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Abstract: To our knowledge, this is the first report on a machine-learning-assisted Brillouin optical
frequency domain analysis (BOFDA) for time-efficient temperature measurements. We propose
a convolutional neural network (CNN)-based signal post-processing method that, compared to
the conventional Lorentzian curve fitting approach, facilitates temperature extraction. Due to its
robustness against noise, it can enhance the performance of the system. The CNN-assisted BOFDA is
expected to shorten the measurement time by more than nine times and open the way for applications,
where faster monitoring is essential.

Keywords: distributed Brillouin sensing; convolutional neural networks; Brillouin optical frequency
domain analysis; distributed fiber-optic sensors; temperature and strain sensing

1. Introduction

Brillouin distributed sensing provides spatially resolved temperature and strain in-
formation over a km-long measurement range [1]. Its area of application ranges from
structural health monitoring of bridges [2], dikes [3] and pipelines [4] to condition monitor-
ing of high voltage cables [5]. Brillouin optical time-domain analysis (BOTDA) [6], as well
as Brillouin optical frequency domain analysis (BOFDA) [7], are among the techniques that
have been studied extensively and can provide measurements over 100 km [8,9].

BOFDA makes use of amplitude modulated continuous pump waves by exploiting
the time-reversal property of the fast Fourier transformations and, owing to narrow mea-
surement bandwidth, can provide a high signal-to-noise ratio (SNR) [10]. Furthermore,
since no fast electronics are needed for data acquisition [10], BOFDA is a cost-effective
solution. However, due to the long measurement time that results from narrow bandwidth
filtering, BOFDA is not quite attractive for long-distance sensing.

It has been shown that machine learning can provide solutions to many problems
related to and enhancing the performance of the distributed fiber optic sensors [11]. Partic-
ularly in BOTDA sensing, machine learning algorithms based on artificial neural networks
(ANN) [12–14] and support vector machines (SVM) [15] were implemented to extract the
Brillouin frequency shift (BFS) outperforming conventional algorithms based on Lorentzian
curve fitting (LCF). Because the extraction of temperature or strain necessitates the estima-
tion of the temperature or strain coefficient, respectively, machine learning models were
trained to predict the measurand of interest directly from the Brillouin gain spectrum
providing a more compact solution [16–18]. Additionally, convolutional neural networks
(CNNs) were trained for denoising of Brillouin gain spectra (BGS), facilitating the estima-
tion of the Brillouin frequency shift [19]. Furthermore, ANNs were used in BOTDA for
simultaneous strain and temperature measurements [20,21].

In this paper, we propose, to our knowledge for the first time, a signal post-processing
analysis method based on machine learning for fast and direct evaluation of temperature
in BOFDA sensing. The goal of our study is to render BOFDA sensing more attractive
for long-distance sensing by decreasing the required measurement time and to open the
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way for new applications that require faster monitoring. In BOFDA, faster monitoring,
considering a fixed measurement length and spatial resolution, is feasible by reducing the
amount of averaging or the Brillouin frequency scanning step and range and by broadening
the bandwidth filtering. However, all this comes at the cost of noise and lower accuracy. In
this study, we have trained CNNs specially designed for the evaluation of BOFDA spectra
with regard to temperature. We show that this approach is more robust against noise
in comparison with the conventional approach. Specifically, the CNN-assisted BOFDA
can shorten the measurement time by more than nine times, paving the way towards a
time-efficient ultra-long-distance BOFDA sensing.

2. Methods
2.1. Experimental Setup

The experimental setup is shown in Figure 1. A distributed feedback laser (DFB)
provides an output optical power of 0.1 W at 1550 nm, which is split into a pump and
probe path via a 20/80 polarization-maintaining optical coupler. The upper branch (probe)
is responsible for the BFS tuning, while the lower branch (pump) is used for the acquisition
of spatially resolved information. A Mach–Zehnder modulator (MZM 1) driven by an
RF signal generator (SG) is employed to generate two sidebands and suppress the carrier
(suppressed-carried double sideband [22]). The following fiber Bragg grating (FBG 1) is
utilized to filter out the lower sideband. Additionally, due to the decrease in the power, an
erbium-doped fiber amplifier (EDFA 1) is used. The probe branch and the pump branch
include a variable optical attenuator (VOA) to adjust the optical power and a fiber squeezer-
based polarization scrambler (PS) that operates at 700 kHz to reduce the polarization fading.
The isolator mainly protects the components in the probe branch from the transmitted
pump signal.
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Figure 1. Brillouin optical frequency domain analysis (BOFDA) experimental setup. LD: laser diode; MZM: Mach–Zehnder
modulator; SG: signal generator; FBG: fiber Bragg grating; EDFA: erbium-doped fiber amplifier; VOA: variable optical
attenuator; PS: polarization scrambler; FUT: fiber under test; PD: photodiode; VNA: vector network analyzer.

In the pump branch, a second MZM (MZM 2) is employed in the linear range of the
transfer function and gradually modulates the amplitude of the continuous wave in a
range of modulation frequencies that are adjusted by a vector network analyzer (VNA).
The Brillouin backscattered signal in the fiber under test (FUT) is amplified by a second
EDFA (EDFA 2) and then passes through an FBG to filter out the Rayleigh component
of the measured signal. In the end, the VNA measures the system’s response using the
electrically transformed signal that is acquired by a photodiode (PD).
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The measurement length Lmax and the spatial resolution ∆z are determined by the
modulation frequency to step ∆fm and the maximum modulation frequency f max

m , respec-
tively.

∆z =
c

2n
1

f max
m − f min

m
(1)

Lmax =
c

2n
1

∆ fm
(2)

In this study, we measure 30 km of a standard optical fiber with a spatial resolution of
∆z = 25 m. To this end, according to (1) and (2) [7], ∆fm and the f max

m are set to 3 kHz and
4 MHz, respectively. We note that c is the speed of light in vacuum, n the refractive index
of the material, and f min

m the minimum modulation frequency, which in our case, is equal
to ∆fm. In order to conduct fast measurement, we set in the VNA only three averages and
a bandwidth of 100 Hz. Moreover, in the probe branch, the Brillouin frequency sweep is
performed in the range of 10.78 GHz to 10.88 GHz with a step of 20 MHz. These settings
result in a total measurement time of 4 min.

We also note that the system should be linear [7,10], and thus we set a low value of
pump and probe power through the VOAs. Specifically, the probe and pump powers are
27 µW and 280 µW, respectively.

2.2. Signal Processing

In contrast to BOTDA, where one can acquire the impulse response directly in the
time domain, in BOFDA the measured quantity is the complex transfer function that can be
transferred to the time domain via inverse fast Fourier transformation (iFFT). A common
procedure in BOFDA signal processing before the IFFT is the application of a window
function [10]. This study uses a Kaiser window [23] with a beta factor equal to 5. After
windowing, the iFFT can be calculated, providing spatially resolved information.

In this study, before the iFFT, we applied zero padding to the data to increase the
Nyquist frequency 16 times. This results in 16 (instead of one) equally spaced Brillouin
gain spectra (BGS) within the defined physical spatial resolution. In this way, even though
the physical spatial resolution is not affected, the spatial accuracy increases [24].

2.3. Conventional & CNN-Based Approach

We propose a CNN-based approach, and we compare its performance with that of a
conventional LCF-based method. A graph that provides an illustrative comparison of the
two methods is shown in Figure 2. With the conventional method, one has to perform LCF
to every single BGS in order to extract the BFS. In this work, we employed the Levenberg–
Marquardt algorithm to perform LCF. The initial parameters for the LCF can affect the
accuracy of the BFS, and in cases, with a very low SNR (usually in long fibers), their
estimation can be cumbersome. The extraction of temperature is done using the Brillouin
temperature coefficient CT, which is unique for every fiber. The BFS is expected to be a
linear function of temperature, und thus the CT can be estimated by a linear fitting [7], as
depicted in Figure 2. Furthermore, the temperatures extracted from every 16 BGS (within
the defined spatial resolution) are averaged.

CNNs extract the most important features using their convolutional kernels, and
therefore, no feature extraction is required before the training or the prediction [25]. As a
result, our proposed CNN-based method requires neither an LCF to estimate the BFS nor a
preliminary study of the CT. Thus, one can clearly determine the temperature directly from
the BOFDA spectrum. In Figure 2, we show that the BOFDA spectrum entering the CNN
consists of 16 BGS within the defined spatial resolution, and its output is a single value of
temperature. Since the inputs of CNNs are usually images, we show a 2D representation of
the BOFDA spectrum as well.
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Figure 2. Schematic representation of the conventional and convolutional neural network (CNN)-based approach.

We designed a CNN architecture similar to one commonly used for image recognition
but smaller in order to adjust to the dimensions of our images. The input consists of 6
(Brillouin frequency steps) × 16 (number of BGS) = 96 pixels, and the output is a single
value giving the temperature. Similar to the VGG16 architecture [26] that is used for image
recognition, our network starts with two two-dimensional convolutional layers followed
by a max-pooling layer. The number of filters (depth) in the first and second convolutional
layer is 16 and 32, respectively, and the filter size in both layers is (3 × 5). This asymmetric
filter size performs better than the common square-shaped kernels, which is most likely
due to the input’s asymmetric dimension. The same also applies to the downsampling
pooling layer, which works in one direction. Then, the pooled feature map is flattened, and
two fully connected layers are introduced before the output. After every layer, a ReLU
activation function was used for the nonlinear mapping. To avoid overfitting [27] and to
reduce the internal covariate shift problem [28], batch normalization was used. The CNN
architecture is shown in Figure 3.
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Figure 3. CNN architecture. The input is a 6 × 16 (Brillouin frequency steps × number of BGS) BOFDA spectrum and the
output is a single value for temperature. Convolutional layers use 3 × 5 filters with a depth of 16 and 32 for the first and
second layers, respectively. After flattening, two fully connected layers with 32 and 16 nodes are utilized before the output
layer. Batch normalization and a ReLU activation function follow every convolutional and fully connected layer.

Additional hyperparameters that are related to the training algorithm can also influ-
ence the training process considerably [29]. In our case, we used the Adam (Adaptive
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Moment Estimation) [30] optimization algorithm to update the weights of the network by
minimizing the error (loss function) between the labels (temperatures) and the predictions.
The exponential decay rate of the 1st (β1) and 2nd (β2) moment estimates were set to 0.9
and 0.999, respectively, while the learning rate (lr) was set to 0.001. Furthermore, 125 learn-
ing epochs were found to be sufficient, and a batch size of 64 could ensure a smooth and
efficient training process.

The CNNs were implemented in TensorFlow (v. 2.0.0) [31] using the Keras library
(v. 2.3.1) [32]. An NVIDIA GeForce RTX 2080 Ti 11GB RAM GPU was used for training and
prediction.

2.4. Data Collection & Training Process

The CNN model was trained and evaluated with real experimental data that were
collected using the setup and parameters reported in Section 2.1. In contrast to synthetic
data, where artificial white Gaussian noise is added to ideal BGS in order to increase the
generalizability of the model [13,14], the experimental data contains the actual noise that
arises from the optical components [19]. The data were collected from measurements under
controlled temperature conditions using a temperature chamber.

We collected data (around 1200 images) from a 200-m strain-free segment at the
beginning of a 30-km optical fiber in the temperature range from 0 ◦C to 40 ◦C with 4 ◦C
steps. Most of the data are used for training and validation (66% and 22%, respectively),
and a 12% for testing the ability of the network to generalize the unseen data. In order to
verify the robustness of our method, we collected additional data (around 300 images) from
another 200-m segment at the end of the 30-km optical fiber, where the SNR is reduced
significantly. These data are used solely for testing. In Figure 4a, we show a sketch of the
distribution of the data.
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Figure 4. Schematic representation of the data distribution (a) and training pipeline (b).

In image recognition tasks, data augmentation is often used to help the network
generalize better and avoid overfitting [33]. In our case, we applied data augmentation and
specifically made use of the horizontal flipping method. Data augmentation was applied
to every image of the training dataset.

In Figure 4b, we show a schematic representation of the training pipeline. After every
epoch (a pass through the whole training set) the model is validated on data that are strictly
not included in the training set, and if the validation loss is the lowest until that point, the
model is saved or overwritten. The stored model at the end of the training phase is the one
with the lowest validation loss. This training process estimates the accuracy of the model
after every epoch and can determine the model that generalizes best, avoiding overfitting.
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3. Results

Figure 5 shows the performance of the CNN model on the training and validation
datasets during training in terms of mean square error (MSE). Both the training and the
validation errors are improving during training, with the most significant improvement
to be observable in the first 40 epochs. The training was terminated after the 125th epoch
because its training loss went below the uncertainty of the temperature chamber, which is a
sign of overfitting. As described in Section 2.4, the model that is stored for testing is the one
with the lowest validation loss, which was obtained after the 94th epoch. Its performance
on the validation dataset corresponds to an MSE of 0.45 (◦C)2 or to a root mean square
error (RMSE) of 0.67 ◦C.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 10 
 

 

 

Figure 4. Schematic representation of the data distribution (a) and training pipeline (b). 

In image recognition tasks, data augmentation is often used to help the network gen-

eralize better and avoid overfitting [33]. In our case, we applied data augmentation and 

specifically made use of the horizontal flipping method. Data augmentation was applied 

to every image of the training dataset. 

In Figure 4b, we show a schematic representation of the training pipeline. After every 

epoch (a pass through the whole training set) the model is validated on data that are 

strictly not included in the training set, and if the validation loss is the lowest until that 

point, the model is saved or overwritten. The stored model at the end of the training phase 

is the one with the lowest validation loss. This training process estimates the accuracy of 

the model after every epoch and can determine the model that generalizes best, avoiding 

overfitting.  

3. Results 

Figure 5 shows the performance of the CNN model on the training and validation 

datasets during training in terms of mean square error (MSE). Both the training and the 

validation errors are improving during training, with the most significant improvement 

to be observable in the first 40 epochs. The training was terminated after the 125th epoch 

because its training loss went below the uncertainty of the temperature chamber, which 

is a sign of overfitting. As described in Section 2.4, the model that is stored for testing is 

the one with the lowest validation loss, which was obtained after the 94th epoch. Its per-

formance on the validation dataset corresponds to an MSE of 0.45 (°C)2 or to a root mean 

square error (RMSE) of 0.67 °C.  

 

Figure 5. Training and validation loss during training of the CNN, showing characteristic behavior for
the chosen architecture (as presented in Figure 3) and the hyperparameters of the training algorithm
(125 epochs, batch size = 64, Adam optimizer with lr = 0.001, β1 = 0.9, β2 = 0.999).

In Figure 6a,b, we compare the accuracy performance of the conventional method
with that of the CNN model that was obtained as described above. The blue dots represent
the RMSE of the conventional method at different temperatures, while the orange dots
the RMSE of the CNN model. The dashed lines correspond to the total RMSE calculated,
including all the temperatures. The RMSE for the 200-m-long section at the beginning of
the sensing fiber was improved by 1.4 ◦C and at the end by 2.3 ◦C, respectively, by utilizing
the CNN approach. The improvement in both cases is significant and shows how well the
CNN model can generalize on new data. The errors in temperature estimation at a 30-km
sensing distance are much higher than those at the beginning of the fiber. Specifically,
the total RMSE of the conventional approach increased by 2.2 ◦C while that of the CNN
model grew by 1.3 ◦C. These results indicate that both methods have been affected by the
decreased SNR at the end of the fiber, but the CNN model shows more tolerance to noise.

The robustness of the CNN model is also demonstrated by the fact that the RMSE
varies only slightly with temperature when compared to the conventional method. Espe-
cially at 30 km the standard deviation of the errors that are calculated for every temperature
is 1.63 and 0.41 for the conventional method and the CNN model, respectively. We also
observe that at low temperatures (<16 ◦C), the RMSE of the LCF algorithm is higher, which
is attributed to the low gain and large width of the BGS [34].

The conventional method can reach the performance of the CNN model by using
data with higher SNR, which can be obtained by increasing the number of averages in
the VNA. To estimate the measurement time improvement of the CNN, we conducted
additional measurements with a higher number of averages, which resulted in longer
measurement times. Specifically, we conducted measurements at 0 ◦C of the 200-m-long
segment at the end of the 30-km-long optical fiber with measurement times up to 48 min.
We selected to study our model’s time efficiency at 0 ◦C because, at this temperature, the
RMSE difference of the two approaches is 2.4 ◦C, which is very close to the difference of the
total RMSE (2.3 ◦C). Figure 7 shows how the RMSE decreases with the number of averages
or the measurement time. We observe that the RMSE of the conventional method decreases
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with the number of averages and is expected to reach a plateau at some point [34]. The
conventional method needs measurements of more than 27 averages (36 min) in order
to reach the performance of the CNN model, which is evaluated with measurements
conducted with only three averages (4 min). In other words, the conventional method
requires measurements that are more than nine times longer to outperform the CNN model.
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the total RMSE, including all the temperatures.
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4. Discussion

In this paper, we have reported that our proposed CNN-based approach shows great
noise-tolerance, and thus it performs very well on data with low SNR. We believe that the
performance can be further enhanced if data from the end of the fiber or other positions
are also included in the training and validation data sets. This would increase the size and
diversity of these datasets. In this work, we chose to keep data collected at the end of the fiber
solely for testing in order to show the robustness of the newly proposed method in particular.

We have also shown that owing to the noise tolerance of the CNNs, the measurement
time can be decreased significantly. This is of great importance for applications in the
field, especially for BOFDA, because the system can only be used for static measurements
due to the time invariance requirement that must be met [10]. Unstable environmental
conditions during measurements can lead to erroneous estimation of temperature or strain;
thus, faster monitoring is less prone to errors due to temperature changes.

In BOFDA, there is no trade-off between spatial resolution and measurement range,
and thus it can provide long-range sensing and very high spatial resolution at the same
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time. Our approach, by reducing the measurement time, can render BOFDA more popular
for such applications.

Future work will investigate the extension of the measurement range in BOFDA using
the CNN-based approach. Since low SNR limits the measurement range, we expect that,
owing to the noise tolerance, our method shows that the measurement range could be
extended above 100 km. We note that the maximum sensing length that is reported in
BOFDA is 63 km [35] and 100 km (using additional Raman amplification) [9].

5. Conclusions

This paper demonstrated a CNN-assisted BOFDA system for time-efficient measure-
ments along with a 30-km-long optical fiber. Our approach overcomes the conventional
BOFDA method’s main drawback, which is the time-consuming measurements, perform-
ing more than nine times faster. These results can open the way for BOFDA to meet new
applications, where the environmental conditions change faster, and thus faster monitoring
is required. Potential applications could be in the field of structural health monitoring of
large civil infrastructures, like long pipelines and submarine power cables.
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Abbreviations
The following abbreviations are used in this manuscript:
BOFDA Brillouin frequency domain analysis
BOTDA Brillouin optical time domain analysis
SNR signal-to-noise ratio
ANN artificial neural networks
SVM support vector machines
BFS Brillouin frequency shift
LCF Lorentzian curve fitting
CNN convolutional neural network
DFB distributed feedback laser
MZM Mach–Zehnder modulator
SG signal generator
FBG fiber Bragg grating
EDFA erbium-doped fiber amplifier
VOA variable optical attenuator
PS polarization scrambler
VNA vector network analyzer
FUT fiber under test
PD photodiode
iFFT inverse fast Fourier transformation
BGS Brillouin gain spectrum
MSE mean square error
RMSE root mean square error
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