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Abstract: The accuracy in diagnosing prostate cancer (PCa) has increased with the development of
multiparametric magnetic resonance imaging (mpMRI). Biparametric magnetic resonance imaging
(bpMRI) was found to have a diagnostic accuracy comparable to mpMRI in detecting PCa. However,
prostate MRI assessment relies on human experts and specialized training with considerable inter-
reader variability. Deep learning may be a more robust approach for prostate MRI assessment. Here
we present a method for autosegmenting the prostate zone and cancer region by using SegNet,
a deep convolution neural network (DCNN) model. We used PROSTATEx dataset to train the
model and combined different sequences into three channels of a single image. For each subject, all
slices that contained the transition zone (TZ), peripheral zone (PZ), and PCa region were selected.
The datasets were produced using different combinations of images, including T2-weighted (T2W)
images, diffusion-weighted images (DWI) and apparent diffusion coefficient (ADC) images. Among
these groups, the T2ZW + DWI + ADC images exhibited the best performance with a dice similarity
coefficient of 90.45% for the TZ, 70.04% for the PZ, and 52.73% for the PCa region. Image sequence
analysis with a DCNN model has the potential to assist PCa diagnosis.

Keywords: encoder-decoder architecture; DCNN; SegNet; zonal segmentation; T2W; ADC; DWI

1. Introduction

Prostate disease is a major health problem in industrialized countries, especially
in the Western world. One in nine men are diagnosed with prostate cancer (PCa) in
their lifetime [1]. Magnetic resonance imaging (MRI) is an important diagnostic tool for
PCa. The traditional diagnostic process includes measuring the level of prostate-specific
antigen in the blood, followed by prostate biopsy sampling and histopathology analysis.
The precision in diagnosing PCa has increased with the development of multiparametric
MRI (mpMRI), which is more accurate than MRI and has become the main method for
PCa diagnosis [2]. A complete mpMRI contain T2-weighted (T2W) images, diffusion-
weighted images (DWIs), the corresponding apparent diffusion coefficient (ADC) map
and dynamic contrast-enhanced MRI (DCE-MRI). Of them, T2W and DWI have been
proved to be the most important sequences for diagnosing prostate cancer. At present,
the added value DCE is not firmly established [3]. Also DCE-MRI with gadolinium
chelate increases the burden on patients in terms of examination time, cost, and them
potentially developing nephrogenic systemic fibrosis. A study showed that the diagnostic
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performance of biparametric MRI (bpMRI), which is an abbreviated prostate MRI protocol
without DCE-MRI, was comparable to that of mpMRI [4]. Prostate MRI assessment relies
on human experts, specialized training, and experience [5] with considerable inter-reader
variability. Efforts have been made to develop a more robust approach for image assessment.
This approach includes machine learning, which would help decrease the time spent on
diagnosis by a considerable extent. Machine learning has thus been considered for use in
the diagnosis of PCa [6].

Various segmentation methods using deep learning (DL) have been developed for
automatic imaging detection and segmentation [7,8] and have been applied in oncolog-
ical imaging [9,10]. Methods for medical image segmentation have gradually evolved
from manual segmentation to semiautomatic segmentation and fully automatic segmenta-
tion [11]. Image recognition technology is one of the core technologies of DL. DL methods
allow the simultaneous learning of adaptive image features and performance of image
segmentation. In previous studies, significant achievements have been made in the use of
DL for image segmentation, especially in cancer diagnosis [12-14].

Deep convolutional neural networks (DCNNSs) are being used as a tool for image
analysis. They allow for the automatic extraction of features and learning from large
amounts of data for quantification. The DCNN architecture has been used for prostate
segmentation or PCa detection [11,14-16]. In most of these studies, conventional DCNNs
were used for semantic image segmentation. A common model with an encoder-decoder is
the U-Net architecture, which is usually used for segmenting medical images [17]. SegNet
is a modified DCNN model that uses an upsampling strategy and achieves the same
accuracy as a DCNN with reduced memory and storage requirements [9]. In this paper, we
propose a modified architecture based on SegNet to segment prostate zones and detect PCa
through bpMRI. We compared the prediction accuracies of the autosegmentation when
using different combinations of T2W images, DWIs, and ADC images of the prostate.

2. Materials and Methods

In this section, we discuss the method employed for training and testing convolutional
neural networks for segmenting the transition zone (TZ), peripheral zone (PZ), and PCa
region from T2W, DWI, and ADC MRI images. First, a simple description of the DCNN
architecture is provided. Second, we describe the datasets used in this study and class
labels. Third, a method is presented for dataset selection, image preprocessing, data
augmentation, and training data extraction. Next, the cross-entropy loss function and
training parameter used in the optimization of the network parameters are presented.
We evaluated DCNN-based segmentation methods by using the following performance
metrics: accuracy, dice similarity coefficient (DSC), recall, sensitivity, specificity, and the
receiver operating characteristic (ROC) curve. The framework for evaluating DCNNs is
shown in Figure 1.

2.1. Encoder—Decoder Architectures for Prostate Segmentation

A DCNN model called SegNet, which has an encoder-decoder structure, was em-
ployed in this study [18]. SegNet is a pixel-wise semantic segmentation method that was
originally developed for understanding scenes and deducing the relationships among
objects during autonomous driving. The architecture of encoders uses similar forward
connections to that of the VGG16 architecture without fully connected layers. The encoder
architecture consists of 13 convolution layers and five max-pooling indices corresponding
to a set of decoders with 13 convolution layers and five upsampling layers, followed
by a softmax layer for pixel-wise classification. The absence of fully connected layers
is beneficial for retaining high-resolution feature maps at the deepest encoder output.
Low-resolution feature maps are upsampled by SegNet by using memorized max-pooling
indices. This process reduces the number of network parameters that take up memory
and store boundary information in the network. A schematic of the modified SegNet
architecture is displayed in Figure 2. In the conventional SegNet, a rectified linear unit
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(ReLU) activation function is used in the convolution block; however, we replaced ReLU
with an exponential linear unit (ELU) [19]. Many experiments have been performed with
different activation functions, and ELU has been found to exhibit the best performance in

this architecture [20].
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Figure 1. Method for evaluating encoder-decoder DCNN architectures in the semantic segmentation

of prostate bpMRI images.

G Deep Convolutional Encoder-Decoder Network
@\ﬂ ROASIENY
‘e
5 Pooling Indices

R G B - Conv+ Batch Normalization+ELU
- Upsampling | Pooling Softmax

Figure 2. Schematic of the modified SegNet architecture.

2.2. MRI Dataset

In this study, the SPIE-AAPM-NCI PROSTATEX challenge dataset was used for train-
ing, validation, and testing [21]. The PROSTATEX portal includes data from 204 patients
with 330 pathologically confirmed PCa location For each patient, the coordinates of the
tumor location in the MRI data were provided. The prostate MR studies were acquired on
the same MRI platform. The T2W images were acquires using a turbo spin echo sequence
and had a resolution of around 0.5 mm in-plane and a slice thickness of 3.6 mm. The
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DWI were acquired with a single-shot echo planar imaging sequence with a resolution of
2 mm in-plane and 3.6 mm slice thickness and with diffusion-encoding gradients in three
directions. Three b-values were acquired (50, 400 and 800). The ADC map was calculated
by the scanner software. All images were acquired without an endorectal coil. In this study,
training data from 549 slices containing PCa obtained from 100 patients were selected and
used in the analysis. An additional 84 slices containing PCa from 15 patients were used
to test the predicted segmentation. These test data did not overlap with the training data.
In order to minimize the label of imbalance, we selected the slice which contained PCa,
TZ and PZ. With the tumor coordinates known, a radiologist with more than 10 years of
experience labeled the PCa regions on the mpMRI images as well as the prostate anatomical
zones, including the TZ and PZ. The axial T2W, DWI, and ADC images were used for
comparing the accuracy of zonal segmentation with different combinations of images. The
test images were selected from a dataset with known PCa locations. Each slice contained a
TZ, PZ, and PCa region. A total of 80% of the images were used for training the adopted
model, and 20% of the images were used for validating the model.

2.3. Image Processing
2.3.1. Registration and Patch Extraction

To merge the DWI and ADC images with the T2W images, low-resolution DWI and
ADC images were aligned and resampled by using an established registration toolbox
for transformation [22]. The field of view (FOV) included the entire prostate gland, and
resizing of the image of the FOV was performed by scaling the images to 256 x 256 pixels
by using the nearest-neighbor interpolation method [23]. Images of different MRI sequences
of the same slice location were merged. Three combinations of images were obtained
from the input data: T2W images + DWIs + ADC images, T2W images + DWIs, and
T2W + ADC images.

2.3.2. Normalization

The image intensity is normalized to reduce the variation in the intensity distribution
of images in datasets where interpatient variability exists. In this study, the normalization
of images involved each pixel signal intensity subtracting the mean value of all images
and dividing the obtained value by the standard deviation. Each MR sequence of a patient
was normalized separately because images of different sequences are intrinsic and contain
useful information for diagnosis.

2.3.3. Data Augmentation

For the training sample, we augmented the data 12 times (rotation 90°, rotation —20°
to 20°, horizontal flip, and vertical flip) to increase the accuracy of the adopted model.

2.3.4. Class Weight Balance

In a prostate MRI scan, the anatomy of interest usually occupies a smaller region than
the background, which results in an imbalance of class labels. Therefore, the background
label becomes the dominant class in the learning process, which leads to imbalanced
prediction. The class weighting approach was used to prevent the learning process from
being trapped in local minima for improving the low dominant class [24]. More specifically,
the prostate gland region was extracted from the original image and the number of pixels
from the background was reduced. After the aforementioned processes, the pixel ratio was
still imbalanced, with the ratio of the background:TZ:PZ:PCa zones being 58:25:14:3. To
reduce the class imbalance, large weights were assigned for labels with few pixels and
small weights were assigned for labels with a high number of background pixels. The
pixels were classified into four classes: background, TZ, PZ, and PCa. The frequency of the
classes (Fg55) was calculated using Equation (1). The number of pixels in a particular class
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is denoted as N 55, and T represents the total number of pixels in the images. The class
weight (W) was calculated by dividing the median of Fj;ss by Fgss-

N
Fcluss = CTQSS (1)

median (Fejgss)

Wcluss = (2)

F, class

2.4. DCNN Training

Segmentation preprocessing as well as network training, validation, and testing were
performed on a single NVIDIA GeForce GTX 1070 PCle 8 GB GPU on a Windows 10
system. The DCNN model was implemented with the Keras API (v. 2.2.4) backboned
with TensorFlow (v. 1.15.0) by using Python (v. 3.6.9). We used a stochastic gradient
descent optimizer to update the weights with an initial learning rate of 0.01 and a batch
size of 6. Training with 50 epochs usually achieved the lowest loss and therefore was
employed in our experiments. The weighted cross-entropy (WCE) loss function was used
to differentiate prostate zones. This function is especially suitable when class imbalance
exists. The formula for the WCE loss function is expressed as follows [25]:

1 n
WCE = —— Y Wei[Tilog P + (1 — T;) log(1 — P;)] 3)
=

The summation was performed over all training images. The parameter P; is the
predicted class, T; is the ground truth label, and W, is the class weight calculated using
Equation (2) for each zone. To ensure that the trained DCNNs were stably generalized,
we used five-fold cross validation. The training dataset contained 6588 slices with data
augmentation. The data were split as follows: 80% for training and 20% for validation.
This test process was repeated five times by using different MRI images to evaluate the full
dataset. The test set consisted of 84 image slices of 15 patients. Each slice contained the
TZ, PZ, and PCa regions. These slices were selected from the PROSTATEx dataset, which
provided the location of PCa. The test images were grouped in a similar manner to the
training data. We evaluated the performance of the zonal segmentation task of each class
by using the aforementioned metrics and compared the results obtained when using T2W
images + DWIs, T2ZW + ADC images, and T2W images + DWIs + ADC images. The DCNNs
were trained and tested under three scenarios: (1) combining T2W images and DWIs into
red and green channels, respectively, with the blue channel zero matrix; (2) combining the
T2W and ADC images into the red and green channels, respectively, with the blue channel
zero matrix; and (3) combining the T2W images, DWIs, and ADC images into the red, blue,
and green channels, respectively.

2.5. Evaluation and Prediction Metrics

The DCNN segmentation performance was quantitatively evaluated. To compare
the accuracies of true and predicted labels, we generated confusion matrices to count
the number of pixels in each class. The result with a higher probability was classified as
the corresponding class. The accuracy, DSC, and recall were calculated. Accuracy was
defined as the ratio of the number of correctly classified pixels to the total number of
pixels in the test data. The segmentation performance was also evaluated according to the
intersection between label images and prediction results by using the DSC. A summary of
the aforementioned three evaluation metrics is presented in Table 1. The probability map
of each class was output from the softmax layer to compute the ROCs and the area under
the curve (AUC) for each class. We used SciPy (version 1.1.0) for statistical computing to
compare the area under the curve with the DeLong test [26] (p < 0.05 indicated statistical
significance). The ablation study was used to show the effectiveness of loss function and
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activation function from our model. We selected categorical cross-entropy and WCE for
loss function, and ReLu and ELU for activation function.

Table 1. Definitions of the evaluation metrics.

Metric Formula
Nrp+Nry
Accuracy Nrp+Nrn+Nrp+NiN
DSC 2N1p+Nrp+NpN
Nrp
Recall Nrp+Nrn

Note: Ntp = number of true positives, Nry = number of true negatives, Nrp = number of false positives,
Nrn = number of false negatives.

3. Results

The confusion matrices with different combinations of images are shown in Figure 3.
The models trained with different combinations of images generally exhibited high per-
formance in the background and TZ categories, followed by the PZ and PCa categories.
The T2W image + DWI and T2W image + DWI + ADC image models outperformed the
T2W + ADC image model in the PZ and PCa categories. This result indicates that the
numbers of false negatives (FNs) in the PCa classes were higher than those in the PZ
(23-39%) and TZ (15-18%) classes. Moreover, a considerable number of false positives
(FPs) were found for the PZ (9-12%).

The evaluation matrices were calculated from the confusion matrices. The results
obtained with each model are listed in Table 2. In terms of the DSC and recall, the segmen-
tation of the TZ exhibited the highest performance, followed by that of the PZ and PCa
region. The accuracy in segmenting the PCa region was higher than that in segmenting
the TZ and PZ. However, the results for the accuracy in segmenting the PCa regions may
be biased and overestimated due to the disproportionately large percentage of negative
pixels among all the pixels. In this study, the scale of trues positive and true negatives was
1.78:100 for PCa. With regard to the models trained with different combinations of images,
no significant difference in accuracy was observed. When segmenting the PCa regions, the
DSC and recall were higher for the T2ZW image + DWI model and T2W image + DWI +
ADC image model than for the T2W + ADC image model. The aforementioned models
did not exhibit obvious differences in the DSC and recall for the TZ and PZ. The results of
ablation study were shown in Table 3. The loss function and activation function for which
we selected WCE and ELU respectively can obtain the optimal results of DSC for each class.

Table 2. Results of multiclass segmentation on different combination of SegNet-like models.

Accuracy DSC Recall
TZ Pz PCa TZ Pz PCa TZ Pz PCa
T2W+DWI 95.2 92.1 96.93 88.75 68.93 51.92 0.91 0.73 0.56
T2W+ADC 95.73 91.48 96.07 90.22 66.71 36.62 0.94 0.71 0.38
T2W+DWI+ADC 95.87 92.38 96.97 90.45 70.04 52.73 0.93 0.74 0.57

The accuracy and DSC are presented in percentages.

Figure 4 shows several examples of test images in the T2W image + DWI + ADC
image model. The ground truth images of segmentation and the corresponding prediction
results are illustrated in the aforementioned figure. The TZ in the prediction image was
generally similar to that in the ground truth image. The PZ region generally was in the
correct location, with considerable discordance at the boundary between true labeled image
and predict image. The true PCa regions were observed in the prediction images, and FP
predictions were common, especially in the PZ (9% to 12%), as indicated in the confusion
matrix in Figure 3. By inspecting the original MRI images, we speculate that these FP
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regions were mainly formed due to the inflammation process. Moreover, in contrast to
the label images, the PCa regions were usually underestimated in the prediction images,
which may explain the high number of FNs of PCa in the PZ (23-39%).

T2W+DWI T2W+ADC
background 002 004 001 08 background 002 005 001 -
T | 0.01 0.6 i ]l 001 0.01 .
a L g 7z 06
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Figure 3. Normalized confusion matrices for the prediction results obtained with different image combinations. The results
are presented in percentages. The total number of pixels was 5,570,560 (256 x 256 x 85). (a) T2W image + DWI model,

(b) T2W +ADC image model, and (c) T2W image + DWI + ADC image model.

Table 3. The results of ablation study in Terms of the Loss functions and activation function.

Accuracy DSC Recall
Parameter
TZ PZ PCa TZ PZ PCa TZ PZ PCa
ReLu+CC 94.57 90.37 97.3 87.2 63.72 36.49 0.88 0.7 0.26
ELU+CC 94.52 91.1 0 87.6 66.49 0 0.92 0.73 0
ReLu+WCE 94.16 88.59 96.18 85.15 61.78 46.63 0.8 0.77 0.56
ELU+WCE 95.87 92.38 96.97 90.45 70.04 52.73 0.93 0.74 0.57

CC = loss function of categorical cross-entropy, WCE = loss function of weighted cross-entropy, Bold values indicate best parameters.
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W DWI ADC Ground Truth Prediction

W DWI ADC Ground Truth Prediction

W DWI ADC Ground Truth Prediction

Figure 4. Test images of five patients (1-5) in the T2W image + DWI + ADC image model. The tumor location was provided

from dataset. The ground truth images of segmentation and the corresponding prediction results are illustrated (blue region:
TZ, yellow region: PZ, and red region: PCa).

The prediction results of the three adopted models, each of which was trained with a
different combination of images, were compared on the basis of their discrimination ability.
The ROC analysis and AUC results are shown in Figure 5. The AUCs indicate that the
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diagnostic performance achieved by the adopted models for the TZ was superior to that
for the other zones (p < 0.001). The AUCs of the PCa regions in the T2W image + DWI,
T2W + ADC image, and T2W image + DWI + ADC image models were 0.929 (95% CI:
0.9278, 0.9294), 0.9 (95% CI: 0.8986, 0.9006), and 0.843 (95% CI: 0.8417, 0.8441), respectively.
The AUC of the T2W image + DWI model was significantly higher than that of the T2W
image + DWI + ADC image model (p < 0.001) and T2W + ADC image model (p < 0.001).

T2W+DWI T2W+ADC
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Figure 5. Comparison of the ROC curves of the three prediction models for discriminating among the TZ, PZ, and PCa
region. The blue, orange, and green lines represent the predictions for the TZ, PZ, and PCa region, respectively. Different
combination of the (a) T2W + DWL (b) T2W + ADC. (c) T2W + DWI + ADC.

4. Discussion

Attempts have been made to autosegment the prostate normal zonal anatomy and PCa
regions by using DL methods; however, no consensus has been reached on the combination
of input sequences of mpMRI images. In this study, we compared the prostate segmentation
performance of models trained with different image combinations by using SegNet. We
found that the three adopted models exhibited similar performance in segmenting the
normal prostate zonal anatomy. The aforementioned models also exhibited similar results
(DSC of 88.75-90.45%) in segmenting the TZ. These results were generally superior to those
obtained when segmenting the PZ (DSC of 66.71-70.04%). The aforementioned finding
has also been obtained in previous studies, which used only T2W images for training. Liu
et al. [27] used the PROSTATEX dataset to perform segmentation and training by using a
fully convolutional network with feature pyramid attention. They achieved a DSC of 86%
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in the TZ and 74% in the PZ. Aldoj et al. [28] also used T2W images of the PROSTATEx
dataset. They used a DenseNet-like U-Net for training and achieved a DSC of 89.5% =+ 2%
in the central gland region and 78.1% =+ 2.5% in the PZ. Khan et al. [16] used a model
resembling the encoder—decoder architecture and only T2W images of two prostate MRI
datasets for segmentation and training. They achieved a DSC of 90.8 & 1.2% in the central
gland region and 76.0 &+ 3.9% in the PZ by using SegNet [16]. The results of the present
study indicate that SegNet achieved a comparable performance in the segmentation of the
normal prostate zonal anatomy irrespective of the training datasets and number of training
samples. SegNet uses a small amount of memory and stores boundary information in the
network. As demonstrated in previous studies, DL methods cannot suitably discern the
boundaries of the PZ. Models combining different sequences do not exhibit superior results
to models that employ T2W images alone. When segmenting the PZ, the performance of
the T2ZW image + DWI model was similar to that of the T2ZW image + DWI + ADC image
model and marginally higher than that of the T2ZW + ADC image model.

Previous studies have attempted the autosegmentation of PCa zones by using only
T2W images [15] or DWIs [29]. Although these studies have exhibited suitable perfor-
mance for PCa segmentation, a mono model with a single-sequence input provides limited
information about the prostate and may provide different results when applied to different
datasets. Some studies have demonstrated the advantages of using functional sequences
for PCa autosegmentation. Liu et al. made selections from a set of 87 lesion features to
determine the model ensemble for XmasNet [30]. They found that frequently appearing
features are usually related to functional information, including correlation, variance, the
minimum intensity of the lesion region on the Ktrans image, and the minimum intensity
of the lesion region on an ADC map. Song et al. found that for combinations of different
imaging sequences, the models trained with DWIs exhibited higher specificity than the
other models did. The features of PCa regions with a high signal intensity in DWIs are
learned more easily by a DCNN than by models that include only T2W + ADC images [16].
Our study used different combinations of images and found that models containing DWIs
exhibited the best performance. The performance of the T2W image + DWI + ADC image
model (DSC of 52.73%) and T2W image + DWI model (DSC of 51.92%) was significantly
higher than that of the T2W + ADC image model (DSC of 36.62%). As indicated by the
confusion matrices, the T2ZW + ADC image model had a higher number of FPs and FNs
than did the models with DWIs. DWIs have been used in prostate MRI and are key in
the prostate mpMRI exams [31-33]. DWIs should include high-b-value images and the
corresponding ADC map. A high-b-value DWI indicates the preservation of the signal
in areas of restricted or impeded diffusion and thus highlights tumors. A diminished
signal indicates normal tissue. On an ADC map, a low ADC value indicates that diffusion
is restricted and anatomical information is preserved. Compared with cases in which
ADC maps are used alone, the discernability of clinically significant cancers is sometimes
improved in high-b-value images, especially those captured adjacent to the anterior fi-
bromuscular stroma, in a subcapsular location, and at the apex and base of the gland [3].
The results of this study indicate that although ADC maps can provide PCa diagnostic
information, their performance in PCa detection is lower than that when using DWIs.

In this study, we used SegNet and achieved comparable or superior results for PCa
autosegmentation (DSC of 0.52) to those achieved in other studies using bpMRI or mpMRI
(DSCs of 0.37-0.46) [34-36]. Our study achieved a result (AUC of 0.9) comparable to that
achieved by other studies (AUCs of 0.84 [30] and 0.94 [14]) that used the AUC to determine
the performance of PCa detection for the dataset and combination of images adopted
in the present study. The comparison of the network with state-of-the-art methods was
show in Table 4. SegNet occupies a smaller computing space and is faster than other
architectures. Moreover, it does not require multistage training. To maintain the same
output image resolution the same as the input image resolution, SegNet uses pooling
indices to upsample low-resolution feature maps. This process allows the network to store
boundary information and reduce the number of trainable parameters. We also employed
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image augmentation and patch extraction to reduce the amount of training data while
achieving similar or superior results to those obtained in previous studies.

Table 4. Performance comparison of the network with state-of-the-art methods.

DSC AUC
Reference Methods TZ PZ PCa PCa
Khan et al. [16] SegNet 90.8 = 1.2 76.0 £ 3.9 - -
Liu et al. [27] Fully convolutional network 86 74 - -
Aldoj et al. [28] DenseNet-like U-Net 89.5+2 781+25 - -
Simon et al. [34] Fully convolutional network - - 41 -
Coen de Vente [35] U-Net - - 37.46 -
cost-sensitive support vector machines } . )
Yusuf [36] (SVMs) 46
Song, Y. [14] VGG-Net - - - 0.94
Liu S. et al. [30] XmasNet - - - 0.84
T2W + DWI + ADC Modified-SegNet 90.45 70.04 52.73 0.9
(Our result)

The DSC is presented in percentages.

Several challenges exist in the DL process for PCa autosegmentation. The first chal-
lenge is the imbalanced class labels. The PCa regions are usually smaller than those of
background normal tissue, which causes the background label to become the dominant
class during the learning process and thus unbalance prediction. To avoid the learning
process from being trapped in a local minim, we used the class weight balance method to
increase the weighting of the small class and increase its prediction accuracy. The accuracy
can be further increased by increasing the number of datasets and using class-distribution-
aware training techniques [18]. Another challenge is the high FP rate of PCa in the PZ
region. By inspecting the source images, we found that this phenomenon may be due to the
inflammation process, frequently encountered motion artifacts, or rectal gas causing sus-
ceptibility artifacts in DWIs [37]. With nearly 75% of malignant lesions emerging from the
PZ [38], improving the imaging quality and decreasing artifacts are essential for improving
the DL performance.

Our study has some limitations. First, the size of our training data might be suboptimal
for DL. Second, the training parameters in our model are yet to be improved, especially
for the autosegmentation of the normal PZ and PCa region. A fine-tuning strategy may
help train the model and improve the segmentation performance. Third, the training was
performed using a dataset with homogeneous imaging quality by the same vendor. We have
yet to validate whether the model is sufficiently robust or applicable to different datasets.

5. Conclusions

We developed a strategy for autosegmenting prostate MRI images. The developed
strategy involves using SegNet and conducting image preprocessing (by combining dif-
ferent image sequences obtained through bpMRI), prostate extraction, training data aug-
mentation and class weight balancing. The developed strategy can be an efficient method
for identifying the TZ, PZ, and PCa regions with satisfactory performance. DWIs are
an essential component that should be included in the training model for detecting the
PCa region.
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