide nearly identical normalized data. In
addition, the values of the standard deviation of the raw data, shown in the graphics as
µk

j ± σk
MCUGS and µk

j ± σk
MCGS, are obtained. Because µk

j ≈ µk, the values for the MCGS
and MCUGS standard deviations are nearly indistinguishable. The resulting MCUGS
normalized data have zero mean, and both unitary block and global deviation. The same
information is shown in Figure 9 for a random sample of each damaged structure. For the
damaged structures, the mean value is nearly a piecewise-constant function; therefore, the
MCGS and MCUGS behave similarly. At first sight, only the normalized data for the third
type of damage seem to behave differently.

6.2. Data Transformation and Data Reduction: Feature Extraction

The PCA is applied to the data matrix X ∈ Rn×D in Equation (3), where the number of
samples is n = 5470 and the number of features is D = 58,008, to select the d most relevant
features (d principal components). Figure 10 shows the cumulative explained variance
retained by the PCA method, i.e., ∑d

i=1 λi/ ∑D
i=1 λi when varying the values of d, thereby

characterizing the retained linear manifold.
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Figure 10. Cumulative explained variance of the PCA model when varying the number of principal
components. d = 5, d = 14 and d = 21 components account for 29%, 49%, and 53% of the variance.

The number of principal components needed to retain a relevant amount of variance
is considerably high (d = 311 components are required to account for 75% of the variance).
However, we show that the use of the XGBoost classifier allows the accurate classification
of data, thereby considering only very few components of the PCA decomposition.

Figure 11 shows the first three PCA components of the three-dimensional manifold
computed from the initial normalized MCUGS data as

Y = X col1..3(U).

The first two components distribute the samples in a radial configuration; different
radii represent different excitation amplitudes—, where the undamaged and damaged
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samples cannot be clearly separated. The third component clearly separates the samples
from the third damaged structure, and it distributes the other samples at different heights.
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Figure 11. Projection onto the first three principal components of the data in matrix X: first two principal components (left),
third principal component (middle), and three-dimensional view (right) of the first three principal components.

The benefit of using the XGBoost classifier is that the ensembles of decision trees
also provide an estimate of how useful or valuable each feature is in the construction of
the boosted decision trees within the model in addition to it being a very competitive
technique to classify the data. Figure 12 shows the feature importance of the first 26
principal components.

The most relevant feature for this problem is the third PCA component, followed by
the 4th, 5th, 20th, and 21st. Figure 13 shows the most relevant PCA components selected
by the XGBoost classifier. The first principal components are not always the best option
for detecting and classifying damage, as suggested by Mujica et al. [49]. In this case,
when compared to Figure 11, the 4th and 5th or the 20th and 21st components seem to
better separate the data. Furthermore, once the relevant features are depicted, the most
challenging separation task is to classify the samples associated with undamaged and
damaged 1-type structures appropriately.
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Figure 13. Projection onto relevant principal components of the data in matrix X in Equation (3): 4th and 5th principal
components (top) and 20th and 21st principal components (bottom). The two figures on the bottom right are zoomed in.

6.3. Extreme Gradient Boosting and 5-Fold Cross-Validation

Once the relevant features are extracted using PCA, the transformed data

Yd = X col1..d(U) ∈ Rn×d

were used as the input to the 5-fold cross-validation procedure to train and test the XGBoost
classifier random forests. As described in Figure 2, the data are first subdivided into five
folds, and five separate XGBoost classifiers are trained and tested using the corresponding
subsamples. The parameters of the XGBoost classifier were tuned using Python scikit-learn
gridsearchCV to achieve a certain compromise between performance results and model com-
plexity. Increasing the complexity of the random forests (e.g., larger values of n_estimators
or m_depth) yields more accurate classification results; however, it generates overfitted
models. The optimal XGBoost parameters used to train all models are summarized in
Table 6.

Figure 14 shows the performance measures obtained by averaging the performance
measures (accuracy, precision, recall, specificity, and F1-score) of each fold when varying the
retained number of principal components (d) used as input feature matrix for the XGBoost.
The effectivity index associated with each measure Ā ∈ [0, 1], defined as ρ = 1− Ā, is
depicted. Since a perfect classification corresponds to Ā = 1, the best results are obtained
when ρ is close to zero. A jump in the quality of the classifier is obtained when using
up to 5 and 21 principal components as input features, which is in good agreement with
the feature importance measures provided by the XGBoost classifier (see Figure 12). In
addition, taking d = 14 provides very good results.
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Table 6. XGBoost parameters.

Parameter Value

booster gbtree
objective multi:softmax/multi:softprob

num_class 5
seed 27

random_state 42
n_estimators 200
max_depth 3

learning_rate 0.1
reg_alpha 0.1

reg_lambda 1
subsample 0.7

colsample_bytree 0.3

Number of principal components in PCA (d)
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Figure 14. Averaged performance metrics versus the number of retained principal components in
the PCA model (semi-logarithmic plot in the vertical axis). The vertical axis represents the effectivity
index, i.e., one minus the performance measure.

Specific performance measures Ā± σĀ obtained for d = 5, d = 14, and d = 21 are
listed in Table 7.

Table 7. Averaged performance measures of the XGBoost classifier when varying the number of principal components d
along with its associated standard deviation.

5 PCA Components 14 PCA Components 21 PCA Components

Accuracy 0.99860627± 0.00049276 0.99951219± 0.00027875 0.99979094± 0.00017070
Precision 0.99614306± 0.00139273 0.99875525± 0.00085294 0.99959326± 0.00045093

Specificity 0.99906633± 0.00030626 0.99965960± 0.00021238 0.99983739± 0.00013901
Recall 0.99620531± 0.00149676 0.99847088± 0.00094042 0.99943089± 0.00058063

F1-score 0.99617413± 0.00142646 0.99861287± 0.00079226 0.99951207± 0.00040777
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Very good performance metrics are obtained even when only 5 features are used to
classify the samples. For values larger than or equal to 21 principal components, a nearly
perfect classification is obtained. For the parameters described in Table 6, considering
d = 21 yields only three misclassified samples out of 5470, while for d = 27, a perfect
classification is obtained.

Tables 8–10 summarize the total added confusion matrices associated with the three
specific values d = 5, 14, and 21.

Table 8. Total added confusion matrix for d = 5. Correct decisions are placed in cells with green
background while wrong decisions are placed in cells with red background.

Predicted Class
Undamaged Damage 1 Damage 2 Damage 3 Damage 4

A
ct

ua
lC

la
ss undamaged 2454 6 0 0 0

damage 1 6 807 7 0 0
damage 2 0 1 819 0 0
damage 3 0 0 0 820 0
damage 4 0 0 0 0 820

Table 9. Total added confusion matrix for d = 14. Correct decisions are placed in cells with green
background while wrong decisions are placed in cells with red background.

Predicted Class
Undamaged Damage 1 Damage 2 Damage 3 Damage 4

A
ct

ua
lC

la
ss undamaged 2459 1 0 0 0

damage 1 3 815 2 0 0
damage 2 0 1 819 0 0
damage 3 0 0 0 820 0
damage 4 0 0 0 0 820

Table 10. Total added confusion matrix for d = 21. Correct decisions are placed in cells with green
background while wrong decisions are placed in cells with red background.

Predicted Class
Undamaged Damage 1 Damage 2 Damage 3 Damage 4

A
ct

ua
lC

la
ss undamaged 2459 1 0 0 0

damage 1 2 818 0 0 0
damage 2 0 0 820 0 0
damage 3 0 0 0 820 0
damage 4 0 0 0 0 820

The confusion matrices confirm the observations of most relevant XGBoost features
of the data in Figure 13. The third and fourth types of damaged samples (labels damage
3 and damage 4) are easily separated from the other samples. These samples are perfectly
classified in three cases: d = 5, d = 14, and d = 21. Increasing the number of features
allows for better separation of the second type of damage. For d = 21, only one undamaged
sample and two damaged 1 samples are incorrectly classified.

The small-scale jacket-type wind turbine is a benchmark structure for testing, val-
idating, and comparing different damage-detection approaches. Vidal et al. [7] used a
combination of PCA and quadratic SVM for damage classification of the same structure
and the same types of damage. The same benchmark structure was considered in [13,14],
but with different types of damage. The overall performance of these approaches is ex-
cellent. However, in comparison to the approach in the present work, two points must
be considered.

• Vidal et al. [7] consider 443 principal components that account for 85% of the variance,
while we consider 5, 14 or 21 principal components. This represents a data reduction
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(leading to reduced memory requirements) of 98.87%, 96.84%, or 95.26%, respectively.
The extent of the data reduction is even more significant if we compare the 5, 14 or 21
principal components with respect to the 58,008 columns in matrix X in Equation (3).
In this case, it represents a data reduction of 99.99%, 99.98% or 99.96%, respectively.

• In this study, when d = 5 and d = 14 principal components have been considered,
a perfect classification is obtained for damage 3 and damage 4. Damage 2 is also
classified perfectly when d = 21. However, the only perfectly classified structural
state in [7] is damage 4.

The confusion matrices presented in Tables 8–10 summarize the overall performance
of the proposed approach with respect to the actual and predicted classes. However, one of
the benefits of the XGBoost classifier is that it provides a probability-like measure of the
sample belonging to this predicted class pmax along with the probabilities associated with
the other class membership {pi}i=1,...,5. Therefore, the reliability of the prediction can be
assessed based on these probabilities.

Figure 15 depicts a probability-like measure associated with the predicted class pmax
in cases d = 14 and d = 21, for all 5470 samples (ordered in ascending order of probability).
The misclassified samples (7 and 4 respectively) are highlighted in red. A high level of
confidence is assigned to most classification results considering d = 14 and d = 21 features
to classify the samples. 95.94% and 98.4% of the samples are classified with a probability
larger or equal than 0.95, respectively. Furthermore, all but one of the misclassifications
are associated with probabilities smaller than 0.8. In fact, in the case d = 21, the three
misclassified samples are associated with the three smaller probabilities. Furthermore, for
d = 21, 99.77% of the samples were (correctly) classified with a probability greater than or
equal to 80%. Similarly, 90.02% of the samples were classified with a probability greater
than or equal to 99%.

As a complement to Figure 15, Figure 16 depicts the probability distribution for the
13 samples with smaller assigned probabilities, pmax < 0.8. The first three columns are
associated with the three samples that are incorrectly classified (sample tags 4927, 1719,
and 540, respectively). These samples coincide with the samples with the minimum values
of pmax. Although the class prediction is incorrect in these three cases, the actual class is
associated with the second maximum probability.

• The sample in the first column (undamaged) is wrongly classified as damage 1 with a
pmax = 51%, while the probability associated with the actual class is p1 = 28%.

• The sample in the second column (damage 1) is wrongly classified as undamaged
with a pmax = 55%, while the probability associated with the actual class is p2 = 45%.

• The sample in the third column (damage 1) is wrongly classified as undamaged with
a pmax = 56%, while the probability associated with the actual class is p2 = 42%.

• Nine columns (1, 2, 3, 4, 5, 6, 7, 9, and 10) are associated with samples where the clas-
sifier detects both characteristics of the undamaged and damage 1 structures and
manages to detect the predominant class in 6 of the nine cases.

• Four of the columns (8, 11, 12, and 13) are associated with samples where the classifier
detects both characteristics of damage 1 and damage 2 structures, even though it
correctly detects the predominant class (correct prediction) in all cases.
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Figure 15. Probability associated with the predicted class pmax (d = 14 in the left and d = 21 in the right) for all samples
ordered in the ascending order of probability pmax. The misclassified samples are represented in red along with the sample
number and actual class tags.
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7. Conclusions and Future Work

A vibration-response-only damage detection and classification methodology was pro-
posed for the SHM of supporting structures of offshore wind turbines. The approach was
tested on a small-scale laboratory setup with five different structural states: an undamaged
structure and a 5 mm crack at four different bars. The developed SHM methodology that
combines data preprocessing, a dimensionality reduction via PCA and a machine learning
classification stage through XGBoost method has a remarkable performance, even for a
small retained cumulative proportion of variance.

The main conclusions of this work are:

• Data Preprocessing: includes data acquisition, data normalization (using MCUGS
for the first time) taking into account the differences in magnitude obtained by the
8 triaxial accelerometers attached to the jacket-type wind-turbine foundation, and
data unfolding.

• Data transformation: a dimensionality reduction stage is applied to perform feature
extraction and reduce the bid data obtained with the sensors using PCA. The selection
of the number of principal components is done according to the average classification
accuracy obtained with the methodology. The best results were obtained when
considering 21 principal components as relevant features, which only account for 53%
of the variance and represents a 99.96% of data reduction.

• Damage Detection and Classification: the machine learning model is designed to define
XGBoost hyperparameters (general parameters, learning task parameters, and booster
parameters). These parameters play a fundamental role in improving the model perfor-
mance while avoiding overfitting. The XGBoost classifier manages to classify nearly all
samples appropriately (only three out of 5470 samples are misclassified).

• The estimation of class membership probabilities allows the assignment of a high
level of confidence to most results (only 13 samples are classified with a probability
smaller than 0.8, and 98% of the samples are classified with a probability larger than
0.95). This provides unambiguous results. For samples in which a clear classification
is not obtained, the probability distribution provides a better insight into the type of
structure associated with the sample (usually two classes are indicated by the classifier
as possible predictions).

• Online Monitoring: the proposed methodology can process new data using the
MCUGS normalization parameters, the PCA projection matrix and the XGBoost
classifier for real-time classification of a new observation.

Future work is expected to focus on two main areas. Nonlinear manifold learning
techniques will be explored to increase the separability capacity of the dimensionality
reduction stage before entering the classifier; further, the possibility of combining both
linear and nonlinear feature extraction techniques will be studied. This research line is
addressed to better identify low-dimensional manifolds present when the data include
nonlinear behaviors. The developed damage classification methodology will be tested in
more complex and realistic structures.
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The following abbreviations are used in this manuscript:

AIS Artificial immune systems
CNN Convolutional neural networks
EOC Environmental and operational conditions
fn False negative
fp False positive
kNN k nearest neighbors
MCGS Mean-centered group scaling
MCUGS Mean-centered unitary group scaling
ML Machine learning
O&M Operations and maintenance
PCA Principal component analysis
RNN Recurrent neural networks
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