
sensors

Article

On the Functional and Extra-Functional Properties of IMU
Fusion Algorithms for Body-Worn Smart Sensors

Nils Büscher 1,*, Daniel Gis 1, Volker Kühn 2 and Christian Haubelt 1

����������
�������

Citation: Büscher, N.; Gis, D.;

Kühn V.; Haubelt, C. On the

Functional and Extra-Functional

Properties of IMU Fusion Algorithms

for Body-Worn Smart Sensors. Sensors

2021, 21, 2747. https://doi.org/

10.3390/s21082747

Academic Editor: Fernanda Irrera

Received: 12 March 2021

Accepted: 9 April 2021

Published: 13 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Applied Microelectronics and Computer Engineering, Faculty of Computer Science and Electrical
Engineering, University of Rostock, 18051 Rostock, Germany; daniel.gis@uni-rostock.de (D.G.);
christian.haubelt@uni-rostock.de (C.H.)

2 Institute of Communications Engineering, Faculty of Computer Science and Electrical Engineering,
University of Rostock, 18051 Rostock, Germany; volker.kuehn@uni-rostock.de

* Correspondence: nils.buescher2@uni-rostock.de

Abstract: In this work, four sensor fusion algorithms for inertial measurement unit data to determine
the orientation of a device are assessed regarding their usability in a hardware restricted environment
such as body-worn sensor nodes. The assessment is done for both the functional and the extra-
functional properties in the context of human operated devices. The four algorithms are implemented
in three data formats: 32-bit floating-point, 32-bit fixed-point and 16-bit fixed-point and compared
regarding code size, computational effort, and fusion quality. Code size and computational effort
are evaluated on an ARM Cortex M0+. For the assessment of the functional properties, the sensor
fusion output is compared to a camera generated reference and analyzed in an extensive statistical
analysis to determine how data format, algorithm, and human interaction influence the quality of the
sensor fusion. Our experiments show that using fixed-point arithmetic can significantly decrease the
computational complexity while still maintaining a high fusion quality and all four algorithms are
applicable for applications with human interaction.

Keywords: sensor fusion; fixed-point arithmetic; hardware restrictions; AHRS algorithms; human
interaction

1. Introduction

Inertial sensors using the Micro-Electro-Mechanical Systems (MEMS) technology
have become the de-facto standard for inertial measurement units (IMU) in consumer
electronics [1]. Furthermore, due to their capabilities and energy efficiency, they are also
predestined for gesture- and activity recognition, health monitoring [2], smart clothes, or
remote devices powered through energy harvesting.

For the named applications, oftentimes, smart sensor hubs or sensor nodes (In the
following, we use the term smart sensor to refer to these types of devices) are used which
incorporate not only the inertial sensors but also a microcontroller (µC) and interfaces to
preprocess, fuse, and analyze the captured data [3]. Integrating all functions in a System
in Package (SiP) yields many benefits. The preprocessing and sensor fusion can directly
be done on the smart sensor, which can result in a reduced communication overhead and
the possibility to have independently working components that can easily be used for
different purposes.

Additionally, a further decrease in power consumption is possible depending on the
specific application. Taking, for example, a body worn sensor with a 100 mAh battery that
measures and transmits data via Bluetooth Low Energy (BLE) and consumes 12 mA. If a
preprocessing can reduce the required supply current of the transmission by 3 mA and
increase consumption of the µC by only 1 mA, the overall system would consume 2 mA
less and therefore the sensor can run 100 min longer before the battery is depleted.

However, regardless of the system architecture, the used µCs are often limited re-
garding their computational power and memory size to reduce the power consumption.

Sensors 2021, 21, 2747. https://doi.org/10.3390/s21082747 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1568-5423
https://doi.org/10.3390/s21082747
https://doi.org/10.3390/s21082747
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21082747
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21082747?type=check_update&version=2

Sensors 2021, 21, 2747 2 of 21

For example, a Cortex M0+ requires up to 5.9 mA [4] while a more powerful Cortex M3
requires up to 27 mA [5]. In particular, complex sensor fusion algorithms with a high
Output Data Rate (ODR) can easily reach or exceed the limits of the smaller µC.

In this work, we study the suitability of four widely used sensor fusion algorithms to
determine the orientation of a body-worn device in a hardware restricted environment and
the aim for a low power consumption.

Our experiments show that using fixed-point arithmetic for the sensor fusion can
drastically reduce the computational effort while still rendering the algorithms usable in
most cases. Furthermore, we observed that the memory requirements are not affected
significantly by the different data formats. To determine how much the used algorithms and
data formats influence the quality of the fusion results, an extensive statistical Gage R&R
analysis has been conducted. Moreover, as reference, we used a camera-based approach to
determine the true performed motion. The results of the analysis showed that all filters are
applicable for the usage in devices with human interaction.

This work is organized as follows:
After discussing related work in Section 2, background information about the used

hardware and algorithms as well as details about the data formats and statistical analysis
method are given in Section 3. Afterwards, in Section 4, the extra-functional properties’
code size and computational effort are evaluated. Subsequently, Section 5 covers first a
general analysis of the sensor fusion results and then a statistical analysis of the sensor
fusion results. Finally, Section 6 concludes the findings of this work.

2. Related Work

The work at hand uses four sensor fusion algorithms to determine the orientation of a
device. These types of methods are often referred to as Attitude and Heading Reference
System (AHRS) algorithms commonly used in conjunction with aviation or aerial vehi-
cles [6,7]. The evaluation has been conducted with an extended Kalman filter, the Madgwick
filter [8,9], the Mahony filter [10], and a complementary filter [11].

In the past, there have already been multiple studies which compared the computed
fusion results of these algorithms quantitatively. For instance, in [12], a comparison
between Kalman filter, Mahony filter, and Madwick filter is coming to a similar conclusion
as us that the Madwick filter and Manhony filter are well usable in hardware limited
environments. Evaluations are both done in a simulation and with real recorded data.

Other works confirming the usability of the complementary filter based sensor fusion
in comparison to a Kalman filter are shown in [13,14]. Both works compare a Kalman
filter and a complementary filter and conclude that both types of filters are usable and
comparable. In [13], it is stated that the complementary filter is easier to calibrate because
it has fewer parameters. Both works carry out a direct comparison of two or more sen-
sor fusion algorithms for the orientation and come to the consistent conclusion that the
complementary filter based approaches are not inferior to the Kalman filters.

In contrast to the previous mentioned works, it is concluded in [15] that the Kalman
filter is superior compared to the Madgwick or the Mahony filter. The comparison in [15]
is done for multiple movements speeds using a robotic arm as a reference. Although it is
concluded that the Kalman filter is better, the differences of the measurements are quite
small. The error of Madgwick filter and Mahony filter are on average only 0.4° higher than
the error from the Kalman filter for an overall average error of 3.4°. The differences are quite
likely due to the usage of a different measurement system including different assumptions
about the conducted movement speeds and scenarios. Additionally, the impact of using
a robotic arm with very abrupt but linear movements does not allow a direct conclusion
about the filter behavior when the movement is conducted by humans. In the work at
hand, the movements are more fluent and more diverse than with a robot.

In comparison to our study, the above-mentioned papers do not investigate different
data formats. Moreover, they do not conduct a statistical analysis on the filter quality,
which is of particular importance when studying natural movements. Finally, they do not

Sensors 2021, 21, 2747 3 of 21

directly analyze extra-functional properties like computational effort and codes size as it is
done in our work at hand.

Other works examine the usability of complementary filter based approaches to be
used in body-worn sensory and health care applications. This emphasizes the need for
algorithms with low hardware requirements and the usability of complementary filter
based approaches. In [16], a novel approach for a complementary filter is presented
especially tailored for the usage in body-worn sensory with limited hardware capabilities.
An evaluation has been done with a motion capturing system to determine the precision of
the proposed algorithm. In conclusion, Ref. [16] states that the proposed complementary
filter is usable for the usage in body-worn sensors, which confirms the findings of the
work at hand. Furthermore, in [17], a head-mounted system for fall detection has been
proposed using the Madgwick filter to calculate the orientation of the head mounted device.
The authors state that the Madwick filter is used because of its lower computational effort
and the fact that it does work well with low update frequencies and does not need an
initialization phase. However, in contrast to our work, these two approaches again do not
systematically study extra-functional properties.

3. Background and Methods

Before the evaluation of the functional and extra-functional properties of the sensor
fusion algorithms are described in Sections 4 and 5, this section will provide general
information about the used sensor fusion algorithms, data formats, hardware, and the
implementation. This information is viable to put the results and interpretations in the
correct context. Additionally, these sections describe the methods used to assess the
extrafunctional properties and functional properties of the fusion algorithms.

3.1. Used Algorithms

For the investigation of the AHRS sensor fusion algorithms, the four most widely
used algorithms to determine the orientation of a device, namely the Madgwick filter,
the Mahony filter, an extended Kalman filter and the complementary filter, have been
chosen. The implementations of the extended Kalman filter as well as the complementary
filter use the method described in [18] to determine the orientation from accelerometer
data and magnetometer data to avoid the usage of computationally expensive trigonomet-
ric functions.

Complementary Filter

The complementary filter is the most basic filter used in this work. It takes advantage
of the fact that the data from the gyroscope are more precise in higher frequencies and the
data from the accelerometer are more precise in lower frequencies. The complementary
filter applies a low-pass filter to the orientation calculated from the accelerometer data
and a high-pass filter to the orientation calculated from the gyroscope data [11]. Both
orientations are then combined via a weighted addition seen in Equation (1):

qt = (1− α) · qacc − α · qgyr (1)

The orientation quaternion qacc is extracted from the data of the accelerometer using
the method described in [18]. The orientation qgyr is the last orientation qt−1 updated by
the current angle rates of the gyroscope. This filter uses single parameter α that is used to
define the weighting between accelerometer data and gyroscope data.

Mahony Filter

The Mahony Filter is an enhancement of the complementary filter by applying a
proportional-integral controller (PI controller) to the error function between the orientation
from the accelerometer data and the orientation from the gyroscope data. Therefore,
the Mahony filter provides good results while still being computationally inexpensive.
The integral part of the controller is able to reliably remove a constant offset caused by

Sensors 2021, 21, 2747 4 of 21

biased accelerometer or gyroscope data. This filter has two parameters to tune the results,
the factor for the proportional part Kp and factor for the integral part Ki. The proportional
and integrated errors are calculated for each axis of the gyroscope input. The correction
from the PI Controller is also applied to the gyroscope input data. The correction step
can be seen in Equation (2), which shows the correction of the angle rate for one of the
three axes:

angleratecorrected = anglerate + errorp · Kp + errori (2)

errori = errori + errorp · Ki · dt (3)

The proportional error errorp is calculated as the sum of the cross product between the
gravity vector estimated by the orientation that was updated by the gyroscope data and
the gravity vector measured by the accelerometer. The integral error errori is calculated
using Equation (3) by integrating the proportional error errorp multiplied with Ki and the
sampling period dt.

The corrected angle rate angleratecorrected is then used to update the current orientation.

Madgwick filter

The Madgwick filter is also loosely based on the concepts of the complementary
filter but uses a gradient descent algorithm to calculate the orientation error and fuse the
orientation from the accelerometer data and the orientation from the gyroscope data. This
filter uses a single β parameter used for the steepness of the gradient descent algorithm.
The correction of the orientation using the β parameter is shown in Equation (4):

qt = qt−1 + (updategyr − β · S) · dt (4)

The value updategyr is the rate of change quaternion calculated from the gyroscope
data. The corrective step quaternion S is calculated from the current orientation and the
data from the accelerometer using a gradient descent algorithm. The corrected update step
for the orientation is multiplied by the sampling period dt before being added to the last
orientation qt−1.

Kalman Filter

The Kalman filter is the most computationally expensive filter used in this investi-
gation. Theoretically, the Kalman filter is an optimal error estimator for linear problems
with Gaussian noise [19,20]. For its calculation, the Kalman filter uses multiple matrices
and vectors. The vector x contains the state of the system, while the matrix P contains the
co-variance matrix for the state variables. The matrices A and H describe the dynamics of
the system. The matrix A is the state transition matrix to predict the next step. In the case
of an extended Kalman filter, this matrix has to be calculated at every update step using a
linearization method. The matrix H describes the sensor input. The matrix R describes the
measurement noise and the matrix Q describes the noise of the system. Both R and Q are
the main matrices used to calibrate the Kalman filter.

The Kalman filter is a recursive filter which works in two steps. In the first step,
the current state is predicted using the previous state variables and their uncertainties. The
prediction step is shown in Equations (5) and (6):

x−t = xt−1 · A (5)

P−t = A · Pt−1 · AT + Q (6)

The state vector x−t contains the prediction of the next state. The matrix P−t is the
predicted co-variance of the next state.

The prediction phase is followed by the correction phase described in Equations (7)–(9):

Kt = P−t · H · (H · P−t · H
T + R)−1 (7)

Sensors 2021, 21, 2747 5 of 21

xt = x−t + K · (zt − H · x−t) (8)

Pt = (I − Kt · H) · P−t (9)

In Kt is the Kalman gain of the current step. The Kalman gain Kt calculated in
Equation (7) is used in Equation (8) to calculate the next state using the predicted state x−t
and the sensor input vector zt. The co-variance Pt is calculated in Equation (9) using the
predicted co-variance matrix P−t and the Kalman gain Kt. The matrix I is a unit matrix.

3.2. Quaternion Representation

All algorithms described in Section 3.1 estimate the orientation of the inertial sensor
system using the quaternion representation. Quaternions are widely used in sensor fusion,
computer graphics, and navigation. Other commonly used representations are Euler angles,
rotation matrices, or axis-angle.

Compared to rotation matrices, the quaternion representation needs fewer values
to represent a rotation. When used for sensor fusion, a key benefit of quaternions is
the existence of methods to smoothly interpolate between two orientations via linear
interpolation and the more precise spherical linear interpolation (SLERP) [21].

Euler angles suffer from gimbal lock or ambiguities [22]. This problem is not apparent
for quaternions. Additionally, in contrast to Euler angles, the quaternions also do not
require trigonometric functions for their computation, making them suitable for the usage
on small µC.

Another important benefit of quaternions is the fact that they are normalized to a
length of 1 to represent an orientation. Knowing the range of values of the input data, it
is possible to determine the required position of the radix point to avoid overflows and
retain the highest possible precision when using fixed-point arithmetic. Mathematically,
quaternions can be seen as a four element vector q = (w, x, y, z) with the scalar part w and
the values x, y and z representing the rotation. For later use in this work, qw will be defined
as the w element of the quaternion q.

3.3. Data Formats

Depending on the target hardware the used data format can have a significant in-
fluence on the computational complexity of an algorithm. This is especially the case for
floating-point data used on hardware that does not natively support floating-point opera-
tions. This is particularly true for the hardware used in this work as described below in
Section 3.4. In the following, we describe the data formats used in our study.

3.3.1. Single Precision Floating-Point

By default, most of the sensor fusion algorithms are implemented using a floating-
point data representation. This is also the case for the four examined filters. Floating-point
data have the benefit of being able to both store very large and very small numbers
using a combination of an exponent and a fraction. Therefore, floating-point numbers
have significantly higher ranges than fixed-point numbers of the same bit-length. Single
precision floating-point numbers have an 8-bit exponent and a fraction of 23 bits, which
is the limit for their precision. The downside of floating-point numbers is that they need
more effort for all arithmetic operations. Even for a simple addition, both values have
to be first transformed to have the same exponent before the addition can be done [23].
Afterwards, the result of the addition has to be normalized, otherwise the precision of the
data would degenerate with every arithmetic operation. This increased complexity makes
floating-point numbers difficult to use in a hardware restricted environment.

3.3.2. Fixed-Point Numbers

As the name suggests, fixed-point data have the radix point fixed at a certain bit
position, independent of the value that is stored in the fixed-point number. Their biggest
advantage compared to the floating-point numbers is the lower computational effort

Sensors 2021, 21, 2747 6 of 21

needed for mathematical operations. In particular, additions and subtractions are very
efficient. Multiplications need additional shift and optional rounding operations but are
still more efficient than floating-point multiplications [24]. The downside of fixed-point
arithmetic is that the range of data and precision of the data are reciprocal to each other.
A higher range of the stored numbers results in a lower precision and vice versa. Using
fixed-point numbers is the preferred way for a hardware restricted environment, such
as smart sensors. Due to the interplay of range and precision, it has to be evaluated if
fixed-point numbers are applicable for the targeted scenario.

3.4. Used Hardware

The hardware used for the measurement is a BMF055 smart sensor by Bosch Sen-
sortec [25]. The BMF055 uses the SAM D20 microcontroller, an ARM Cortex M0+ µC from
Atmel running at a frequency of 48 MHz [4]. It has a 32-bit architecture with two pipeline
stages and is optimized for low power consumption. Important for the evaluation of the
extra-functional properties of the algorithms are two key properties of the sensor:

• The SAM D20 contains a single cycle hardware multiplier for 32-bit integer numbers,
which means that addition and multiplication take the same time.

• The SAM D20 does not have hardware support for floating-point numbers. All
floating-point operations have to be emulated in software resulting in higher execution
time and power consumption.

The gyroscope of the BMF055 is similar to the BMI055 with a range of up to ±2000°/s
and a data width of 16-bit [25,26]. The accelerometer is similar to the BMA280 with a
maximal range of ±16 g and a data width of 14-bits [25,27]. The magnetometer is similar
to the BMM150 with resolution of 0.3 µT and a data width of 13-bits [25,28].

The µC requires a supply current of around 1 mA while idling and up to 5.9 mA under
full load. The whole BMF055 requires a supply current of up to 13.7 mA when using all
sensors with an ODR of 100 Hz in normal mode and an average of 2.6 mA when running
in low power mode.

3.5. Analysis of Extra-Functional Properties

The analysis of the extra-functional properties has been conducted on the real hard-
ware described in Section 3.4. The extra-functional properties are separated into the code
size, including RAM and ROM memory and the computational effort, measured as the
computation time needed to update the orientation with new sensor data.

3.5.1. Code Size

For the evaluation of the extra-functional properties, the code size of the algorithms
and the average computation time required to update the orientation from new IMU data
were analyzed for the Cortex M0+ µC described in Section 3.4. The compilation has been
done with the GNU C compiler with the -O0 optimization option and release mode with
-O3 set for a fair comparison.

To see how much space the four fusion algorithms need on the µC, the compilation
outputs have been analyzed with the size tool from the GNU ARM Embedded Toolchain
for the size of the binary code that is installed on the flash memory (ROM) and required
size of data needed to be held in the SRAM for variables and functions stack.

3.5.2. Computational Effort

For the computational effort, all algorithms were executed and evaluated on a real
device using the Sensor-in-the-Loop (SiL) architecture from [29] using a set of prerecorded
human motion data to ensure comparable results. The software of the smart sensor has
been adapted to process previously recorded data injected from a host computer via a
debug interface into the µC and process it as if the data were delivered by the inertial
sensors. This method makes it possible to use exactly the same data for all algorithms
and data formats and thus ensures a high comparability of the measurements while still

Sensors 2021, 21, 2747 7 of 21

executing the software directly on the targeted hardware. The setup for the measurement
can be seen in Figure 1.

Figure 1. Measurement setup for the assessment of the computation time of the sensor fusion algorithms.

To measure the computational effort of the algorithms, the host computer sends the
sensor samples to the sensor. The smart sensor sets an output pin of the µC to -high- when
the data arrived and the execution of the algorithm starts and resets the pin to -low- as soon
as the algorithm finishes. Said pin has been connected to a high frequency oscilloscope
which records the state of the pin and sends the data to the host computer for later analysis.
The time required by µC to toggle a pin has been measured previously and has been
taken into account for the analysis. This method allows us to measure the time the fusion
algorithm requires to update the orientation for each new sensor sample. For the analysis,
both the average time to update the orientation and the variance of the required time have
been examined and will be discussed below.

3.6. Analysis of Functional Properties

The evaluation of the quality of the output of the four orientation filters was done
using an external reference as ground truth against which the result of the sensor fusion
was compared. The external reference was gathered using the method described in [30,31].
Said method records a pattern via a camera and uses the captured images to calculate the
relative orientation between camera and pattern via image analysis using the OpenCV
library [32]. A smartphone with a user interface was used to instruct the user about the
desired movement and record the pattern similar to [31]. For the investigation, the smart
sensor was rigidly attached to the pattern and was then moved in front of the static camera,
which recorded the pattern during the measurement. It is important to note that the sensor
movements are conducted by a person following an on-screen guide. That way, each
experiment has been performed with similar but not identical movements. This is the
reason why a sophisticated statistical analysis is done in Section 5.2. On the other hand, this
way, our experiments are valid for movements that could be tracked by body-worn sensors.
Figure 2 displays the steps executed to obtain and compare sensor data and reference data.

As a first step, the data from both sources were captured simultaneously and stored
for the subsequent investigation. For both data sets, the relative orientation change to
the start of the measurement is calculated. Using the relative orientation rather than the
absolute orientation enabled us to conduct a direct comparison between the orientation
without the need to transform both orientations into a common world coordinate system.

The next step of the evaluation was a cross correlation of the timestamps of the data
from both sources. This step is necessary because the sensor and camera system run
independently of each other and might use different time bases for their timestamps and
might show a clock drift.

Sensors 2021, 21, 2747 8 of 21

Figure 2. Data flow of the measurement setup. Steps involving the camera data are colored orange.
Steps involving the sensor fusion result are colored blue. The resulting error is colored in gray.

Finally, the reference data from the camera had to be resampled to allow for a direct
comparison with the data from the sensor fusion.

The error between output orientation of the filters and the reference orientation is
calculated as the minimal angle. This is the rotation around an arbitrary axis to transform
the output orientation into the reference orientation. The formula to calculate the error angle
can be seen in Equation (11). The result qDi f f is the difference quaternion between the
reference and the filter output. As shown in Equation (10), qDi f f is calculated as the result
of the quaternion multiplication between qRe f and the conjugate of the qFilter quaternion:

qDi f f = qRe f · conjugate(qFilter) (10)

error = 2 · atan(qDi f fw) ·
180
π

(11)

To calculate the average error between reference and sensor fusion result, the mean
square error was utilized.

Filter and Measurement Parameters

The measurement of the sensor data has been done with a sampling frequency of
200 Hz. The image data for the reference were captured at 30 Hz. The gyroscope was
configured to a sensitivity of ±2000°/s maximal angle rate resulting in a resolution of
0.061°. The accelerometer was configured to a maximal acceleration of ±16 g resulting in a
resolution of 0.0048 m/s2.

All filters have been configured to work optimally with previously conducted cali-
bration measurements. The parameters chosen below are described in Section 3.1. The
complementary filter used an α value of 0.97. This parameter is close to an α of 0.98 often
used for a complementary filter. The Mahony filter uses a value of 1.05 for the proportional
part Kp and a value of 0.2 for the integral part Ki of the PI controller. The Madgwick filter
uses a β value of 0.115. For both the Mahony filter and the Madgwick filter, the chosen
values are close to the original values used from Madgwick [9]. For the Kalman filter,
the process noise matrix Q uses a value if 0.1 for the entries in the principal diagonal. The
measurement noise matrix R uses a value of 50.0 for the entries in the principal diagonal.
The 0.1 for the R matrix was determined using the typical noise stated in the data sheet of

Sensors 2021, 21, 2747 9 of 21

the gyroscope [26]. The Q values were determined empirically since they depend on the
expected strength of the movement done by the user.

3.7. Statistical Analysis

For a more in depth analysis of the influence of the different sensor fusion algorithms
and data formats, a statistical analysis of the results has been conducted. For this purpose,
the statistical methods used in a Gage R&R analysis have been utilized to estimate how
much differences between measurements are influenced by different factors. In a traditional
Gage R&R analysis, these factors are the tested part, the person testing the part, and the
repetition of the measurement [33,34]. In this work, these methods have been adapted in the
statistical analysis to assess the influence of the used algorithm, data format, and movement
speed, respectively.

4. Results: Extra-Functional Properties

A key aspect of the sensor fusion algorithms that are examined in the work at hand
are their extra-functional properties. These properties include the computational effort,
code size, and configurability of the used sensor fusion algorithms. Especially in the
context of resource limited hardware like smart sensors, the computational effort as well
as the code size determine whether an algorithm can be used as is, is only usable with
a limited functionality, or is not usable at all. This section will discuss the code size and
computational complexity in terms of response time and throughput of the four sensor
fusion algorithms implemented with the three used data formats. Before conducting the
analysis of the extra-functional properties, it has been ensured that all algorithms are
functional with all three data formats. An in depth analysis of the functional properties,
namely the quality of the sensor fusion, will be discussed later in Section 5.

4.1. Code Size

The code size has been determined for each combination of fusion algorithm and data
format. The results are shown and discussed in this section. Since none of the used fusion
algorithms uses active memory allocation or recursive functions, the output of the compiler
can directly show the needed memory size of the algorithms. The sizes of the binary file in
the flash memory are displayed in Figure 3.

0

5000

10,000

15,000

20,000

32 Bit floating-point 32 bit fixed-point 16 bit fixed-pointSR
A

M
 r

eq
ui

re
m

en
t i

n
B

yt
e

Memory size required in Flash

Kalman Madgwick Mahony Complementary

Figure 3. Size of data that needs to be stored in the flash memory (ROM).

It can be seen that there is no huge difference between the data formats. The floating-
point implementation and 16-bit fixed-point implementation are about the same size, with
the 32-bit fixed-point implementation being slightly bigger. However, there is a significant
difference in size between the Kalman filter and the other filters. This is mainly due to
the matrix operations needed for the Kalman filter, which needs both more code and
slightly more SRAM to store the values or intermediate values during the computation.
The Madgwick, Mahony, and complementary filter do not require matrix operations for
their computation and are therefore smaller. The matrix operations for the Kalman filter are
taken from the Eigen Matrix libary [35]. The particularly complex calculation of the inverse

Sensors 2021, 21, 2747 10 of 21

matrix uses a specialized method for 4x4 matrices taken from the MESA implementation of
the OpenGL Utility Libraries [36,37].

Figure 4 shows the size the algorithms require in the dynamic memory (SRAM) of the
µC to store values, intermediate results, and the function stack.

Memory size required in SRAM

3000

3100

3200

3300

3400

3500

32 Bit floating-point 32 bit fixed-point 16 bit fixed-point

S
R

A
M

 r
eq

ui
re

m
en

t i
n

B
yt

e

Kalman Madgwick Mahony Complementary

Figure 4. Size of data that needs to be stored in the dynamic memory (SRAM).

Interestingly, the Kalman filter does not need much more dynamic storage to store
the data of the matrices and intermediate results. This can be explained by the fact that
Madgwick filter, Mahony Filter, and complementary filter are optimized to store many of
the intermediate results in temporary variables to avoid repeated calculations for the same
value when used multiple times. It can be seen that the usage of the 16-bit fixed-point
data type reduces the amount of needed SRAM compared to the 32-bit floating-point
implementation. The 32-bit fixed-point data type needs slightly more SRAM.

Explanation of the Size Differences

As described in Section 3.4, one would expect the floating-point implementation of the
algorithms to need more memory than the fixed-point implementations because a SoftFloat
library is needed due to the lack of hardware support. However, this is not the case because
the fixed-point implementations also need additional code to operate. On the one hand,
the multiplications need additional shift operations for the resulting value and a rounding
of the result to reduce errors. On the other hand, an implementation of the 1√

x function
is needed to normalize the input and output values. Said functions can be implemented
very efficiently in a floating-point implementation [38,39]. The fixed-point variant needs
a lookup table and therefore requires more memory. In addition to the points mentioned
above, another peculiarity of fixed-point arithmetic that influences the size of the code as
well as the execution time: The multiplications have to be done with twice the bit depth of
the used fixed-point numbers to avoid an overflow of the intermediate result. For 16-bit
fixed-point numbers, the multiplications have to be done in 32-bit, and respectively in
64-bit for 32-bit fixed-point numbers. The needed 64-bit multiplications needed for the
32-bit fixed-point implementations also explain the bigger size of the 32-bit implementation
for both flash memory and SRAM. This is the case because the 64-bit operations require at
least twice as many operations for the mathematical calculations and twice as many bytes
to store intermediate 64-bit results.

4.2. Execution Time

The most important extra-functional property of the assessed fusion algorithms is the
execution time, respectively the computational effort each algorithm requires to process the
data from the inertial sensors. The computational effort affects both the maximal frequency
with which the data can be processed and the power consumption of the µC.

The results of the measurements for the execution time of the algorithms are presented
in Figure 5.

Sensors 2021, 21, 2747 11 of 21

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

32Bit Float 32Bit Fixed 16 Bit Fixed

E
xe

cu
tio

n
tim

e
in

 m
s

Average execution time

Kalman Madgwick Mahony Complementary

Figure 5. Execution time for the four algorithms grouped by data format.

It can be clearly seen that the Kalman filter requires the highest amount of execution
time for all three data formats. Compared to the other filters, the Kalman filter needs
more than 3.4 times longer to compute the fusion result. For the 32-bit floating-point
implementation, it needs 3.96 ms for each fusion step, which effectively limits the maximal
update frequency to around 250 Hz. Considering that the µC will also have to do other
calculations and control tasks, this frequency is likely to be significantly lower in the end.

The second finding is that the fixed-point implementations require only a fraction of
the computation time needed by the 32-bit floating-point implementation. The 32-bit fixed-
point implementation requires around 50% less time for all four algorithms than the 32-bit
floating-point counterparts. Furthermore, the 16-bit fixed-point implementations require
only a third of computation time required by the 32-bit fixed-point implementations.

The exact values of the execution times are listed in Table 1.

Table 1. Average execution time per sensor sample needed by the sensor fusion algorithms.

Data Format Kalman Madgwick Mahony Complementary

32-bit Floating-Point 3.963 ms 1.142 ms 0.758 ms 0.782 ms
32-bit Fixed-Point 1.923 ms 0.560 ms 0.350 ms 0.382 ms
16-bit Fixed-Point 0.621 ms 0.166 ms 0.121 ms 0.123 ms

In addition to the average execution time, the variance of the execution times have
been evaluated to assess how consistent the algorithms behave. It was expected that the
execution times show a low variance because the used algorithms do not contain many
branches. Hence, the number of operations per sensor data update should remain nearly
constant. For the fixed-point implementations, this behavior has been confirmed. However,
for the floating-point implementation, the variance of the execution times was higher.
In particular, the variance of the Kalman filter was significantly higher, as displayed in
Figure 6.

The higher variance of the execution times for the floating-point variants has the same
reason as the increased execution time in general: The mathematical operations are done
inside a SoftFloat library. For additions and multiplications, the number of cycles needed
to perform the operation is not fixed but depends on the values of the used operand [23].
Therefore, the execution time varies depending on the current state and input of the filter.
In particular, the Kalman filter has a disadvantage here because the number of needed
operations as well as the range of the used values is higher compared to the other filters.
This results in more operations for the normalization of the data.

Sensors 2021, 21, 2747 12 of 21

Variance of the Computation Time

Kalman Madgwick Mahony Complementary

0.0

0.1

0.2

D
iv

er
si

on
 f

ro
m

m
ed

ia
n

in
 m

s

−0.1

−0.2

Figure 6. Box-Plot of the execution times for the 32-bit floating-point implementations. The boxes
show the deviations from the median execution time in milliseconds.

4.3. Summary for the Extra-Functional Properties

Overall, it can be concluded that the computational effort of the used algorithms
can be significantly reduced by using a fixed-point implementation. In particular, the
computational effort of the 16-bit fixed-point implementations is around six times lower
than their 32-bit floating-point counterpart. Looking at the computational effort alone,
fixed-point implementations should be preferred over floating-point implementations.
Furthermore, the complementary filter, Madgwick filter, and Mahony filter should be
preferred over the Kalman filter.

The reduced computational effort alone, however, does not allow for a definite state-
ment about which fusion algorithm and data format is preferable for a hardware restricted
environment. In the following Section 5, this work will examine how much the quality of
the used sensor fusion algorithms is influenced by using fixed-point arithmetic and how
the quality of the algorithms compares.

5. Results: Functional Properties

To assess the usability of the used sensor fusion algorithms and data formats, it is not
only important to examine their code size and computational effort. It is obvious that also
the quality of the output of the sensor fusion algorithms is essential for its usability. For
instance, activity- or gesture detection can be impaired if the quality of the sensor fusion
suffers too much from using a different data format. In this section, two investigations
about the quality of the sensor fusion will be covered.

In Section 5.1, a general overview about the quality of the used algorithms and data
format will be given, including an analysis of the impact of using fixed-point arithmetic.
Later, in Section 5.2, an extensive statistical analysis of the impact of algorithm, data format,
and movement speed will be presented. Finally, Section 5.3 covers external influences on
the result of the sensor fusion algorithms.

5.1. General Comparison of the Fusion Results

To get a general overview about the influence of both the used fusion algorithm and
the used data format, multiple measurements have been conducted for a direct comparison
of the fusion results. Early in the investigation, it was decided to compare the results from
the fusion algorithms using only the data from the accelerometer and the gyroscope and
not use the data from the magnetometer. Early measurements showed that, in spite of prior
calibration of the magnetometer, the data for the z-axis showed errors that were too high to
allow for a meaningful assessment of the quality of the sensor fusion algorithms.

Figure 7 shows the results of the measurements using only the data from the gyroscope
and the accelerometer.

Sensors 2021, 21, 2747 13 of 21

0

2

4

6

8

Float 32 Bit Fixed 16 Bit Fixed

A
ng

le
 e

rr
or

 in
 d

eg
re

e

Average angle error to reference

Kalman Madgwick Mahony Complementary

Figure 7. Early error estimation with z-axis.

It can be seen that the floating-point formats and 32-bit fixed-point formats have
around the same error. The complementary filter has a slightly higher error for the floating-
point implementation. In the 16-bit fixed-point implementation, the Kalman filter shows a
significantly higher error than the other used algorithms. The reason for this error will be
described later in Section 5.1.1. Overall, it is evident that the errors for all configurations
are relatively high with an average error of 4.14° for the floating-point data, 3.69° for the
32-bit fixed-point data, and 4.90° for the 16-bit fixed-point data.

The reason for the relatively high errors is that leaving out the data of the magne-
tometer and therefore the possibility to correct the data from the z-axis results in a drift
of the z-axis, which drastically increases the overall error. Figure 8 displays the rotation
for the axes x, y, and z for a measurement where each axis was rotated back and forth to
approximately 20° sequentially.

−30

−20

−10

0

10

20

30

0 1000 2000 3000 4000 5000 6000 6370

A
ng

le
 in

 d
eg

re
e

Sample

Euler angles of measurement with drift on Z-axis

Reference X Reference Y Reference Z Filter X Filter Y Filter Z

Figure 8. Euler angles of the output from the Madgwick filter with visible drift on the z-axis.

The solid lines show the rotation measured by the reference system. The dashed lines
show the estimation from the Madgwick filter. It can be seen that the z-axis of the estimated
orientation drifts away from the reference over time. This drift is higher than the average
difference found for the x- and y-axis and superimposes the error we want to measure.
Therefore, it was decided to apply a correction for the z-axis effectively excluding its errors.
The results of the evaluation with a corrected z-axis can be seen in Figure 9.

Sensors 2021, 21, 2747 14 of 21

0

2

4

6

8

Float 32 Bit Fixed 16 Bit Fixed

A
ng

le
 e

rr
or

 in
 d

eg
re

e

Average angle error to reference

Kalman Madgwick Mahony Complementary

Figure 9. Early error estimation without the z-axis.

The first obvious difference to the previous evaluation approach is a significantly
lower overall error for all configuration replacedbeing wellclearly below 2° except for the
16-bit fixed-point implementation of the Kalman filter. Table 2 shows the average error for
all errors from 15 measurements.

Table 2. Average error in degree measured for the four sensor fusion algorithms using the three
data formats.

Data Format Kalman Madgwick Mahony Complementary

32-bit Floating-Point 1.557° 1.657° 1.588° 1.489°
32-bit Fixed-Point 1.562° 1.603° 1.557° 1.478°
16-bit Fixed-Point 2.429° 1.722° 1.626° 1.539°

The results shown in Table 2 indicate that there is no meaningful difference between
the used sensor fusion algorithms and data formats. Interestingly, the results from the 32-bit
fixed-point implementation even show a slightly lower error compared to the floating-point
implementation. The 16-bit fixed-point variant also does not show significantly higher
errors except for the Kalman filter.

5.1.1. Quantization Errors

The results from the general assessment of the differences between the used filters
and data formats show two interesting results that will be discussed in this section.

The first finding was that the results from the sensor fusion using 32-bit fixed-point
data showed a slightly lower error than their floating-point counterpart. This artifact can
be explained by the interaction of two factors. As described in Section 3.2, the data inside
a quaternion are always normalized to a length of one, which therefore limits the range
of possible values. For the examined filters, the radix point of the data could be set to
7-bits for the integer part and 24-bits for the fractional part. Compared to the standard
floating-point implementation, which has 23-bits for the fraction, the 32-bit fixed-point
implementation has a 1-bit higher precision.

The second finding is the obviously lower quality of the result from the Kalman filter
in the 16-bit fixed-point implementation. Due to the way the Kalman filter works internally,
it needs a higher range of values compared to the other three filters. For the Madgwick
filter, the Mahony filter, and the complementary filter, it was sufficient to use 3-bits for the
integer part and 12-bits for the fraction to be able to cover the range of possible values.
The Kalman filter, however, needs the 7-bit integer part that is already used in the 32-bit
fixed-point implementation, which only leaves 8-bits for the fractional part. The result of
this reduced accuracy can be seen in Figure 10.

Sensors 2021, 21, 2747 15 of 21

0

0.05

0.1

0.15

0 100 200 300 400 500

Sample

A: Kalman filter with floating point data

0

0.05

0.1

0.15

0 100 200 300 400 500

Sample

B: Kalman filter with 32Bit fixed point data

0

0.05

0.1

0.15

0 100 200 300 400 500

Q
ua

te
rn

io
n

X
 v

al
ue

Sample

D: Mahony filter with 16Bit fixed point data

Reference Filter

C: Kalman filter with 16Bit fixed point data

0

0.05

0.1

0.15

0 100 200 300 400 500

Sample

Q
ua

te
rn

io
n

X
 v

al
ue

Q
ua

te
rn

io
n

X
 v

al
ue

Q
ua

te
rn

io
n

X
 v

al
ue

Figure 10. Comparison of the fusion out of the Kalman filter for the three data formats. (A) output of the Kalman filter with
32-bit floating-point data; (B) output of the Kalman filter with 32-bit fixed-point data; (C) output of the Kalman filter with
16-bit fixed-point data; (D) output of the Mahony filter with 16-bit fixed-point data.

Figure 10A,B show the Kalman filter with 32-bit floating-point implementation and
32-bit fixed-point implementation, respectively. There is no visible difference between both
results. However, for the 16-bit fixed-point data shown in Figure 10C, one can clearly see
quantization errors as a result of the lower precision, which results in a higher overall error.
As a comparison, Figure 10D shows the results for the Mahony filter with 16-bit fixed-point
data where no quantization errors are visible. The quantization errors are also the reason
why the Kalman filter showed a significantly higher error before the correction of the z-axis
was applied. Without the magnetometer data, the z-axis is only changed by the data of the
gyroscope and, due to the low precision, all angle rates lower than 90°/s will be rounded
to 0. For the performed measurements, the angle rate rarely exceeded this value, resulting
in the z-axis not showing any rotation change.

5.2. Statistical Analysis

The general comparison of the sensor fusion algorithms and data formats already
showed that using the 32-bit fixed-point implementation does not have a negative impact on
the results of the sensor fusion. Furthermore, using the 16-bit fixed-point implementation
also does not decrease the performance of the algorithms in a significant amount for
most cases.

To increase the understanding about the impacts of the sensor fusion algorithms, data
formats, and also the influence of the human interaction, while conducting the experiments,
an extensive statistical analysis has been conducted using the Gage R&R methodology
commonly used in the measurement systems analysis [33,34]. As described in Section 3.7,
this methodology allows for statistically analyzing the influence of difference factors of
the measurement on the overall result. Although normally used to assess the repeatability
and reproducibility of a measurement system, the same statistical methods can also be

Sensors 2021, 21, 2747 16 of 21

used to determine how algorithm, data format, or average angle rate of the movement can
influence the results.

For the analysis, 10 measurements have been conducted for three different angle
rates. Ten measurements were made for an average angle rate of 7.5°/s, 10 measurements
for 15°/s, and 10 measurements for 30°/s. Using four different fusion algorithms and
three data formats, 360 measurement results have been generated. Using different angle
rates for the investigation was also an important factor to see if the algorithms behave
differently in different scenarios. For instance, the Kalman filter might work better with
higher frequencies than the other filters.

The statistical analysis has been divided into two categories to better analyze the
impact of different factor on the results.

5.2.1. Results Grouped by Data Format

For an analysis on how movement speed and the chosen algorithm influence the
outcome of the sensor fusion three statistical analyses have been made for each data
formats. The results can be seen in Figure 11.

39%

41%

Algorithm

0%

External influences

42%Rotation speed

58%

32Bit Floating Point & 32Bit Fixed Point 16Bit Fixed Point

Rotation speed

External influences

Algorithm

20%

Figure 11. Estimated influence of rotation speed, external influences, and used algorithm on the
result of the sensor fusion grouped by data format.

The results for the 32-bit floating-point implementation and the 32-bit fixed-point
implementation show nearly the same result and are therefore grouped into one graph. For
the 32-bit floating-point implementation and the 32-bit fixed-point implementation, the sta-
tistical analysis showed that around 58% of the differences between the measurements was
caused by different rotation speeds and 0% was caused by the chosen algorithm indicating
that all algorithms behaved nearly identical for the chosen scenario of human interaction.
The factor of external influences which causes 42% of the measurement differences can
neither be accounted to the used algorithm, movement speed, or data format. Possible
causes for the external influences will be discussed in Section 5.3.

For the 16-bit fixed-point data, the result looks a bit different. It can be seen that the
used algorithm influences the overall result by around 20%. The rotation speed has an
influence factor of 41% and the external influences have an influence of 39%. This result
was expected because it has already been shown in Section 5.1 that the Kalman filter has a
reduced accuracy in this configuration.

5.2.2. Results Grouped by Movement Speed

The second part of the statistical analysis aimed to reveal how much the data format
influences the overall result compared to the used algorithm. Therefore, the data was
grouped by the movement speed. The results can be seen in Figure 12.

Sensors 2021, 21, 2747 17 of 21

Low rotation speed Medium rotation speed High rotation speed

External influences

77%

Algorithm

0%
Algorithm

0%
Algorithm

4%

Data format

23%

External influences

79%
External influences

81%

Data format

21%

Data format

15%

Figure 12. Estimated influence of data format, external influences, and used algorithm on the result
of the sensor fusion grouped by rotation speed.

For the low and medium movement speeds, the influence of the different factors is
roughly the same. The data format influences the results by 23% and 21%. For both, the
influence of the used algorithms is at 0%. Most of the variance between the measurements
(77% and 79%) cannot be assigned to either the data format or the algorithms.

For a high rotation speed, one can see that the chosen algorithm does have a slight
influence on the results. Separating the results by the used data format, it is again evident
that the highest error can be observed for the 16-bit fixed-point implementation of the
Kalman filter, which was 1.12° higher than the average.

The results show that the filters do not behave differently for the movement speeds
that were used for the evaluation. Therefore, all filters appear to be suitable for differ-
ent scenarios.

5.3. Analysis of External Influences

The statistical analysis of the data revealed that a signification amount of the variance
between the conducted measurements cannot be accounted to fusion algorithm, data
format, or movement speed. Therefore, other factors or external influences contribute to
the resulting differences.

5.3.1. Movement Speed

The analysis in Section 5.2.1 showed that the rotation speed has a high influence on the
results. For the analysis, the measurements have been grouped into three groups with an
average angle rate of 7.5°, 15° and 30°. The goal of the work was to evaluate how the fusion
algorithms behave when a device is used by humans. Therefore, all measurements have
been conducted by a human and will, of course, differ slightly in the conducted movement
speed, even for the same group. To see if the different angle rates inside a group contribute
to the external influences, the average angle rate and calculated errors have been plotted in
Figure 13.

One can clearly see that the average error correlates with the average angle rate
of the measurement. For the group with the highest angle rate, it is also visible that the
movement speed inside this group influences the result. However, for the other two groups,
this correlation is not that obvious. It can be concluded that the difference in average angle
rate inside a group can only explain a small part of the external influences.

Sensors 2021, 21, 2747 18 of 21

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35

A
ve

ra
ge

 a
ng

le
 e

rr
or

 in
 d

eg
re

es

Average angle rate in degree/seconds

Average angle rate vs. measured error

Kalman Madgwick Mahony Complementary

Figure 13. Comparison between the average angle rate of a measurement and the measured error.

5.3.2. User Interaction

Another possible factor is the interaction with the human who conducted the mea-
surements. The used measurement method from [31] uses a graphical user interface to
instruct the probationer on what movements have to be done and displays in real time how
well the probationer follows these movements. This should ensure that the measurements
all depict the same movements to be comparable. However, as already seen in Figure 13,
it is not always possible to follow exactly the predetermined movements. To determine
if the variation in the conducted movements contributes to the external influences, it has
been analyzed if there is a correlation between the accuracy with which the probationer
followed the predetermined movements and the measured errors. The results can be seen
in Figure 14.

0

0.5

1

1.5

2

2.5

2 2.5 3 3.5 4 4.5 5 5.5A
ve

rg
e

fu
si

on
 e

rr
or

 in
 d

eg
re

e

Average deviation from the defined movement in degree

Quality of execution vs. fusion error

Low rotation speed Medium rotation speed High rotation speed

Figure 14. Comparison between accuracy with which the user conducted a predefined movement
and error from the sensor fusion output.

The figure shows the measured error on the x-axis and the average difference between
the predetermined movement and the movement probationer actually did on the y-axis.
There is no clear correlation between precision of the conducted movement to the measured
error. One can see a tendency that the measurements with the higher angle rates are also
the ones with a higher deviation from the predetermined movement; however, this is more
a correlation with the higher angle rates because it becomes more difficult to follow the
faster movements.

Sensors 2021, 21, 2747 19 of 21

5.3.3. Other Factors

The previous sections showed that the different angle rates can be made accountable
for a small amount of the external influences seen in the statistical analysis.

Other factors that can contribute to the external influences are the measurement system
itself and the used inertial sensors.

For the measurement system, the following factors can contribute:

• Precision of the image analysis. This factor is influenced by the resolution of the
camera, the frame rate of the camera, and the precision of the used image analysis
algorithm.

• Cross correlation of the data from reference and sensor fusion. When the timestamps
of the data do not fit precisely, there will be an error added to the whole measurement.

For the inertial sensors, the error properties of the sensors like bias, temperature drift,
scaling error, and noise can influence sensor fusion. These properties can also change
slightly between measurements.

Since the mentioned factors cannot be ruled out, the confidence interval of the mea-
sured data from each algorithm was calculated to see if the variance of the measurements
negatively influences the possibility to make a statement about the fitness of the assessed
algorithms. The results can be seen in Figure 15.

Low angle rate Medium angle rate High tangle rate

Kalman Madgwick Mahony Complementary

0

0.5

1

1.5

2

2.5

F
us

io
n

er
ro

r
in

 d
rg

re
e

Confidence interval (95%)

Figure 15. Confidence interval of the captured data grouped by the three angle rate groups.

The confidence intervals for the algorithms are relatively small, and there is only
a small overlap between the different angle rate groups. This is a strong indicator that
the variation of the measured data is low enough to make a statement about the fitness
of the assessed algorithms and to distinguish between the three groups with different
movement speeds.

6. Discussion

In the work at hand, it was shown that using fixed-point arithmetic can reduce the
computational effort of the examined algorithms by around 50% for 32-bit fixed-point data
and around 80% for 16-bit fixed-point data compared to a standard implementation with
32-bit floating-point data.

Using a 32-bit fixed-point implementation does not negatively impact the result of the
sensor fusion algorithms. Even the 16-bit fixed-point implementations delivered usable
results and can be used too, although with a slight decrease in precision.

An exception is the Kalman filter, which had inferior results using the 16-bit fixed-
point implementation and consistently requires around three times the computation time
needed by the other algorithms. Hence, this filter is not recommended for a hardware
restricted environment, considering that our work and the authors of [12–14] concluded
that Madwick filter and Mahony filter show a similar quality.

Sensors 2021, 21, 2747 20 of 21

The reduction of the computational effort significantly influences possible use cases
and power consumption. The 32-bit floating-point version of the Kalman filter cannot
handle data faster than 250 Hz and would cause a high power consumption close to the
maximum of 5.9 mA of the used µC. Using, for example, the 32-bit fixed-point version of
the Madwick filter would allow for data rates above 1700 Hz or only require approximately
14% of the power consumed by the Kalman filter. For a hardware restricted environment
with limited power availability, a 32-bit fixed-point implementation and simpler fusion
algorithm are therefore recommended.

In the statistical analysis of the sensor fusion results, we were able to show that most
combinations of data formats and algorithms were usable. However, the analysis revealed
a high influence from other factors aside from the used algorithm, rotation speed, and data
format. The cause and impact of these factors are a possible target for further studies.

Author Contributions: Conceptualization, N.B. and D.G.; Methodology, N.B.; software, N.B. and
D.G.; validation, N.B., D.G., C.H., and V.K.; formal analysis, N.B.; investigation, N.B. and D.G.;
writing—original draft preparation, N.B.; writing—review and editing D.G., C.H., and V.K.; visual-
ization, N.B.; supervision, C.H. and V.K.; All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AHRS Attitude and Heading Reference System
BLE Bluetooth Low Energy
MEMS Micro-Electro-Mechanical Systems
µC Microcontroller
IMU Inertial Measurement Unit
SiP System in Package
ROM Read Only Memory
SRAM Static Random-Access Memory

References
1. Lammel, G. The future of MEMS sensors in our connected world. In Proceedings of the 28th IEEE International Conference on

Micro Electro Mechanical Systems (MEMS), Estoril, Portugal, 18–22 January 2015; IEEE: Estoril, Portugal, 2015. [CrossRef]
2. Mendes, J.J.A., Jr.; Vieira, M.E.M.; Pires, M.B.; Stevan, S.L., Jr. Sensor Fusion and Smart Sensor in Sports and Biomedical

Applications. Sensors 2016, 16, 1569. [CrossRef] [CrossRef] [PubMed]
3. Hunter, G.W.; Stetter, J.R.; Hesketh, P.; Liu, C. Smart Sensor Systems. Electrochem. Soc. Interface 2010 19, 29. [CrossRef] [CrossRef]
4. ATSAMD20G18—Arm Cortex-M3 MCU. Available online: https://www.microchip.com/wwwproducts/en/ATSAMD20G18

(accessed on 24 January 2021).
5. STM32F103CB—32-bit SAM Microcontrollers. Available online: https://www.st.com/en/microcontrollers-microprocessors/

stm32f103cb.html (accessed on 3 April 2021).
6. Attitude & Heading Reference System (AHRS). Available online: https://www.vectornav.com/resources/attitude-heading-

reference-system (accessed on 22 January 2021).
7. A Layman’s Guide to Attitude Heading Reference Systems (AHRS). Available online: https://helicoptermaintenancemagazine.

com/article/layman\T1\textquoterights-guide-attitude-heading-reference-systems-ahrs (accessed on 22 January 2021).
8. Madgwick, S.O.H.; Harrison, A.J.L.; Vaidyanathan, R. Estimation of IMU and MARG orientation using a gradient descent

algorithm. In Proceedings of the IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July
2011; IEEE: Zurich, Switzerland, 2011. [CrossRef]

9. Open Source IMU and AHRS algorithms, Madgwick Internal Report. Available online: https://www.x-io.co.uk/res/doc/
madgwick_internal_report.pdf (accessed on 22 January 2021).

10. Mahony, R.; Hamel, T.; Pflimlin, J.-M. Nonlinear Complementary Filters on the Special Orthogonal Group. IEEE Trans. Autom.
Control 2008, 53, 1203–1217. [CrossRef] [CrossRef]

11. Baldwin, G.; Mahony, R.; Trumpf, J.; Hamel, T.; Cheviron, T. Complementary filter design on the Special Euclidean group SE(3).
In Proceedings of the European Control Conference, Kos, Greece, 2–5 July 2007. [CrossRef]

http://doi.org/10.1109/MEMSYS.2015.7050886
https://doi.org/10.3390/s16101569
http://dx.doi.org/10.3390/s16101569
http://www.ncbi.nlm.nih.gov/pubmed/27669260
http://doi.org/10.1007/978-94-007-4119-5_19
http://dx.doi.org/10.1149/2.F03104if
https://www.microchip.com/wwwproducts/en/ATSAMD20G18
https://www.st.com/en/microcontrollers-microprocessors/stm32f103cb.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f103cb.html
https://www.vectornav.com/resources/attitude-heading-reference-system
https://www.vectornav.com/resources/attitude-heading-reference-system
https://helicoptermaintenancemagazine.com/article/layman\T1\textquoteright s-guide-attitude-heading-reference-systems-ahrs
https://helicoptermaintenancemagazine.com/article/layman\T1\textquoteright s-guide-attitude-heading-reference-systems-ahrs
https://doi.org/10.1109/ICORR.2011.5975346
https://www.x-io.co.uk/res/doc/madgwick_internal_report.pdf
https://www.x-io.co.uk/res/doc/madgwick_internal_report.pdf
https://doi.org/10.1109/TAC.2008.923738
http://dx.doi.org/10.1109/TAC.2008.923738
https://doi.org/10.23919/ECC.2007.7068746

Sensors 2021, 21, 2747 21 of 21

12. Alam, F.; ZhaiHe, Z.; JiaJia, H. A Comparative Analysis of Orientation Estimation Filters using MEMS based IMU. In Proceedings
of the 2nd International Conference on Research in Science, Engineering and Technology, Dubai, United Arab Emirates, 21–22
March 2014; IIE: Dubai, United Arab Emirates, 2014.

13. Gui, P.; Tang, L.; Mukhopadhyay, S. MEMS based IMU for tilting measurement: Comparison of complementary and kalman filter
based data fusion. In Proceedings of the 10th Conference on Industrial Electronics and Applications, Auckland, New Zealand,
15–17 June 2015; IEEE: Auckland, New Zealand, 2015. [CrossRef]

14. Teague, H. Comparison of Attitude Estimation Techniques for Low-cost Unmanned Aerial Vehicles. In Qualcomm Research;
Qualcomm Technologies, Inc.: San Diego, CA, USA, 2016.

15. Cavallo, A.; Cirillo, A.; Cirillo, P.; Maria, G.D.; Falco, P.; Natale, C.; Pirozzi, S. Experimental Comparison of Sensor Fusion
Algorithms for Attitude Estimation. In Proceedings of the 19th World CongressThe International Federation of Automatic Control,
Cape Town, South Africa, 4–29 August 2014; IEEE: Cape Town, South Africa, 2014. [CrossRef]

16. McGinnis, R.S.; Cain, S.; Davidson, S.; Vitali, R.V. Validation of Complementary Filter Based IMU Data Fusion for Tracking Torso
Angle and Rifle Orientation. In Proceedings of the International Mechanical Engineering Congress and Exposition, Montreal, QC,
Canada, 14–20 November 2015; ASME: Montreal, QC, Canada, 2015. [CrossRef]

17. Lin, C.; Chiu, W.; Chu, T.; Ho, Y.; Chen, F.; Hsu, C.; Hsieh, P.; Chen, C.; Lin, C.K.; Sung, P.; et al. Innovative Head-Mounted System
Based on Inertial Sensors and Magnetometer for Detecting Falling Movements. Sensors 2020, 20, 5774. [CrossRef] [CrossRef]

18. Valenti, R.G.; Dryanovski, I.; Xiao, J. Keeping a Good Attitude: A Quaternion-Based Orientation Filter for IMUs and MARGs.
Sensors 2015, 15, 19302–19330. [CrossRef] [CrossRef] [PubMed]

19. Ribeiro, M.I. Kalman and Extended Kalman Filters: Concept, Derivation and Properties. Institute for Systems and Robotics; Instituto
Superior Tecnico: Lisboa, Portugal, 2014.

20. Wan, E. Sigma-Point Filters: An Overview with Applications to Integrated Navigation and Vision Assisted Control. In Proceedings
of the IEEE Nonlinear Statistical Signal Processing Workshop, Cambridge, UK, 13–15 September 2006. [CrossRef]

21. Dam, E.B.; Koch, M.; Lillholm, M. Quaternions, Interpolation and Animation. Department of Computer Science; University of
Copenhagen: Copenhagen, Denmark, 1998.

22. Hemingway, E.G.; O’Reilly, O.M. Perspectives on Euler angle singularities, gimbal lock, and the orthogonality of applied forces
and applied moments. Multibody Syst. Dyn. 2018, 44, 31–56. [CrossRef] [CrossRef]

23. Goldberg, D. What Every Computer Scientist Should Know About Floating-Point Arithmetic. ACM Comput. Surv. 1991, 23, 5–48.
[CrossRef] [CrossRef]

24. Oberstar, E.L. Fixed-Point Representation & Fractional Math. 1.2 Oberstar Consult. Rev. 2007. [CrossRef]
25. Smart Sensor: BMF055. Available online: https://www.bosch-sensortec.com/products/smart-sensors/bmf055.html (accessed

on 26 January 2021).
26. BMI055 Data Sheet. Available online: https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-

bmi055-ds000.pdf (accessed on 27 January 2021).
27. BMA280 Data Sheet. Available online: https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-

bma280-ds000.pdf (accessed on 27 January 2021).
28. BMM150 Data Sheet. Available online: https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-

bmm150-ds001.pdf (accessed on 27 January 2021).
29. Gis, D.; Büscher, N.; Haubelt, C. Advanced Debugging Architecture for Smart Inertial Sensors using Sensor-in-the-Loop. In

Proceedings of the International Workshop of Rapid System Prototyping (RSP), Hamburg, Deutschland, 24–25 September 2020.
[CrossRef]

30. Middendorf, L.; Dorsch, R.; Bichler, R.; Strohrmann, C.; Haubelt, C. A Mobile Camera-Based Evaluation Method of Inertial
Measurement Units on Smartphones. In Proceedings of the IoT360: Second International Internet of Things Summit, Rome, Italy,
27–29 October 2015; pp. 362–372. [CrossRef]

31. Büscher, N.; Middendorf, L.; Haubelt, C.; Dorsch, R.; Wegelin, F. Statistical analysis and improvement of the repeatability and
reproducibility of an evaluation method for IMUs on a smartphone. In Proceedings of the 8th ACM SIGCHI Symposium on
Engineering Interactive Computing Systems, Brussels, Belgium, 21–24 June 2016; EICS 2016. pp. 149–158. [CrossRef]

32. OpenCV. Available online: https://opencv.org (accessed on 24 January 2021).
33. Kappele, W.D.; Raffaldi, J.D. An Introduction to Gage R&R. Quality 2005, 44, 13.
34. Gage Repeatability and Reproducibility (R&R). Available online: https://sixsigmastudyguide.com/repeatability-and-

reproducibility-rr/ (accessed on 10 December 2020).
35. Eigen. Available online: http://eigen.tuxfamily.org/index.php?title=Main_Page (accessed on 22 January 2021).
36. The Mesa 3D Graphics Library. Available online: https://www.mesa3d.org (accessed on 5 January 2021).
37. GLUT and OpenGL Utility Libraries. Available online: https://www.opengl.org/resources/libraries/ (accessed on 5 January

2021).
38. Quake-III-Arena Source Code. Available online: https://github.com/id-Software/Quake-III-Arena/blob/master/code/game/

q_math.c#L552 (accessed on 25 January 2021).
39. Blinn, J.F. Floating-point tricks. IEEE Comput. Graph. Appl. 1997, 17, 5638131. [CrossRef] [CrossRef]

https://doi.org/10.1109/ICIEA.2015.7334442
https://doi.org/10.3182/20140824-6-ZA-1003.01173
https://doi.org/10.1115/IMECE2014-36909
https://doi.org/10.3390/s20205774
http://dx.doi.org/10.3390/s20205774
https://doi.org/10.3390/s150819302
http://dx.doi.org/10.3390/s150819302
http://www.ncbi.nlm.nih.gov/pubmed/26258778
https://doi.org/10.1109/NSSPW.2006.4378854
https://doi.org/10.1007/s11044-018-9620-0
http://dx.doi.org/10.1007/s11044-018-9620-0
https://doi.org/10.1145/103162.103163
http://dx.doi.org/10.1145/103162.103163
https://doi.org/10.13140/RG.2.1.3602.8242
https://www.bosch-sensortec.com/products/smart-sensors/bmf055.html
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmi055-ds000.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmi055-ds000.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bma280-ds000.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bma280-ds000.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmm150-ds001.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmm150-ds001.pdf
https://doi.org/10.1109/RSP51120.2020.9244851
https://doi.org/10.1007/978-3-319-47075-7_41
https://doi.org/10.1145/2933242.2933255
https://opencv.org
https://sixsigmastudyguide.com/repeatability-and-reproducibility-rr/
https://sixsigmastudyguide.com/repeatability-and-reproducibility-rr/
http://eigen.tuxfamily.org/index.php?title=Main_Page
https://www.mesa3d.org
https://www.opengl.org/resources/libraries/
https://github.com/id-Software/Quake-III-Arena/blob/master/code/game/q_math.c#L552
https://github.com/id-Software/Quake-III-Arena/blob/master/code/game/q_math.c#L552
https://doi.org/10.1109/38.595279
http://dx.doi.org/10.1109/38.595279

	Introduction
	Related Work
	Background and Methods
	Used Algorithms
	Quaternion Representation
	Data Formats
	Single Precision Floating-Point
	Fixed-Point Numbers

	Used Hardware
	Analysis of Extra-Functional Properties
	Code Size
	Computational Effort

	Analysis of Functional Properties
	Statistical Analysis

	Results: Extra-Functional Properties
	Code Size
	Execution Time
	Summary for the Extra-Functional Properties

	Results: Functional Properties
	General Comparison of the Fusion Results
	Quantization Errors

	Statistical Analysis
	Results Grouped by Data Format
	Results Grouped by Movement Speed

	Analysis of External Influences
	Movement Speed
	User Interaction
	Other Factors

	Discussion
	References

