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Abstract: The paper proposes three modeling techniques to improve the performance evaluation of
the call center agent. The first technique is speech processing supported by an attention layer for the
agent’s recorded calls. The speech comprises 65 features for the ultimate determination of the context
of the call using the Open-Smile toolkit. The second technique uses the Max Weights Similarity (MWS)
approach instead of the Softmax function in the attention layer to improve the classification accuracy.
MWS function replaces the Softmax function for fine-tuning the output of the attention layer for
processing text. It is formed by determining the similarity in the distance of input weights of the
attention layer to the weights of the max vectors. The third technique combines the agent’s recorded
call speech with the corresponding transcribed text for binary classification. The speech modeling
and text modeling are based on combinations of the Convolutional Neural Networks (CNNs) and
Bi-directional Long-Short Term Memory (BiLSTMs). In this paper, the classification results for each
model (text versus speech) are proposed and compared with the multimodal approach’s results. The
multimodal classification provided an improvement of (0.22%) compared with acoustic model and
(1.7%) compared with text model.

Keywords: performance modeling; multimodal classification; BiLSTM; CNNs; attention layer

1. Introduction

Evaluating the performance of call-center agents involves several issues. The first is
that the evaluation is performed manually by listening to recorded calls and evaluating
the content, which most likely will be a subjective evaluation [1,2]. Proficiency in oral
communications is an essential skill in call centers, and it is very important for fulfilling
the customers’ needs. However, the customer service representative tone, oral proficiency,
communications, and listening skills are most likely subjective factors that cause a bias
in the evaluation process [3–5]. The second issue is that the number of calls is huge over
a while, i.e., one year, which makes the manual evaluation very challenging. Hence, the
evaluation is performed randomly over selected calls out of thousands of records. This
can lead to missing the more realistic performance that occurred during the majority of
the calls. The third obstacle is the diversity of the evaluators so that they may rank the
same agent’s performance differently. The lack of a unified system of evaluation can have
a significant adverse impact on the business of call centers when the baseline is overlooked.
Avoiding subjectivity and automating performance evaluation is essential in reducing the
time and effort associated with the manual evaluation process. It leads to the establishment
of a call center’s performance baseline with a unified system of evaluation.

Objective methods in performance evaluation have been developed to overcome the
subjective factors and assessment bias [6,7]. A discussion is presented for the two studies
that considered the binary classification for either the text or speech of the recorded calls [8].

Sensors 2021, 21, 2720. https://doi.org/10.3390/s21082720 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1024-5469
https://orcid.org/0000-0003-0823-8390
https://orcid.org/0000-0003-2612-0388
https://orcid.org/0000-0002-5516-7225
https://doi.org/10.3390/s21082720
https://doi.org/10.3390/s21082720
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21082720
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21082720?type=check_update&version=3


Sensors 2021, 21, 2720 2 of 11

The productivity classification differs significantly when using speech processing instead of
the text approach. There is a massive number of speech features that can be extracted from
the recorded calls in comparison to the features of the text [9]. Furthermore, the text-based
approach requires a minimum word error rate (WER) for the transcription system for better
classification accuracy. However, more sophisticated data extraction and computational
resources for speech modeling are required than for the text approach.

The research framework of this study is a multimodal classification based on different
approaches that combine text and speech processing for improving accuracy. The proposed
multimodal approach is the main paper contribution to empower the classification accuracy
when combining the best classification performance obtained for speech and text. The
models comprise different neural network structures to classify the speech utterances side
by side with the corresponding call transcribed text into productive and nonproductive
classes (binary classification). The study attempts to determine the best accuracy by
combining the three techniques using the attention layer, Max Weights Similarity (MWS),
and the multimodal system to improve the performance evaluation. Also, we investigated
the performance of MWS compared with the Softmax function, which may reflect on the
accuracy of the classification and encourage future studies.

The rest of the paper is structured as follows: Section 2 discusses the works related
to performance evaluation in call centers. The study framework is illustrated in Section 3.
The experiment and results are stated in Section 4. Finally, Section 5 concludes the paper
and suggests the future research avenues.

2. Related Work

Many studies of machine learning are concerned with the processing of speech to
detect the eminent factors of customer behavior and causes of complaints [10]. Other studies
were concerned with analytics to detect the service quality based on the content of the
recorded calls from customers. That framework uses Hadoop Map Reduce for text distances
using Cosine distance and n-gram supported by slang words [11]. Perera et al. [12] studied
the automatic performance evaluation of call center agents. They determined various
factors to improve the performance evaluations, such as the speech utterances, the tone
level, and the emotional characteristics, then classified using the support vector machine
(SVM). Sudarsan et al. examined several systems to evaluate the performance based on
prohibited words, emotional recognition, and others [13]. Their framework was based on
platforms like Google, Wit, and Sphinx for transcription. Ahmed et al. [7] transcribed the
text based on lexicon free Recurrent Neural Networks (RNN) supported by Connectionist
Temporal Classification (CTC) objective function [14]. They annotated the corpus into
productive/nonproductive and modeled the text using one generative approach (Naive
Bayes), and two discriminative approaches (logistical regression and linear support vector
machine (LSVM)) [6,7]. The generative and discriminative approaches were modeled on a
bag of words as text features.

The emotion recognition and speech enhancement studies have an important exposure
for behavior determination, and classification improvement [15–18]. They intended to
enhance the speech quality to measure human behavior’s emotional aspects and gestures
based on sophisticated deep neural network training. Performance evaluation extends these
studies by determining the performance from a human conversation. This study focuses on
the call scenarios considering performance as the core part of the call center processes. The
call center gives two advantages to the study: mixing the natural conversation between
two parties and the high regularity in the conversation path over a high volume of calls.
The call follows a standard and predefined script like welcoming message, agent name,
and services [19,20].

Both CNNs and LSTMs dominate the deep learning approaches, and they have
provided outstanding improvements in various studies [16,21]. Named entity recognition
(NER) is a cascaded CNNs-LSTMs approach to extract critical medical information from
electronic medical records [22]. The convolutional layers extract the prominent features in
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a fast and restricted manner. The long-short-term memory layers (LSTMs) are intended to
handle the long sequential streams of inputs. The attention layer uses the Softmax function
followed by the weighted average vector (context vector) and forwarded to the classifier to
improve the accuracy [23,24].

Ahmed et al. explored the productivity measurement using speech signal processing [25].
The study was performed using MFCC 13 features extracted and forwarded to different
combinations of CNNs and LSTMs structures. The attention layer was applied to enhance
the binary classification up to 84.27%, which means an improvement of around 1.57% over
text classification approaches. Besides, the attention weights highlighted the para-linguistic
features where the productivity measurement takes place. Yet, there were issues associated
with using MFCC features for the binary classification problem. MFCC only provides
information about the vocal track; it ignores prosodic information. Therefore, providing
MFCCs to CNNs is very restrictive and limits the ability of the CNN to use discriminative
features for better classification. Accordingly, in this study, extended speech features were
used to overcome the previous studies’ limitations and improve the classification accuracy
by combining the text and the speech models. The next sections demonstrate how several
modeling approaches are combined to improve the model’s accuracy and compare the
previous text and speech classification approaches.

3. The Proposed Framework

There are several alternatives for modeling speech and text. In this study, two main
schemes are proposed for modeling text and speech, as shown in Figure 1. The first branch
is for modeling speech using CNNs, cascaded CNNs-LSTMs, and an attention layer. Each
branch of the speech modeling presents one or more of the deep learning combinations,
i.e., CNNs, CNNs-attention, CNNs-LSTMs, and CNNs-LSTMs-Attention layers. The
features extraction has been extended to 65 features using the Open-smile toolkit [26].
Open-smile is a comprehensive toolkit for the extraction of audio and music features,
and it supports low-level audio descriptors, such as Mel-frequency cepstral coefficients
(MFCC), fundamental frequency, formant frequencies, perceptual linear predictive cepstral
coefficients, CHROMA, and CENS features, loudness, line spectral frequencies, and linear
predictive coefficients. The frames are forwarded to the four branches of speech modeling
to get the best accuracy compared with other speech models. The text is transcribed by
using an automatic speech recognition system with Word Error Rate (WER) 12.03% [8].
The transcribed text has been revised and edited manually to avoid WER that affects the
text classification accuracy. The extraction of features uses a word embedding layer of
approximately 4k vocabulary size (4930 words). The text branch follows the same speech
neural network structure to attain the best accuracy for the four branches of the text. The
models with the best accuracies for speech and text are then merged (concatenated) at the
last neural network layer for sigmoid binary classification.

3.1. CNNs and BiLSTMs

CNNs are widely used in signal processing, and speech recognition tasks [27]. The
CNNs help scan the extracted features’ frames to obtain the best classification accuracy
through the filters. This study considers two main branches as shown in Figure 1: one for
the text features and another for the speech features. Each main branch is in turn divided
into four subbranches that follows a similar scheme: Two of them make use of 1D-CNNs
layers with tanh activation functions followed by either a max-pooling layer or an attention
layer, and the other two make use of a 1D-CNN-BiLSTMs also followed by either a max-
pooling layer or an attention layer. Finally, a logit sigmoid output layer performs the binary
classification into a productive or nonproductive call. The combinations of different models
were used in this study to identify the best classification performance.
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Figure 1. The proposed framework illustrates two schemes for speech and text. The dotted lines indicate the multimodal
approach for merging one path for each scheme and forward it to the output layer.

3.2. Attention Layer

The sequence of vectors (frames) produced from CNN or LSTM and forwarded to the
attention layer to convert them into a context vector [23,28,29]. The attention weight are
forwarded to Softmax function at time t to generate the probability of the frame out of one
to the remaining frames in the same speech segment. Then the context vector is generated
by the weighted average of the frames probabilities. For each vector, xt in a sequence of
inputs, i.e., x1, x2, . . . , xT , and the attention weights, αt, are given by:

αt =
exp( f (xt))

∑T
j=1 exp( f (xj))

(1)

where f (xt) is presented by the parameter w as follows:

f (xt) = tanh(wTxt) (2)

The weighted average of the Softmax generated weights and the input vector are
summed to get the context vector C.

C =
T

∑
t=1

αtxt (3)

The Dense layer D uses tanh activation function given by:

D = tanh(WTC + b) (4)



Sensors 2021, 21, 2720 5 of 11

Being W are the hidden layers weights, and b is the bias. The Logit function is the
output layer for two classes (productive/nonproductive).

y = Logit(D) (5)

3.3. Max Weights Similarity (MWS)

The attention layer uses the Softmax function to determine the probability of the
hidden layer weights among each other [23]. The Softmax function converts a vector
of real values into probability values that sum up to one [30]. Sometimes, the Softmax
function is referred to as multi-class logistic regression or the Softargmax function. For
the speech processing branch, the wide variety in features (65 features × 25 ms frame,
10 ms frameshift) means that the Softmax can perform efficiently. However, in the text
classification part, using a few embedded words limits its efficacy, so the classification
accuracy is lower than in the speech processing branch. It can be explained because,
in the text classification, the generated context vectors have values quite close to each
other, so the attention layer does not have enough variability to reach a value that has
a significant accuracy. The study proposes the Max Weights Similarity (MWS) function
instead of the Softmax function to overcome the previous limitation. MWS aims to collapse
the training weights around a reference value, which is the maximum value of the vector.
The MWS function determines the similarity between the maximum value in the vector
and the remaining values in the same vector. For each vector xt in a sequence of inputs
x1, x2, . . . , xT , and f (xt) in Equation (2), the attention weights αt and maximum value βt of
the vector are given by:

βt = max(exp( f (x1)), exp( f (x2)), ...., exp( f (xT))) (6)

The cosine similarity equation for vectors a and b is as follows:

Cosine_Similarity =
a ∗ b

‖a‖ ∗ ‖b‖ (7)

The wights αt of the context vector C in Equation (3) are given by:

αt =
exp( f (xt)) ∗ β

‖exp( f (xt))‖ ∗ ‖β‖
(8)

Where ‖exp( f (xt))‖ is the normalized value of the vector of weights.

Then, the maximum value of the vector is chosen to give significant attention to the
values of the vector compared with others. MWS will be applied either on the speech
branch to compare its efficiency with the Softmax function.

3.4. Multimodal Approach

Many studies have been developed for deep-learning multimodal approaches [31–33].
In this study, merging the speech and text models are concatenated at the final layer for
classification. The joint representation multimodal approach in [34] is applied to keep the
speech and text features separated in the modeling process. Also, it gives a clear picture of
the effect of using the multimodal compared with the same models trained alone. Figure 1
shows the dotted lines indicating the merging layer that combines the two speech and text
models from the main branch. More specifically, different combinations of speech and text
models are merged until achieving the best accuracy. Then, the five cross-validations and
F1-scoring are applied for validation. In Equation (4), a merged dense layer concatenates
the dense activation output from text and speech branches in Equation (9).

DMerged_Dense = Concatenate(DSpeech, DText) (9)
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Then forward the merged dense to the classifier in Equation (5). The Dense size is the
total number of units for both speech and text layers.

4. The Experiment

The experiment is performed over three stages, i.e., speech processing, text processing,
and multi-model classification (indicated by dotted box). Five-folds cross-validation with
F1-scoring was used to validate the proposed experiments. The training was performed
using Nvidia GPUs. The classification models were performed using Tensor-Flow backend
and Keras APIs. Figure 2 summarizes the neural network parameters used in the proposed
scheme of Figure 1.

Figure 2. The Study Neural Networks Structure Units.

The neural network hyper-parameters are set following the configuration defined in the
Interactive Emotional Dyadic Motion Capture Database (IEMOCAP) [35], which is followed
by various previous studies in emotional recognition and performance measurement [16,25].

4.1. The Data

Ethical approval has been granted for collecting the experiment corpus for research
purposes from a real estate call center located in Egypt. A call recording system built-in
VoIP call center was used between years 2014 and 2015 to collect real calls over landline
phones with a sampling rate of 8 kHz. The selected random calls consist of seven hours
over 30 calls (14 min per call on average), which is considered adequate compared to similar
studies [16,25]. The corpus comprises six different agents between 25–35 years old; two
females and four males. The calls were diarized , which is an algorithm to split the voice
stream into smaller chunks. Speaker diarization is the process of splitting the speakers’
utterances into separate segments [36] previously in [25] so that the talking time is 40% for
females and 60% for males. The naming convention of the recorded calls is built from the
metadata as Date, Time, Agent ID, Speaker ID (by the diariser), the call direction, Inbound,
Outbound (The wave file name appears like DATE-TIME_AGENT-ID_SPK-ID_CALL-
DIRECTION(INBOUND-OUTBOUND).wav). Three independent raters conducted a
manual annotation process. The manual annotation may impact or bias the results because
of the subjective performance evaluation of the raters. Hence, Krippendorff’s Alpha is used
to validate the agreement of the raters that should be more than 80%, which is achieved
(Alpha > 0.79 in this study) [20].
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4.2. Speech Processing

The Open-Smile toolkit for feature extraction [26] can be used to collect 65 features.
It is based on INTERSPEECH 2016 Computational Paralinguistics Challenge (2016 COM-
PARE) [37]. It includes energy-related, spectral-related, and Low-Level Descriptors (LLDs);
including logarithmic harmonic-to-noise ratio (HNR), spectral harmonicity, and psychoa-
coustic spectral sharpness. The features are stated in Table 1. The resulting accuracy from
training and validating the models are detailed in Table 2. The accuracy is compared with
the previous study [25] in which 13 MFCC features were used.

Table 1. 65 provided Low-Level Descriptors (LLD).

54 spectral LLD

RASTA-style auditory spectrum
MFCC 1–14
Spectral energy
Spectral Roll Off Point
Entropy, Spectral Flux, Skewness, Variance, Kurtosis,
Slope, Harmonicity, Psychoacoustic Sharpness

7 voicing related LLD

Probability of voicing, F0 by SHS - Viterbi smoothing
Jitter,logarithmic HNR, Shimmer
PCM fftMag spectral Centroid SMA numeric

4 energy related LLD

Sum of auditory spectrum
Sum of RASTA-style filtered auditory spectrum
RMS Energy
Zero-Crossing Rate

Table 2. Accuracy (Speech Processing) comparison.

Speech Accuracy % per Model Type

Classification Method Type Accuracy

CNNs MFCC 82.7%
CNNs-Attention MFCC 84.27%
CNNs-BiLSTMs MFCC 83.55%

CNNs-BiLSTMs-Attention MFCC 83.54%
CNNs LLD 90.1%

CNNs-Attention LLD 92.48%
CNNs-Attention + MWS LLD 92.88%

CNNs-BiLSTMs LLD 92.67%
CNNs-BiLSTMs-Attention LLD 92.68%

CNNs-BiLSTMs-Attention + MWS LLD 92.25%

There was a significant improvement in speech classification using LLD than the
previous study (MFCC), with the highest improvement being 8.4%. The attention layer
supported with MWS gives a slight improvement of 0.2% for CNN compared with Softmax
but about 0.18% less accuracy for CNN-LSTM.

4.3. Text Processing

The word embedding layer has been applied to indexed words for the transcribed
Arabic text. The generated dictionary is around 4k words with a max stream length of
128 words. The same deep learning structure in Figure 1 was applied with the attention
layer using Softmax and MWS. The results were compared with the results of previous
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experiments of text classification [7] using Logit and SVM based on a bag of words. The
results are reported in Table 3.

Table 3. Accuracy (Text Processing) comparison.

Accuracy % per Model Type

Classification Method Type Accuracy

Naive Bayes Bag of words 67.3%
Logistic Regression Bag of words 80.76%

Linear Support Vector Machine (LSVM) Bag of words 82.69%
CNNs Word Embedding 90.73%

CNNs-Attention Word Embedding 90.98%
CNNs-Attention+MWS Word Embedding 91.4%

CNNs-BiLSTMs Word Embedding 89.87%
CNNs-BiLSTMs-Attention Word Embedding 91.19%

CNNs-BiLSTMs-Attention+MWS Word Embedding 91.12%

The deep learning text classification using the embedding of words shows a significant
improvement of 8.7% over the generative and discriminative approaches using the bag of
words. The MWS has higher accuracy than Softmax only for the CNNs approach (0.42%).
(The same happened in the case of the speech approach). The CNNs-BiLSTM is less
accurate than the CNNs-Attention model, which coincides with the results of a previous
study [25]. It occurred because the BiLSTM is more efficient for long data streams, which is
not the case in the short conversations in a call center. Accordingly, the attention layer does not
provide a significant classification improvement in CNNs-BiLSTMs compared with CNNs.

4.4. Multimodal Approach (Speech + Text)

This step is required to increase the classification accuracy by combining (merging)
the models at the final layer in Figure 1. The dotted box in Figure 2 is the merged dense
Merged_Dense(Batch_size, Param) of batch size = 32 with the following hyper-parameters:

Merged_Dense(32, 564) = Conc(DSpeech(32, 500), DText(32, 64)) (10)

The results reported in Table 4 and Figure 3.

Table 4. Accuracy (Multimodal models) comparison.

Multimodal Accuracy % per Model Type

Text Model Speech Model Accuracy

CNNs CNNs 90.44%
CNNs-Attention CNN 90.1%

CNN CNNs-Attention 92.63%
CNN CNNs-Attention + MWS 92.9%

CNN-Attention CNNs-Attention 91.76%
CNN-Attention + MWS CNNs-Attention + MWS 93.1%

CNNs CNNs-BiLSTMs-Attention 91.8%
CNNs CNNs-BiLSTMs-Attention + MWS 91.9%

CNNs-Attention CNNs-BiLSTMs 90.36%
CNNs-Attention + MWS CNNs-BiLSTMs 91.1%

CNNs-Attention CNNs-BiLSTMs-Attention 91%
CNNs-Attention + MWS CNNs-BiLSTMs-Attention + MWS 91.1%
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Figure 3. Modeling Approaches.

As shown in Figure 3, the multimodal approach provides a better classification accu-
racy by combining the CNNs-attention model for speech features and the CNNs-attention
model for text features; both are implemented with the MWS function instead of the Soft-
max function. The Multimodal MWS approach had an improvement of 0.22% for modeling
speech and 1.7% for modeling text. The accuracy of the multimodal classification for MWS
was slightly better than that of Softmax by 1.34% for the same model. Findings reveal
that the multimodal approach improves previous approaches and not combined models.
However, we propose several lines in which this study could be extended for higher clas-
sification accuracy: (1) extending the vocabulary of the text model, in case of using the
automatic transcription system, to reduce the Out Of Vocabulary (OOV) impact on produc-
tivity measurement, (2) improving the text model using pre-training approaches, i.e., Glove
and BERT [38,39]. However, the previous pre-trained models do not support the Arabic
language in the call centers domain, which requires more effort for data collection and
training, (3) investigating other multimodal approaches like Coordinated-representation of
structured space for merging the models [34].

Table 5 summarizes the results using MWS and Softmax functions for the models with
the highest accuracy.

Table 5. The Table Compares the MWS method with Softmax used in Attention Layer.

MWS vs. Softmax—Accuracy Improvement%

Method Speech Model Text Model Multimodal

Softmax 92.68% 90.98% 91.76%
MWS 92.88% 91.4% 93.1%
Delta 0.2% 0.42% 1.34%

5. Conclusions

The automatization of the call center’s performance measurement is a critical task due
to subjective evaluation. A novel method is proposed based on the multimodal approach
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by merging the speech and text models. The experiment was conducted over seven hours
of speech at the real estate call center. In the study, 65 features of speech were applied using
the Open-smile feature extraction instead of MFCC, and a significant improvement of 8.4%
was achieved. The deep learning approaches for learning text improved the accuracy by
8.7% compared with the generative and discriminative approaches. The final multimodal
approach achieved is 93.1%, which was an approximate improvement of about 1.7% over
text classification and about a 0.22% improvement over speech processing. The Max
weights similarity (MWS) method gave a minor improvement compared with the Softmax
function, which is recommended for further investigation over different domains. It is
recommended that future researchers extend this study by using the Bert context extraction
for modeling text. Besides, applying various multimodal approaches in the early stages is
worth investigating to improve the classifications.
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