
sensors

Article

Neuromuscular Control before and after Independent Walking
Onset in Children with Cerebral Palsy

Annike Bekius 1,2 , Coen S. Zandvoort 1, Jennifer N. Kerkman 1, Laura A. van de Pol 3, R. Jeroen Vermeulen 4 ,
Jaap Harlaar 2,5, Andreas Daffertshofer 1, Annemieke I. Buizer 2,6 and Nadia Dominici 1,*

����������
�������

Citation: Bekius, A.; Zandvoort, C.S.;

Kerkman, J.N.; van de Pol, L.A.;

Vermeulen, R.J.; Harlaar, J.;

Daffertshofer, A.; Buizer, A.I.;

Dominici, N. Neuromuscular Control

before and after Independent

Walking Onset in Children with

Cerebral Palsy. Sensors 2021, 21, 2714.

https://doi.org/10.3390/s21082714

Academic Editor: Marco Iosa

Received: 23 March 2021

Accepted: 9 April 2021

Published: 12 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences,
Amsterdam Movement Sciences, Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam,
1081 BT Amsterdam, The Netherlands; a.bekius@vu.nl (A.B.); c.s.zandvoort@vu.nl (C.S.Z.);
j.n.kerkman@vu.nl (J.N.K.); a.daffertshofer@vu.nl (A.D.)

2 Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC,
Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; j.harlaar@amsterdamumc.nl (J.H.);
ai.buizer@amsterdamumc.nl (A.I.B.)

3 Department of Pediatric Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam,
1081 HV Amsterdam, The Netherlands; l.vandepol@amsterdamumc.nl

4 Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center,
6202 AZ Maastricht, The Netherlands; jeroen.vermeulen@mumc.nl

5 Department of Biomechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
6 Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, University of Amsterdam,

1105 AZ Amsterdam, The Netherlands
* Correspondence: n.dominici@vu.nl; Tel.: +31-20-598-85-91

Abstract: Early brain lesions which produce cerebral palsy (CP) may affect the development of
walking. It is unclear whether or how neuromuscular control, as evaluated by muscle synergy
analysis, differs in young children with CP compared to typically developing (TD) children with the
same walking ability, before and after the onset of independent walking. Here we grouped twenty
children with (high risk of) CP and twenty TD children (age 6.5–52.4 months) based on their walking
ability, supported or independent walking. Muscle synergies were extracted from electromyography
data of bilateral leg muscles using non-negative matrix factorization. Number, synergies’ structure
and variability accounted for when extracting one (VAF1) or two (VAF2) synergies were compared
between CP and TD. Children in the CP group recruited fewer synergies with higher VAF1 and
VAF2 compared to TD children in the supported and independent walking group. The most affected
side in children with asymmetric CP walking independently recruited fewer synergies with higher
VAF1 compared to the least affected side. Our findings suggest that early brain lesions result in early
alterations of neuromuscular control, specific for the most affected side in asymmetric CP.

Keywords: muscle synergies; CP; electromyography; gait; early brain lesions; motor development

1. Introduction

Cerebral palsy (CP) is a neurodevelopmental disorder caused by brain lesions before
birth or early in life [1,2]. It covers a wide clinical spectrum, from children who manage
to walk independently, to children being completely wheelchair dependent. Children can
be affected symmetrically (bilateral CP) or asymmetrically (unilateral CP or asymmetric
bilateral CP) [3]. Topography and severity of CP can be difficult to predict in infancy [4].

Typically, infants take their first independent steps between the age of 9 to 18 months,
representing an important milestone in motor development [5]. Reaching this milestone
can be challenging for children with cerebral palsy (CP). Early interventions can be critical
to improve motor functions, including walking, because the neural networks under de-
velopment are still highly plastic [6]. To improve interventions that promote functional
mobility in children with CP, it is important to identify neuromuscular mechanisms of
abnormal motor development as early as possible.
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One possibility to assess these neuromuscular mechanisms is the use of muscle synergy
analysis. The central nervous system has been theorized to reduce the degrees of freedom
in the coordination of muscle activation during walking through basic building blocks,
named muscle synergies or locomotor modules, that resemble identical temporal activation
patterns of groups of muscles [7–10]. The number of basic activation patterns in typically
developing (TD) children increases from two during neonate stepping, to four in toddlers
who have just started to walk independently [7]. Muscle synergy analysis has recently
been adopted to quantify neuromuscular control during walking in school-age children
with CP, and has been shown to provide a consistent measure between days [11].

Despite a limited number of recorded muscles previous studies show that older
children with CP recruit fewer synergies during walking compared to age-matched TD
children [12–17]. In addition, several studies reported that the walking patterns of older
children with CP retain some of the characteristics of the younger TD children, by showing
the excessive muscular co-contraction of only a few muscles [18–20]. The small num-
ber of recorded muscles and the age of the children involved in these studies limits our
current understanding of neuromuscular control in very young children with early brain le-
sions [6,21,22]. A more detailed and comprehensive assessment of multi-muscle coordinate
patterns is needed [23].

The time before the onset of independent walking can be a critical period for early
interventions to improve motor functions including walking [6,24]. Previous studies
compared children with CP and TD children of similar age, while it may be relevant to
match these groups for developmental phase [17]. One study from Prosser et al. 2010 [25]
compared the trunk and hip muscles in children with CP and TD with similar walking
experience (an average of 28.5 months of walking experience). Nevertheless, the age range
of the children with CP included in this study was quite large (2 to 9 years old), as was
the walking experience (0.5 to 60 months). In addition, they did not differentiate between
children able to walk independently and children who needed support, e.g., by using an
assistive device, to perform the walking task.

The aim of this study was to assess whether neuromuscular control in young chil-
dren with CP differs from that of TD children with the same walking ability in the early
phase of motor development, i.e., before the onset of independent walking (supported
walking) and just after the onset of independent walking in particular by means of the
contributing muscle synergies. In addition, we examined whether there was a difference
in neuromuscular control between the most and least affected side of children who were
affected asymmetrically (unilateral or asymmetric bilateral CP). We hypothesized that
already before or during the first years of independent walking, children with (high risk of)
CP recruit fewer synergies compared to TD children and that this is specific to the most
affected side in children with asymmetric CP.

2. Materials and Methods
2.1. Participants

Children with early brain lesions, at high risk of CP or with an established diagnosis
of CP (referred to as CP group) were recruited from the Departments of Pediatric Rehabil-
itation and of Child Neurology at Amsterdam University Medical Centers (Amsterdam
UMC), and from the Department of Child Neurology at Maastricht University Medical
Center (Maastricht UMC+); see Table 1 for the in- and exclusion criteria. TD children
(referred to as TD group) were recruited by word of mouth. Participants were in either
the supported walking (SW) or independent walking (IW) group, based on their walking
ability. Children in the SW group could not walk independently, while children in the IW
group could. Individual and average characteristics of both groups, as well as the clinical
characteristics of the children in the CP group, are listed in Table 2.
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Table 1. In- and exclusion criteria for the CP group.

Inclusion Criteria Exclusion Criteria

• Diagnosis of CP based on the predominant type of motor
impairment and classified according to the criteria
proposed by Himmelmann et al. (2005) [26]. CP diagnosis
was confirmed according to medical history, brain
magnetic resonance results and clinical examination, OR,
in children under 24 months:

• At high risk for developing CP, based on the presence of
one of the following [27,28]:

- Cystic periventricular leukomalacia, diagnosed on
serial ultrasound assessments of the brain [29]

- Unilateral or bilateral parenchymal lesion of the
brain, diagnosed using MRI [30]

- Term/near-term asphyxia resulting in Sarnat 2 or
3 [31] with brain lesions on MRI and/or with
neurological dysfunction during infancy suggesting
the development of CP

- Neurological dysfunction suggestive of development
of CP

• Functional surgery on bones and/or muscles of the legs
• Selective dorsal rhizotomy in the last 12 months
• Severe epilepsy
• GMFCS IV and V
• Above the age of five years
• Brain damage above the age of one year

Abbreviations: CP = cerebral palsy; GMFCS = gross motor function classification system; MRI = magnetic resonance imaging.

The study was approved by the Ethics Committee of the Faculty of Behavioral and
Movement Sciences at the Vrije Universiteit Amsterdam (VCWE-2016-082) for the TD group,
and of Amsterdam UMC (NL59589.029.16) for the CP group. In Maastricht UMC+, local
practicability was granted. The parents of all children were informed about the procedure
of the study and provided written informed consent prior to participation in accordance
with the declaration of Helsinki for medical research involving human participants.

2.2. Procedure

Experiments were performed in the clinical gait laboratories of the Department of
Rehabilitation Medicine at Amsterdam UMC (location VUmc) and Maastricht UMC+, and
the BabyGaitLab laboratory of the Department of Human Movement Sciences at the Vrije
Universiteit Amsterdam. The responsible investigators and one or both parents of the
child were present during the experiments, and, for the CP group, also a pediatric physio-
therapist. At the start of each experiment for the CP group, the pediatric physiotherapist
performed a physical examination, to identify possible motor asymmetry in the CP group
(in this case reported as asymmetrically affected child).

Children in the SW group walked with support on a treadmill (with the exception
of one child who walked over-ground). Adequate support was provided by the physio-
therapist, experimenter or parent that held the trunk of the child with both hands or held
the hand of the child, while the other parent, or an experimenter, encouraged the child to
take steps [32,33]. The treadmill speed was adjusted to induce a walking pattern and tuned
to a comfortable speed for the child. Children in the IW group walked independently
over-ground, and were encouraged to walk in a straight line, at their preferred walking
speed. Only sequences of steps executed naturally by the child were considered.

Muscle activity was recorded with surface electromyography (EMG) from 18 to 22 bi-
lateral leg- and trunk muscles simultaneously using Mini Wave wireless EMG systems
(Cometa, Italy). The following muscles were recorded from each side: tibialis anterior
(TA); gastrocnemius medialis (GM); gastrocnemius lateralis (GL); soleus (SOL); rectus
femoris (RF); vastus medialis (VM); vastus lateralis (VL); biceps femoris (BF); tensor fascia
latae (TFL); gluteus maximus (GLM) and erector spinae (ES) at L2 level. EMG electrode
placement was performed according to the Surface Electromyography for the Non-Invasive
Assessment of Muscles protocol [34], and the standard recommendations for minimizing
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cross-talk between adjacent muscles [7,10,35]. The skin was cleaned with alcohol and
mini golden reusable surface EMG disc-electrode pairs (15 mm diameter, acquisition area
4 mm2) were placed at the approximate location of the muscle. To minimize movement
artefacts, pre-amplified EMG sensor units were attached to the skin of the child and fixed
with elastic gauzes. The signals were amplified and sampled at 1000 Hz. Body kinematics
and high-speed video were recorded at 100 Hz using a VICON system (Oxford, UK).
32-channel electro-encephalography (EEG) recordings were performed, but not analyzed
here. Sampling of EMG, video, and kinematic data was synchronized online.

2.3. Spatiotemporal Gait Parameters

The step events were extracted from the video and confirmed with kinematic data
for both sides. The gait cycle was defined as a cyclic movement of one leg, starting
when the foot strikes the ground and ending when the foot of the same leg strikes again.
The end of stance was defined as the moment when the foot lifts off the ground. Gait
initiation/termination strides and jumps or turning were discarded from analysis. Stride
velocity was calculated using the corresponding stride length and stride duration. The
stride length was computed according to the 3D displacement of the foot marker. For
the trials recorded during walking on the treadmill, the treadmill speed was taken into
consideration to correct for the participants’ displacements. Stance duration, i.e., from foot
strike to foot off, for both legs was computed.

2.4. Muscle Synergy

All analyses were conducted in MATLAB (version 2017b, Mathworks Inc., Natick,
MA, USA). Raw EMG data were processed offline according to the following sequence:
Notch filter (50 Hz), high pass filtering (30 Hz), full-wave rectification, and low pass filter
with a fourth order Butterworth filter (10 Hz).

Muscle synergies were extracted using non-negative matrix factorization (NMF) of
the pre-processed EMG data [36]. EMG amplitudes of each muscle were normalized to the
maximum of the mean value across all strides plus its standard deviation (SD) for each
participant and the timescale was normalized to t = 201 data points per gait cycle for each
limb. Briefly, the NMF was applied to the mean EMG envelopes for each participant, and
decomposed the EMG data into temporal activation patterns (P) and synergy weights (W),
according to the following equation:

EMG =
n

∑
i=1

PiWi + e , (1)

where the pre-processed EMG data (m × t matrix, where m is the number of muscles and
t is the number of time points) is a linear combination of the temporal activation patterns P
(n × t matrix, where n ≤ m is a predetermined number of synergies) and synergy weights
W (m × n matrix), and e denotes the residual error.

A set of 1–8 synergies was extracted with a restriction of 100 maximum iterations,
1000 replicates, and a threshold for convergence and completion of 10−4. NMF was applied
to the EMG activity of bilateral muscles (including both sides), and unilateral muscles
(including one side). The results of the unilateral EMG analysis were used separately to
compare the most and least affected side in children with asymmetric CP, and right and
left side in children with symmetric CP and TD children.

The reconstruction accuracy of the extracted synergies was determined by the vari-
ability accounted for (VAF), which is the ratio of the sum of squared errors to the total sum
of squares computed with respect to the mean [7,37,38]. Next to VAF we also determined
the synergies’ contribution to the matrix (or Frobenius) norm [39–41], which revealed
comparable results. For the sake of legibility, we here present the conventionally used VAF.
The minimum number of synergies to approximate the pre-processed EMG was defined
as required for VAF to exceed 85%, or when the added VAF of the following synergy was
below 8% [42–44]. In addition, the selected number of synergies had to account for more
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than 80% VAF for every individual muscle [38,45,46]. Since setting of a VAF threshold
arguably comes with arbitrariness, we also investigated VAF by one synergy (VAF1) in the
unilateral EMG analysis, previously used as a summary measure of synergy complexity
related to function and treatment outcome [14,47], and by two synergies (VAF2) in the
bilateral EMG analysis [7,48]. For the latter, we included an additional synergy to account
for the mirror muscle activations in the contralateral side, shifted by 50% of the gait cycle.

In the bilateral EMG analysis, number of synergies and VAF2 were compared between
CP and TD for the SW and IW group. To compare temporal activation patterns and
synergy weights between groups without a restriction to a certain threshold, the number of
synergies was fixed to four, which is the number of synergies typically reported in healthy
adults during walking [7,46,49]. The patterns were grouped and plotted according to the
timing of the main peak relative to the normalized gait cycle. Average temporal activation
patterns and synergy weights per group for each synergy were compared between CP and
TD for the SW and IW group.

In the unilateral EMG analysis, number of synergies and VAF1 for the most affected
side in the asymmetric CP group, or a random side in the symmetric CP and TD group
(random side), were compared between CP and TD for the SW and IW group. Furthermore,
the number of synergies and VAF1 were compared between most and least affected side in
the asymmetric CP, and right and left side in symmetric CP and TD group.

2.5. Statistical Analysis

All data are reported as mean ± SD. An independent t-test was used when the data
was normally distributed, and a one-tailed non-parametric Mann-Whitney U-test when
it was not. An independent t-test in statistical parametric mapping was performed to
assess the similarity of temporal activation patterns per synergy between CP and TD for
the SW and IW group. Synergy weights were compared between groups using Pearson’s
correlation coefficients, where r > 0.7 represented high similarity and r > 0.45 marginal
similarity [50]. Significance threshold was set at p < 0.05 for all tests. For the comparison
between unilateral results within groups, the Wilcoxon signed rank test was used for
number of synergies, and a paired samples t-test for VAF1.

Table 2. Participant characteristics.

Participant Gender Age
(mo)

CA
(mo)

WO
(mo) Distribution Subtype GMFCS

Scores
Brain

Damage
(Side)

BW
(kg)

N
Strides

Speed
(km/h)

CP1 M 11.6 10.6 - Uni R spastic NS b2 (bi) 9.7 17 0.39
CP2 F 14.8 15.1 - Uni L spastic NS 5 (bi) 10.8 24 0.60
CP3 M 21.0 21.4 - Uni L spastic NS 6 (uni R) 9.3 29 0.63
CP4 F 17.8 17.9 - Bi (L > R) spastic NS b2 (bi) 10.7 45 0.82
CP5 F 20.2 17.2 - Bi (R > L) spastic NS 5 (uni L) 7.7 31 0.60
CP6 M 6.5 6.6 - Bi spastic NS b2 (bi) 7.3 22 0.64
CP7 M 9.8 6.5 - Bi spastic NS 4 (bi) - 27 0.80
CP8 F 8.5 8.9 - Bi undef NS b2 (bi) 8.8 43 0.61
CP9 F 42.8 41.2 - Bi spastic III 4 (bi) 14 31 0.80
CP10 F 44.9 43.7 - Bi spastic II 4 (bi) 11.4 40 0.62

CP SW 6 F; 4 M 19.8
(13.6)

18.9
(13.4) # - - - - - 10.0 (2.1) 31 (9) 0.65

(0.13)
CP11 M 23.8 22.2 17.1 Uni R spastic I 5 (uni L) 11.1 35 1.77

CP12 M 35.6 35.8 16.1 Uni R spastic I b1 (uni
L) 13.4 27 2.62

CP13 M 41.0 38.0 16.0 Uni R spastic I 5 (uni L) 14.6 40 2.33
CP14 M 47.2 45.5 15.6 Uni R spastic I 5 (uni L) 15.2 45 3.87
CP15 F 22.3 22.3 15.0 Bi (L > R) spastic I 2 (bi) 10.6 42 1.66
CP16 M 27.8 26.9 19.1 Bi (R > L) spastic I 4 (bi) 14.1 66 2.75
CP17 M 38.6 38.9 16.1 Bi (R > L) spastic I b2 (bi) 14.0 41 4.01
CP18 M 18.3 18.6 15.0 Bi spastic I 4 (bi) 10.9 18 4.00
CP19 F 34.4 29.9 24.4 Bi ataxic II b2 10.0 59 2.37
CP20 M 34.4 29.9 26.7 Bi spastic II 4 (bi) 11.8 27 2.86



Sensors 2021, 21, 2714 6 of 13

Table 2. Cont.

Participant Gender Age
(mo)

CA
(mo)

WO
(mo) Distribution Subtype GMFCS

Scores
Brain

Damage
(Side)

BW
(kg)

N
Strides

Speed
(km/h)

CP IW 2 F; 8 M 32.3
(9.1)

30.8
(8.6) 18.1 (4.1) * - - - - 12.6 (1.9) 40 (15) 2.82

(0.87)

TD1 F 6.3 6.2 - - - - - 6.8 17 0.41
TD2 F 7.5 7.8 - - - - - 9.1 33 0.44
TD3 M 9.7 10.2 - - - - - 9.7 80 0.55
TD4 M 9.8 9.7 - - - - - 8.5 59 0.60
TD5 F 10.0 10.0 - - - - - 8.9 95 0.54
TD6 M 10.2 10.1 - - - - - 10.2 79 0.69
TD7 F 10.4 10.2 - - - - - 9.3 66 0.61
TD8 F 10.6 9.7 - - - - - 9.0 23 0.90
TD9 F 11.2 11.6 - - - - - 9.6 43 0.66

TD10 M 12.0 12.0 - - - - - 11.0 21 0.46

TD SW 6 F; 4 M 9.8
(1.7) #

9.8
(1.7) - - - - - 9.2 (1.1) 52 (28) 0.59

(0.14)

TD11 M 16.5 16.5 10.7 - - - - 11.3 27 2.40
TD12 F 17.5 17.8 11.6 - - - - 10.7 38 2.76
TD13 F 19.3 19.3 12.9 - - - - - 93 1.68
TD14 F 19.7 19.6 12.9 - - - - 10.4 49 2.99
TD15 F 20.1 20.1 13.9 - - - - 10.3 86 2.48
TD16 M 20.8 20.4 14.9 - - - - 13.0 66 3.35
TD17 F 24.4 24.3 11.7 - - - - 11.3 45 1.94
TD18 M 27.5 27.3 11.3 - - - - 13.0 21 3.16
TD19 F 47.1 47.2 14.3 - - - - 16.0 49 3.27
TD20 M 53.5 52.4 11.3 - - - - 15.5 28 3.47

TD IW 6 F; 4 M 26.6
(12.9)

26.5
(12.7) 12.6 (1.4) * - - - - 12.4 (2.2) 50 (25) 2.76

(0.63)

Distribution is based on the physical examination performed by a pediatric physiotherapist during the recording. Asymmetrically affected
children in the CP group are highlighted in grey. The brain damage scores are defined according to a semi-quantitative MRI scale [51]: 2,
full-term border-zone infarction; 4, periventricular leukomalacia; 5, posthemorrhagic porencephaly/venous infarction; 6, middle cerebral
artery infarction; b1, developmental brain malformations; b2, non-specific lesions. The mean (SD) is reported for age, corrected age, walking
onset (for the IW groups), body weight, number of strides and walking speed. # indicates a significant difference in age between CP and TD
in the SW group (p = 0.047), and * indicates a significant difference in age at independent walking onset between CP and TD in the IW group
(p < 0.001). CP = cerebral palsy; TD = typically developing; SW = supported walking; IW = independent walking; F = female; M = male;
CA = corrected age; WO = corrected age at independent walking onset; Bi = bilateral; Uni = unilateral; L = left; R = right; GMFCS = gross
motor function classification system; NS = not yet specified; BW = body weight; kg = kilograms; N = number; SD = standard deviation.

3. Results

Twenty children in the CP group (corrected age 6.5–45.5 months) and twenty children
in the TD group (age 6.3–53.5 months) participated in this study, with ten children in the
SW and IW groups (Table 2). Based on the physical evaluation performed in the children
of the CP group at the start of each experiment by an expert pediatric physiotherapist we
identified a total of n = 5 and n = 7 asymmetrically affected children in the SW and IW
group. Time since onset of independent walking did not significantly differ between the
CP and TD group (12.7 ± 9.8 vs. 13.9 ± 12.8 months; p = 0.81).

3.1. Spatiotemporal Gait Parameters

Stride duration did not differ between CP and TD for SW (2.0 ± 0.5 vs. 2.1 ± 0.6 s) and
IW (0.8 ± 0.1 vs. 0.8 ± 0.1 s). Relative stance duration in the IW group was significantly
longer for TD (62 ± 4%) compared to CP (58 ± 3%; p = 0.02), but CP (72 ± 6%) and
TD (71 ± 4%) did not differ significantly in the SW group (p = 0.29). Stride velocity did
not differ significantly between CP and TD for SW (0.7 ± 0.1 vs. 0.6 ± 0.1 km/h; p = 0.15)
and IW (2.8 ± 0.9 vs. 2.7 ± 0.7 km/h; p = 0.43). Stance duration of the most affected leg
of children with asymmetric CP in the IW group was significantly shorter compared to
the least affected leg (57 ± 3 vs. 60 ± 4%; p = 0.03), while this was not the case when
comparing legs in children with symmetric CP (57 ± 5 vs. 58 ± 4%), and TD children
(62 ± 3 vs. 62 ± 4%; p = 0.44).
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3.2. Muscle Synergy

In the SW group, bilateral EMG analysis revealed that children in the CP group
recruited two, three, or four muscle synergies, and in the TD group three or four synergies.
In the IW group, children in the CP group recruited either three or four synergies, and in
the TD group three, four, or five synergies (Figure 1A,B and Supplementary Figure S1).
The mean number of synergies that explained the variability in the EMG data was lower in
CP compared to TD for SW (2.9 ± 0.7 vs. 3.2 ± 0.4; p = 0.14) and IW (3.7 ± 0.5 vs. 4.1 ± 0.6;
p = 0.06), albeit not reaching statistical significance. VAF2 was higher in CP compared to
TD for SW (70.5 ± 11.9 vs. 61.4 ± 7.4%; p = 0.03) and IW (60.8 ± 8.2 vs. 53.4 ± 11.0%;
p = 0.05, Figure 1C). When the number of synergies was fixed to four, we did observe a
significant difference between CP and TD in the temporal activation pattern P2 during
early swing in the SW group (75.9 to 78.1% of the gait cycle; p = 0.04), and P1 during mid
swing in the IW group (71.4 to 76.6% of the gait cycle; p = 0.01). Correlations between
mean synergy weights of CP and TD were high (r > 0.7) for all synergies in the IW group,
whereas in the SW group only W4 showed a high and W2 a moderate (r > 0.45) correlation
(Figure 2).
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Figure 1. Bilateral EMG analysis results. (A) Mean variability accounted for (VAF) ± SD, per synergy
1–8 for the cerebral palsy (CP) and typically developing (TD) group, for supported walking (left) and
independent walking (right); (B) Percentage number of synergies per group (n = 10) based on a VAF
threshold of 85% or added VAF < 8% for the CP and TD group, for supported (left) and independent
walking (right); (C) Mean number (N) of synergies (left) and variability accounted for (right) by two
synergies (VAF2) for the CP and TD group, for supported walking and independent walking. Error
bars indicate SDs, * p < 0.05.
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Figure 2. Mean activation patterns and synergy weights for a fixed number of four synergies. Bilateral EMG analysis
results of the cerebral palsy (CP) and typically developing (TD) group, for supported walking (left) and independent
walking (right). Lines show the mean temporal activation patterns (P) ± SD along the gait cycle, with mean stance and
swing phase indicated by bar graphs at the bottom. Synergy weights (W) for the recorded muscles are depicted in a bar
graph. Significant differences between activation patterns are indicated by the black bars, p < 0.05. Pearson’s correlations
coefficients (r) between mean synergy weights of the CP and TD group are given. Abbreviations: TA = tibialis anterior;
GM = gastrocnemius medialis; GL = gastrocnemius lateralis; SOL = soleus; RF = rectus femoris; VM = vastus medialis;
VL = vastus lateralis; BF = biceps femoris; TFL = tensor fascia latae; GLM = gluteus maximus; ES = erector spinae at L2 level.

The unilateral EMG analysis showed that the mean number of muscle synergies that
explained the variability in the EMG data was significantly lower in CP compared to TD
for SW (2.7 ± 0.5 vs. 3.1 ± 0.3; p = 0.02) and IW (3.0 ± 0.5 vs. 3.6 ± 0.5; p < 0.01). VAF1 was
significantly higher in CP compared to TD for SW (42.0 ± 12.9 vs. 22.0 ± 10.0%; p < 0.001)
and IW (39.4 ± 13.3 vs. 29.5 ± 9.5%; p = 0.03; Figure 3A).

When comparing the most and least affected side in asymmetric CP, and right vs. left
side in symmetric CP and TD children, we did not find any significant differences for the
number of synergies and VAF1 in the SW group (Figure 3B,C). However, in the IW group
the mean number of synergies in asymmetric CP (n = 7) was significantly lower (3.0 ± 0.2
vs. 3.7 ± 0.2%; p = 0.01) and VAF1 was significantly higher (36.8 ± 13.7 vs. 28.0 ± 9.2%;
p < 0.01) for the most affected compared to the least affected side. No significant differences
between sides could be identified in TD children (n = 10). Due to a limited number of
children in the symmetric CP group (n = 3) no statistical comparison was performed
(Figure 3C).
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Figure 3. Unilateral EMG analysis results. (A) Mean number (N) of synergies (left) and variability
accounted for (right) by one synergy (VAF1) for the CP and TD group, for supported walking
and independent walking. Error bars indicate SDs. The unilateral EMG analysis involves the
most affected side for the asymmetric CP group and a random side for the symmetric CP and TD
group. (B) Percentage number of synergies for each side. The most affected (red) and least affected
(green) side for asymmetric CP, and the left (blue) and right (orange) side for symmetric CP and TD.
(C) Variability accounted for by one synergy (VAF1) for each side. Mean VAF1 per side is indicated
by the black line in the middle of the box. The dark color of the box indicates the 95% confidence
interval, and the lighter color one standard deviation. Individual participant values are indicated by
black dots, and both sides of each participant are connected by broken lines. Significance between
sides is indicated by a *, p < 0.05. Abbreviations: asym = asymmetric; sym = symmetric; n = number
of participants.

4. Discussion

Our study shows that children with CP recruit fewer muscle synergies compared to
TD children already in the supported walking phase, and in the first years after onset of
independent walking. To our knowledge, this study is the first to investigate neuromuscular
control using muscle synergy analysis during supported and independent walking in
such a young patient population. Our results are consistent with the hypothesis that the
complexity of neuromuscular control is already reduced in very young children with CP.
The critical developmental window may be before the age of two years old, when the brain
is highly plastic and the corticospinal tract is still maturing [6,24,52]. The novelty of our
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findings is that the difference in neuromuscular control of walking is present in children
with CP compared to TD children with the same level of walking ability during this early
phase of motor development.

Unilateral EMG analysis revealed that children in the CP group recruited fewer syner-
gies during walking, and VAF1 was higher compared to the TD group before (during SW)
and after the onset of independent walking (during IW), which is in line with previous re-
sults on VAF1 obtained in older children [14,53,54]. In these studies, however, no distinction
was made between children with CP who used an assistive device to walk, and children
who walked independently. In addition, the children with CP were compared with TD
children of the same age, who very often had more experience of walking independently.
Especially since the first independent steps, in children with CP, are typically delayed or
will not occur at all. Using the walking experience, and not age, to compare motor ability
in children with CP and TD children is an innovative approach. This allows for a more
reasonable comparison, and to control for the improvement in walking pattern that occurs
after the onset of independent walking.

In children with asymmetric CP walking independently, the number of synergies was
lower, and VAF1 higher, in the most affected compared to the least affected side. This
suggests that ‘simplified’ neuromuscular control is specific to the most affected side in
children who just start to walk independently. In bilateral EMG analysis, the least affected
side in children with asymmetric CP walking independently may level out the effect of
the most affected side, which can explain the lack of statistically significant differences in
number of synergies between CP and TD, at least to some degree. The difference between
the most and least affected side was not present in the asymmetric CP group during SW,
which may have been caused by the support the children received. Alternatively, it might
imply that this difference between sides occurs later in motor development.

When we removed the restriction of a threshold by fixing the number of synergies
to four, we found only minor significant differences in temporal activation patterns, and
synergy weights were highly correlated during IW between the CP and TD group. This
confirms previous studies that reported comparable synergy structures during walking
in children with CP with high functional mobility levels and TD children [37,49]. The
lower number of synergies in children with CP walking independently, as defined by a
VAF threshold, possibly results from the merging of the four synergy structures [46,55]. If
true, this means that these children may have access to four synergies, but are not able to
recruit all synergies independently. During SW, a fourth synergy did not contain additional
information, since all muscles were generally active for both CP and TD, showing that on
average these children could not access four synergies.

The variability in results from the EMG analysis between individuals was high. This
may reflect the heterogeneity of the CP group, including children with various brain
lesions and functional mobility levels, as was emphasized in previous studies [12,14,17].
The population investigated is very young, and although we compared between children
in the same developmental stage variability between children within groups may be large.
Despite variability between individuals and within relatively small groups, we found
significant differences between the CP and TD group during SW and IW.

Some limitations of this study have to be recognized. In young children at high risk of
CP, we did not always know whether they would actually develop CP. Not all children with
a high risk of CP eventually receive a diagnosis of CP, and motor types and topography
may emerge and change during the first two years of life [4]. Another limitation of the
study was that a relatively small number of participants was included in the IW symmetric
CP group, and as a consequence, we could not perform a statistical comparison between
sides. Walking speed is an important factor to consider in muscle synergy analysis, since
some studies found that walking speed affected the number and structure of muscle
synergies [14,56,57]. The children in our study walked at their preferred and comfortable
speed, which may have caused variability within the groups. However, average walking



Sensors 2021, 21, 2714 11 of 13

speed did not significantly differ between the CP and TD group during both SW and IW,
and thus walking speed did not influence the results of the group comparison.

Our results encourage further investigation of the use of muscle synergy analysis as
an objective tool for early detection of impaired neuromuscular control. This can help to
identify candidates for targeted early interventions aimed at improving neuromuscular
control and walking development. Future research should investigate the longitudinal
development of muscle synergies within children during development from supported
walking to independent walking to minimize the inter-subject variability.

5. Conclusions

In conclusion, our study shows that young children with CP, or at high risk of CP,
recruit fewer synergies compared to TD children with the same walking ability already in
the early phase of motor development. The most affected side in children with asymmetric
CP walking independently employed fewer synergies than the least affected side. This
suggests that brain lesions in CP result in early alterations of neuromuscular control.
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.3390/s21082714/s1, Figure S1: Temporal activation patterns.

Author Contributions: Conceptualization, A.B., A.I.B. and N.D.; methodology, A.B., A.I.B. and N.D.;
formal analysis, A.B. and N.D.; investigation, A.B., C.S.Z., J.N.K., L.A.v.d.P., R.J.V., A.I.B. and N.D.;
data curation, A.B. and N.D.; writing—original draft preparation, A.B.; writing—review and editing,
C.S.Z., J.N.K., L.A.v.d.P., R.J.V., J.H., A.D., A.I.B. and N.D.; visualization, A.B., N.D.; supervision, J.H.,
A.D., A.I.B. and N.D.; project administration, A.B.; funding acquisition, N.D. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agreement n◦ 715945 Learn2Walk),
and by the Dutch Organization for Scientific Research (NWO) VIDI grant (grant agreement n◦

016.156.346 FirSTeps).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Ethics Committee of the Faculty of Behavioral and
Movement Sciences at the Vrije Universiteit Amsterdam (VCWE-2016-082, 2 May 2016) for the TD
group, and of Amsterdam UMC (NL59589.029.16, 10 March 2017) for the CP group. In Maastricht
UMC+, local practicability was granted.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study. Written informed consent has been obtained from the patient(s) to publish this paper.

Data Availability Statement: The data that support the findings of this study are available from the
authors A.B. and N.D., upon reasonable request.

Acknowledgments: We thank the parents and children who participated in this study, and the
pediatric physiotherapists Danny Cornelissen, Eefje Muselaers and Emma Verwaaijen who assisted
during the experiments with children in the CP group. In addition, we thank Marije Goudriaan,
Marzieh Borhanazad, Margit M. Bach, Brian Martens and Irene Moll for their support during
recruitment and experiments.

Conflicts of Interest: Authors declare no conflict of interest. The funders had no role in the design of
the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in
the decision to publish the results.

References
1. Himmelmann, K.; Uvebrant, P. The panorama of cerebral palsy in Sweden part XII shows that patterns changed in the birth years

2007–2010. Acta Paediatr. 2018, 107, 462–468. [CrossRef]
2. Bax, M.; Goldstein, M.; Rosenbaum, P.; Leviton, A.; Paneth, N.; Dan, B.; Jacobsson, B.; Damiano, D. Proposed definition and

classification of cerebral palsy, April 2005. Dev. Med. Child Neurol. 2005, 47, 571–576. [CrossRef]
3. Cans, C. Surveillance of cerebral palsy in Europe: A collaboration of cerebral palsy surveys and registers. Dev. Med. Child Neurol.

2000, 42, 816–824. [CrossRef]

https://www.mdpi.com/article/10.3390/s21082714/s1
https://www.mdpi.com/article/10.3390/s21082714/s1
http://doi.org/10.1111/apa.14147
http://doi.org/10.1017/S001216220500112X
http://doi.org/10.1111/j.1469-8749.2000.tb00695.x


Sensors 2021, 21, 2714 12 of 13

4. Novak, I.; Morgan, C.; Adde, L.; Blackman, J.; Boyd, R.N.; Brunstrom-Hernandez, J.; Cioni, G.; Damiano, D.; Darrah, J.; Eliasson,
A.-C. Early, accurate diagnosis and early intervention in cerebral palsy: Advances in diagnosis and treatment. JAMA Pediatr.
2017, 171, 897–907. [CrossRef] [PubMed]

5. Adolph, K.E.; Robinson, S.R. The road to walking: What learning to walk tells us about development. In The Oxford Handbook of
Developmental Psychology; Zelazo, P.D., Ed.; Oxford University Press: New York, NY, USA, 2013; Volume 1, pp. 403–443.

6. Yang, J.F.; Livingstone, D.; Brunton, K.; Kim, D.; Lopetinsky, B.; Roy, F.; Zewdie, E.; Patrick, S.K.; Andersen, J.; Kirton, A. Training
to enhance walking in children with cerebral palsy: Are we missing the window of opportunity? In Seminars In Pediatric Neurology;
Elsevier: Amsterdam, The Netherlands, 2013; pp. 106–115.

7. Dominici, N.; Ivanenko, Y.P.; Cappellini, G.; d’Avella, A.; Mondi, V.; Cicchese, M.; Fabiano, A.; Silei, T.; Di Paolo, A.;
Giannini, C.; et al. Locomotor primitives in newborn babies and their development. Science 2011, 334, 997–999. [CrossRef]

8. Hart, C.B.; Giszter, S.F. A neural basis for motor primitives in the spinal cord. J. Neurosci. 2010, 30, 1322–1336. [CrossRef]
[PubMed]

9. Bizzi, E.; Cheung, V.C. The neural origin of muscle synergies. Front. Comput. Neurosci. 2013, 7, 51. [CrossRef] [PubMed]
10. Ivanenko, Y.P.; Cappellini, G.; Dominici, N.; Poppele, R.E.; Lacquaniti, F. Coordination of locomotion with voluntary movements

in humans. J. Neurosci. 2005, 25, 7238–7253. [CrossRef] [PubMed]
11. Shuman, B.; Goudriaan, M.; Bar-On, L.; Schwartz, M.H.; Desloovere, K.; Steele, K.M. Repeatability of muscle synergies within

and between days for typically developing children and children with cerebral palsy. Gait Posture 2016, 45, 127–132. [CrossRef]
12. Shuman, B.R.; Goudriaan, M.; Desloovere, K.; Schwartz, M.H.; Steele, K.M. Associations between Muscle Synergies and Treatment

Outcomes in Cerebral Palsy Are Robust Across Clinical Centers. Arch. Phys. Med. Rehabil. 2018, 99, 2175–2182. [CrossRef]
[PubMed]

13. Steele, K.M.; Munger, M.E.; Peters, K.M.; Shuman, B.R.; Schwartz, M.H. Repeatability of electromyography recordings and
muscle synergies during gait among children with cerebral palsy. Gait Posture 2019, 67, 290–295. [CrossRef]

14. Steele, K.M.; Rozumalski, A.; Schwartz, M.H. Muscle synergies and complexity of neuromuscular control during gait in cerebral
palsy. Dev. Med. Child Neurol. 2015, 57, 1176–1182. [CrossRef] [PubMed]

15. Hashiguchi, Y.; Ohata, K.; Osako, S.; Kitatani, R.; Aga, Y.; Masaki, M.; Yamada, S. Number of Synergies Is Dependent on Spasticity
and Gait Kinetics in Children with Cerebral Palsy. Pediatr. Phys. Ther. 2018, 30, 34–38. [CrossRef] [PubMed]

16. Tang, L.; Li, F.; Cao, S.; Zhang, X.; Wu, D.; Chen, X. Muscle synergy analysis in children with cerebral palsy. J. Neural Eng. 2015,
12, 046017. [CrossRef] [PubMed]

17. Bekius, A.; Bach, M.M.; van der Krogt, M.M.; de Vries, R.; Buizer, A.I.; Dominici, N. Muscle Synergies During Walking in Children
with Cerebral Palsy: A Systematic Review. Front. Physiol. 2020, 11, 632. [CrossRef] [PubMed]

18. Leonard, C.T.; Hirschfeld, H.; Forssberg, H. The development of independent walking in children with cerebral palsy. Dev. Med.
Child Neurol. 1991, 33, 567–577. [CrossRef]

19. Berger, W. Characteristics of locomotor control in children with cerebral palsy. Neurosci. Biobehav. Rev. 1998, 22, 579–582.
[CrossRef]

20. Meyns, P.; Desloovere, K.; Van Gestel, L.; Massaad, F.; Smits-Engelsman, B.; Duysens, J. Altered arm posture in children with
cerebral palsy is related to instability during walking. Eur. J. Paediatr. Neurol. 2012, 16, 528–535. [CrossRef]

21. Cahill-Rowley, K.; Rose, J. Etiology of impaired selective motor control: Emerging evidence and its implications for research and
treatment in cerebral palsy. Dev. Med. Child Neurol. 2014, 56, 522–528. [CrossRef]

22. Steele, K.M.; Tresch, M.C.; Perreault, E.J. The number and choice of muscles impact the results of muscle synergy analyses. Front.
Comput. Neurosci. 2013, 7, 105. [CrossRef]

23. Damiano, D. Muscle synergies: Input or output variables for neural control? Dev. Med. Child Neurol. 2015, 57, 1091–1092.
[CrossRef] [PubMed]

24. Hadders-Algra, M. General movements: A window for early identification of children at high risk for developmental disorders. J.
Pediatr. 2004, 145, S12–S18. [CrossRef] [PubMed]

25. Prosser, L.A.; Lee, S.C.; VanSant, A.F.; Barbe, M.F.; Lauer, R.T. Trunk and hip muscle activation patterns are different during
walking in young children with and without cerebral palsy. Phys. Ther. 2010, 90, 986–997. [CrossRef]

26. Himmelmann, K.; Hagberg, G.; Beckung, E.; Hagberg, B.; Uvebrant, P. The changing panorama of cerebral palsy in Sweden. IX.
Prevalence and origin in the birth-year period 1995–1998. Acta Paediatr. 2005, 94, 287–294. [CrossRef] [PubMed]

27. Hielkema, T.; Hamer, E.G.; Reinders-Messelink, H.A.; Maathuis, C.G.; Bos, A.F.; Dirks, T.; van Doormaal, L.; Verheijden, J.;
Vlaskamp, C.; Lindeman, E. LEARN 2 MOVE 0–2 years: Effects of a new intervention program in infants at very high risk for
cerebral palsy; a randomized controlled trial. BMC Pediatr. 2010, 10, 76. [CrossRef]

28. Hamer, E.G.; Vermeulen, R.J.; Dijkstra, L.J.; Hielkema, T.; Kos, C.; Bos, A.F.; Hadders-Algra, M. Slow pupillary light responses in
infants at high risk of cerebral palsy were associated with periventricular leukomalacia and neurological outcome. Acta Paediatr.
2016, 105, 1493–1501. [CrossRef]

29. de Vries, L.S.; Eken, P.; Dubowitz, L.M. The spectrum of leukomalacia using cranial ultrasound. Behav. Brain Res. 1992, 49, 1–6.
[CrossRef]

30. de Vries, L.S.; Roelants-van Rijn, A.M.; Rademaker, K.J.; van Haastert, I.C.; Beek, F.J.; Groenendaal, F. Unilateral parenchymal
haemorrhagic infarction in the preterm infant. Eur. J. Paediatr. Neurol. 2001, 5, 139–149. [CrossRef]

http://doi.org/10.1001/jamapediatrics.2017.1689
http://www.ncbi.nlm.nih.gov/pubmed/28715518
http://doi.org/10.1126/science.1210617
http://doi.org/10.1523/JNEUROSCI.5894-08.2010
http://www.ncbi.nlm.nih.gov/pubmed/20107059
http://doi.org/10.3389/fncom.2013.00051
http://www.ncbi.nlm.nih.gov/pubmed/23641212
http://doi.org/10.1523/JNEUROSCI.1327-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/16079406
http://doi.org/10.1016/j.gaitpost.2016.01.011
http://doi.org/10.1016/j.apmr.2018.03.006
http://www.ncbi.nlm.nih.gov/pubmed/29649451
http://doi.org/10.1016/j.gaitpost.2018.10.009
http://doi.org/10.1111/dmcn.12826
http://www.ncbi.nlm.nih.gov/pubmed/26084733
http://doi.org/10.1097/PEP.0000000000000460
http://www.ncbi.nlm.nih.gov/pubmed/29252834
http://doi.org/10.1088/1741-2560/12/4/046017
http://www.ncbi.nlm.nih.gov/pubmed/26061115
http://doi.org/10.3389/fphys.2020.00632
http://www.ncbi.nlm.nih.gov/pubmed/32714199
http://doi.org/10.1111/j.1469-8749.1991.tb14926.x
http://doi.org/10.1016/S0149-7634(97)00047-X
http://doi.org/10.1016/j.ejpn.2012.01.011
http://doi.org/10.1111/dmcn.12355
http://doi.org/10.3389/fncom.2013.00105
http://doi.org/10.1111/dmcn.12843
http://www.ncbi.nlm.nih.gov/pubmed/26195185
http://doi.org/10.1016/j.jpeds.2004.05.017
http://www.ncbi.nlm.nih.gov/pubmed/15292882
http://doi.org/10.2522/ptj.20090161
http://doi.org/10.1111/j.1651-2227.2005.tb03071.x
http://www.ncbi.nlm.nih.gov/pubmed/16028646
http://doi.org/10.1186/1471-2431-10-76
http://doi.org/10.1111/apa.13532
http://doi.org/10.1016/S0166-4328(05)80189-5
http://doi.org/10.1053/ejpn.2001.0494


Sensors 2021, 21, 2714 13 of 13

31. Sarnat, H.B.; Sarnat, M.S. Neonatal encephalopathy following fetal distress: A clinical and electroencephalographic study. Arch.
Neurol. 1976, 33, 696–705. [CrossRef]

32. Dominici, N.; Ivanenko, Y.P.; Lacquaniti, F. Control of foot trajectory in walking toddlers: Adaptation to load changes. J. Neuro-
physiol. 2007, 97, 2790–2801. [CrossRef]

33. Ivanenko, Y.P.; Dominici, N.; Cappellini, G.; Lacquaniti, F. Kinematics in newly walking toddlers does not depend upon postural
stability. J. Neurophysiol. 2005, 94, 754–763. [CrossRef]

34. Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor
placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [CrossRef]

35. Ivanenko, Y.P.; Poppele, R.E.; Lacquaniti, F. Five basic muscle activation patterns account for muscle activity during human
locomotion. J. Physiol. 2004, 556, 267–282. [CrossRef]

36. Lee, D.D.; Seung, H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401, 788–791. [CrossRef]
[PubMed]

37. Cappellini, G.; Ivanenko, Y.P.; Martino, G.; MacLellan, M.J.; Sacco, A.; Morelli, D.; Lacquaniti, F. Immature Spinal Locomotor
Output in Children with Cerebral Palsy. Front. Physiol. 2016, 7, 478. [CrossRef] [PubMed]

38. Torres-Oviedo, G.; Macpherson, J.M.; Ting, L.H. Muscle synergy organization is robust across a variety of postural perturbations.
J. Neurophysiol. 2006, 96, 1530–1546. [CrossRef] [PubMed]

39. Zandvoort, C.S.; van Dieen, J.H.; Dominici, N.; Daffertshofer, A. The human sensorimotor cortex fosters muscle synergies through
cortico-synergy coherence. Neuroimage 2019, 199, 30–37. [CrossRef] [PubMed]

40. Kerkman, J.N.; Bekius, A.; Boonstra, T.W.; Daffertshofer, A.; Dominici, N. Muscle synergies and coherence networks reflect
different modes of coordination during walking. Front. Physiol. 2020, 11, 751. [CrossRef]

41. Bach, M.M.; Daffertshofer, A.; Dominici, N. The development of mature gait patterns in children during walking and running.
Eur. J. Appl. Physiol. 2021, 121, 1073–1085. [CrossRef]

42. Frère, J.; Hug, F. Between-subject variability of muscle synergies during a complex motor skill. Front. Comput. Neurosci. 2012, 6, 99.
[CrossRef]

43. Israely, S.; Leisman, G.; Machluf, C.C.; Carmeli, E. Muscle Synergies Control during Hand-Reaching Tasks in Multiple Directions
Post-stroke. Front. Comput. Neurosci. 2018, 12, 10. [CrossRef]

44. Maclellan, M.J.; Ivanenko, Y.P.; Massaad, F.; Bruijn, S.M.; Duysens, J.; Lacquaniti, F. Muscle activation patterns are bilaterally
linked during split-belt treadmill walking in humans. J. Neurophysiol. 2014, 111, 1541–1552. [CrossRef] [PubMed]

45. Roh, J.; Rymer, W.Z.; Perreault, E.J.; Yoo, S.B.; Beer, R.F. Alterations in upper limb muscle synergy structure in chronic stroke
survivors. J. Neurophysiol. 2013, 109, 768–781. [CrossRef]

46. Clark, D.J.; Ting, L.H.; Zajac, F.E.; Neptune, R.R.; Kautz, S.A. Merging of healthy motor modules predicts reduced locomotor
performance and muscle coordination complexity post-stroke. J. Neurophysiol. 2010, 103, 844–857. [CrossRef] [PubMed]

47. Shuman, B.R.; Goudriaan, M.; Desloovere, K.; Schwartz, M.H.; Steele, K.M. Muscle synergies demonstrate only minimal changes
after treatment in cerebral palsy. J. Neuroeng. Rehabil. 2019, 16, 46. [CrossRef] [PubMed]

48. Sylos-Labini, F.; La Scaleia, V.; Cappellini, G.; Fabiano, A.; Picone, S.; Keshishian, E.S.; Zhvansky, D.S.; Paolillo, P.; Solopova, I.A.;
d’Avella, A. Distinct locomotor precursors in newborn babies. Proc. Natl. Acad. Sci. USA 2020, 117, 9604–9612. [CrossRef]

49. Yu, Y.; Chen, X.; Cao, S.; Wu, D.; Zhang, X.; Chen, X. Gait synergetic neuromuscular control in children with cerebral palsy at
different gross motor function classification system levels. J. Neurophysiol. 2019, 121, 1680–1691. [CrossRef] [PubMed]

50. Torres-Oviedo, G.; Ting, L.H. Subject-specific muscle synergies in human balance control are consistent across different biome-
chanical contexts. J. Neurophysiol. 2010, 103, 3084–3098. [CrossRef]

51. Fiori, S.; Cioni, G.; Klingels, K.; Ortibus, E.; Van Gestel, L.; Rose, S.; Boyd, R.N.; Feys, H.; Guzzetta, A. Reliability of a novel,
semi-quantitative scale for classification of structural brain magnetic resonance imaging in children with cerebral palsy. Dev. Med.
Child Neurol. 2014, 56, 839–845. [CrossRef]

52. Friel, K.M.; Williams, P.T.; Serradj, N.; Chakrabarty, S.; Martin, J.H. Activity-Based Therapies for Repair of the Corticospinal
System Injured during Development. Front. Neurol. 2014, 5, 229. [CrossRef]

53. Kim, Y.; Bulea, T.C.; Damiano, D.L. Children with Cerebral Palsy Have Greater Stride-to-Stride Variability of Muscle Synergies
During Gait Than Typically Developing Children: Implications for Motor Control Complexity. Neurorehabil. Neural Repair 2018,
32, 834–844. [CrossRef] [PubMed]

54. Goudriaan, M.; Shuman, B.R.; Steele, K.M.; Van den Hauwe, M.; Goemans, N.; Molenaers, G.; Desloovere, K. Non-neural Muscle
Weakness Has Limited Influence on Complexity of Motor Control during Gait. Front. Hum. Neurosci. 2018, 12, 5. [CrossRef]
[PubMed]

55. Hashiguchi, Y.; Ohata, K.; Kitatani, R.; Yamakami, N.; Sakuma, K.; Osako, S.; Aga, Y.; Watanabe, A.; Yamada, S. Merging and
Fractionation of Muscle Synergy Indicate the Recovery Process in Patients with Hemiplegia: The First Study of Patients after
Subacute Stroke. Neural Plast. 2016, 2016, 5282957. [CrossRef] [PubMed]

56. Yokoyama, H.; Ogawa, T.; Kawashima, N.; Shinya, M.; Nakazawa, K. Distinct sets of locomotor modules control the speed and
modes of human locomotion. Sci. Rep. 2016, 6, 36275. [CrossRef]

57. Kibushi, B.; Hagio, S.; Moritani, T.; Kouzaki, M. Speed-Dependent Modulation of Muscle Activity Based on Muscle Synergies
during Treadmill Walking. Front. Hum. Neurosci. 2018, 12, 4. [CrossRef]

http://doi.org/10.1001/archneur.1976.00500100030012
http://doi.org/10.1152/jn.00262.2006
http://doi.org/10.1152/jn.00088.2005
http://doi.org/10.1016/S1050-6411(00)00027-4
http://doi.org/10.1113/jphysiol.2003.057174
http://doi.org/10.1038/44565
http://www.ncbi.nlm.nih.gov/pubmed/10548103
http://doi.org/10.3389/fphys.2016.00478
http://www.ncbi.nlm.nih.gov/pubmed/27826251
http://doi.org/10.1152/jn.00810.2005
http://www.ncbi.nlm.nih.gov/pubmed/16775203
http://doi.org/10.1016/j.neuroimage.2019.05.041
http://www.ncbi.nlm.nih.gov/pubmed/31121297
http://doi.org/10.3389/fphys.2020.00751
http://doi.org/10.1007/s00421-020-04592-2
http://doi.org/10.3389/fncom.2012.00099
http://doi.org/10.3389/fncom.2018.00010
http://doi.org/10.1152/jn.00437.2013
http://www.ncbi.nlm.nih.gov/pubmed/24478155
http://doi.org/10.1152/jn.00670.2012
http://doi.org/10.1152/jn.00825.2009
http://www.ncbi.nlm.nih.gov/pubmed/20007501
http://doi.org/10.1186/s12984-019-0502-3
http://www.ncbi.nlm.nih.gov/pubmed/30925882
http://doi.org/10.1073/pnas.1920984117
http://doi.org/10.1152/jn.00580.2018
http://www.ncbi.nlm.nih.gov/pubmed/30892974
http://doi.org/10.1152/jn.00960.2009
http://doi.org/10.1111/dmcn.12457
http://doi.org/10.3389/fneur.2014.00229
http://doi.org/10.1177/1545968318796333
http://www.ncbi.nlm.nih.gov/pubmed/30223739
http://doi.org/10.3389/fnhum.2018.00005
http://www.ncbi.nlm.nih.gov/pubmed/29445330
http://doi.org/10.1155/2016/5282957
http://www.ncbi.nlm.nih.gov/pubmed/28090358
http://doi.org/10.1038/srep36275
http://doi.org/10.3389/fnhum.2018.00004

	Introduction 
	Materials and Methods 
	Participants 
	Procedure 
	Spatiotemporal Gait Parameters 
	Muscle Synergy 
	Statistical Analysis 

	Results 
	Spatiotemporal Gait Parameters 
	Muscle Synergy 

	Discussion 
	Conclusions 
	References

