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Abstract: Since technologies in image fusion, image splicing, and target recognition have developed
rapidly, as the basis of many image applications, the performance of image registration directly
affects subsequent work. In this work, for rich features of satellite-borne optical imagery such as
panchromatic and multispectral images, the Harris corner algorithm is combined with the scale
invariant feature transform (SIFT) operator for feature point extraction. Our rough matching strategy
uses the K-D (K-Dimensional) tree combined with the BBF (Best Bin First) method, and the simi-
larity measure is the nearest neighbor/the second-nearest neighbor ratio. Finally, a triangle-area
representation (TAR) algorithm is utilized to eliminate false matches in order to ensure registration
accuracy. The performance of the proposed algorithm is compared with existing popular algorithms.
The experimental results indicate that for visible light and multi-spectral satellite remote sensing
images of different sizes and different sources, the proposed algorithm in this work is excellent in
accuracy and efficiency.

Keywords: optical remote sensing; image registration; point feature; rough matching; KNN-TAR

1. Introduction

The specific objective of image registration is to find the geometric correspondence
between different images that contain the same contents. It uses an accurate model to
describe the internal relationship among pixels in two images and accurately match them
together. Hence, a unified model is essential to find the commonalities of features in
different images [1,2]. Image registration frequently appears in research works of scholars,
and it possesses important value in multi-temporal and large-scale application scenarios.
In the field of remote sensing, there are many types of satellite-borne optical image sensors,
and their acquired remote sensing images are of different resolutions and bands. Though
the accomplishment of registration, mosaicking and fusion among these images, more
integral and abundant data can be generated, which can lay the foundation for subsequent
work, such as change detection and scene expansion.

Recently, with the continuous development of sensor technology, researchers in the
satellite remote sensing field have paid more attention to the study of high-speed and
stable information transmission [3–7]. As sensor types become more and more diverse,
remote sensing images with different spatial and spectral resolutions can be obtained
using different satellite-borne platforms. At present, there are many types of observation
satellites, including Landsat series and SPOT (Systeme Probatoire d’Observation de la Terre)
series, as well as Chinese Gaofen (GF) series and ASTER (Advanced Spaceborne Thermal
Emission and Reflection Radiometer). This work is mainly focused on the registration of
satellite-borne optical remote sensing imagery, i.e., panchromatic and multispectral images.
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The remainder of this article is organized as follows. The second section introduces
the principle of the algorithm, including the Harris corner point algorithm, scale invari-
ant feature transform (SIFT) algorithm, Best Bin First (BBF) algorithm and nearest/near
neighbor ratio method. Then, the basic principle of the triangle-area representation (TAR)
algorithm is described in detail, which is adopted to eliminate false matches in rough
matching and realize fine registration. Meanwhile, the optimal affine transform parameters
are obtained for the matched points. In the third section, the proposed algorithm in this
work is evaluated by using the images from GF-1, GF-2 and ASTER. Finally, conclusions
and discussions are given in the fourth section.

2. Remote Sensing Image Matching

This work uses the Harris algorithm to extract feature points from reference images
and images to be registered, and then uses the SIFT operator to describe the feature points.
The rough matching strategy is relied on the K-D (K-Dimensional) tree combined with
the BBF algorithm, and the similarity measure is the first/second nearest neighbor ratio
method. Finally, a TAR-based algorithm is used to eliminate false matches’ points in
order to precisely match the image. Our algorithm procedure is demonstrated in Figure 1
as follows:
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2.1. Remote Sensing Image Preprocessing

There are many factors that have an impact on optical remote sensing image quality.
A major disadvantage is thermal noise or interference from other factors in the imaging
processes. Another disadvantage is that the encoding mode of some image systems
sacrifices grayscale representation to some degree, in order to achieve high compression
ratios, which makes gray differences of pixels in adjacent regions smaller [8] and reduces
the gradients of gray value between objects and backgrounds. Consequently, feature
extraction for registration becomes difficult and it is necessary for these images to be
filtered or enhanced, so as to improve their quality before deep processing [9–11].

For the purpose of improving the variation range of gray scale and contrast, linear
stretching is adopted in this work. Generally, a linear stretch of 0.02 can achieve acceptable
visual appearances in remote sensing images. That is, the distribution of an image his-
togram between 2% and 98% is linearly stretched to extend dynamic range of pixels to its
whole gray space, so that the whole image has more abundant gray information. Figure 2
is an enhanced example of 0.02 linear stretching; the processed image has stronger contrast,
better visual appearance, and is more beneficial in terms of subsequent feature extraction
than the original one.
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Figure 2. Stretching of a pseudo-color image synthetized from a GF-1 (Gaofen-1) multispectral image,
acquired at 38◦ N and 117.7◦ E on 9 September 2014: (a) An original image; (b) the corresponding
enhanced image.

2.2. Feature Point Extraction
2.2.1. Harris Feature Points Extraction

The Harris corner detection and extraction algorithm can build a rectangular window
of a certain size to test every pixel in an image. The testing content is the average energy of
the pixels in the window, which serves as the metric for judging whether a pixel is a corner
point. Namely, when the average energy of the point in the window is greater than a preset
threshold, it can be regarded as a feature point [12].

2.2.2. SIFT Feature Point Description

Since it does not involve the construction of multi-scale space, the time complexity
of the Harris operator is rather low. It has good robustness to illumination, scale, rotation
and angle transformation [13], but its detection performance for smooth images is not
satisfactory [14]. In spite of its higher time complexity, the SIFT operator can capture
more feature points. Taking the main characteristics of optical remote sensing images
into consideration, we use the Harris algorithm to extract feature points and apply the
SIFT descriptor to describing the feature points in order to satisfy both accuracy and time
requirements [15].

Generally, the SIFT algorithm consists of two parts: determining feature points of an
image and describing feature points [16,17]. The process of image feature points determina-
tion is similar to the perception of point information by human vision. Usually, regardless
of optical image resolution, human eyes can always distinguish valid features [18]. Hence,
stable feature points of images are detected at different scales, and some information
obtained in the detection process is utilized to construct a multi-dimensional description
symbol to arrange the Harris feature points. In the term of feature point extraction, the
SIFT operator is robust to scaling, rotation and transforms of images, and it is also resistant
to external factors such as illumination and noise [19].

2.3. Rough Matching Strategy
2.3.1. BBF Search Strategy

The K-D tree, is essentially a binary tree structure. In this search space, data are
usually divided into a binary tree structure according to spatial positions, and then search
processes are also carried out according to the search rules of binary trees. The kernel idea
of the K-D tree is to divide data into left and right uniform structures from top to bottom in
a two-dimensional space. As a result, all data are split into a left subtree and a right subtree
according to their spatial position, and then the same operation is repeated on the subtrees
to part them into smaller subtrees until the data cannot be subdivided. In the process
of dividing, it is vital to maintain the data balance between the left and right subtrees
as much as possible. Otherwise, search efficiency may decline. The Best Bin First (BBF)
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search algorithm is a search algorithm developed for K-D tree structures. It outperforms
the K-D tree search algorithm in terms of processing high-dimensional features [20]. It
pushes points that can be traced into a sequence, and sorts these points, according to their
distances from a hyperplane. The closest point has the highest priority, and then all the
points in the queue are traversed according to their priority until the queue becomes empty.
In addition, BBF also imposes restrictions on its search time. That is, once its running time
exceeds the pre-set time, the algorithm will directly output the current closest point as the
result. Therefore, we chose the K-D tree to organize the feature points while using the BBF
algorithm to search for the feature points in this work.

2.3.2. Similarity Measure

The first/second nearest neighbor ratio method is chosen as the similarity metric in
registration for reducing the complexity of calculation [21]. First of all, the point in an
image to be registered that is closest to a search point in its reference image needs to be
found, and their distance is denoted as Dis1. Then, it is necessary to find the next nearest
point to the search point, and their distance is denoted as Dis2. Then, when comparing
Dis1/Dis2 to a given threshold, and when the ratio is less than the threshold, the point pair
can be considered to be a possible real matching pair.

2.4. Fine Matching Strategy

Since satellite-borne optical remote sensing images are acquired at high altitude,
the view differences among images of the same target are slight. Changes between im-
ages only involve transforms such as translation, scaling, and rotation. Therefore, affine
transform models can satisfy geometric transform requirements in our cases [22,23]. There-
fore, an affine transform based on Triangle-area representation (TAR) is utilized in fine
matching [24].

TAR is a framework in which features at every scale, i.e., edge lengths of a triangle,
are normalized locally according to their scales. Among shape attributes at different scales,
local normalization features are more distinct and can more accurately describe shapes in
remote sensing images. Unlike some other matching methods that use a limited number
of boundary points (such as corners or knee points), TAR is an exhaustive method for all
boundary points.

TAR value is calculated from a triangle region formed by points on the shape boundary.
Each contour point is represented by its coordinate (x, y), and a discrete parameter sequence
(xn, yn) (n = 1, . . . , N) represents the N points obtained by resampling a shape. Then, the
curvature of each point is represented using the TAR value defined below. For three
sequential points, (xn−ts , yn−ts), (xn, yn) and (xn+ts , yn+ts), where n ∈ [1, N], ts ∈ [1, Ts]
represents arbitrary edge length of a triangle, and Ts is the longest distance between any
two sample points. Thus, the TAR value formed by these points can be expressed as:

TAR(n, ts) =
1
2

∣∣∣∣∣∣
xn−ts yn−ts 1

xn yn 1
xn+ts yn+ts 1

∣∣∣∣∣∣ (1)

Given that running counterclockwise, the TAR value is positive when the local contour
denoted by three sample points is convex. The TAR value is negative when the contour is
concave. And the TAR value is 0 when the contour is straight. Figure 3 depicts triangular
regions at different positions of a closed contour.
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The above figure is a closed hammer-shaped contour. Region 1 is a convex shape, and
its TAR value is greater than 0. Region 2 is a concave shape, and its TAR value is less than
0. Region 3 is a straight line. The curvature function of the TAR value of discrete points can
be rewritten as:

c(n) =
.
xn

..
yn −

..
xn

.
yn( .

x2
n +

.
y2

n

) 3
2
=

TAR(n, n + 1)

(dsn)
3 , (2)

where TAR(n, n + 1) is the TAR value at ts = 1, and dsn =
√

.
x2

n +
.
y2

n corresponds to the
first edge length of a triangle, that is, the distance between the first and second vectors
of the triangle formed by points (xn, yn), (xn+1, yn+1), and (xn+2, yn+2). This equation
clearly expresses the relationship between the curvature and TAR value of a shape. It is
known that zero crossings of a curvature function are invariant under a general affine
transformation [26], and points with non-zero curvature are also not invariant to the
affine transformation [27]. Thus, considering the contour sequences xn and yn of a two-
dimensional shape, if an affine transform is performed, the relationship between the
original sequences and the transformed sequences is:[

x̂n
ŷn

]
=

[
a1 a2
a3 a4

][
xn
yn

]
+

[
b1
b2

]
, (3)

where x̂n and ŷn are the transformed sequences after the affine transform, b1 and b2
are translation parameters, and a1, a2, a3 and a4 are scaling and rotation factors. The
influence of translation parameters is easily eliminated by normalizing the shape boundary
corresponding to a centroid. This normalization is accomplished by subtracting the average
value from each boundary sequence. Substituting Equation (3) into Equation (1), we can
obtain:

TÂR(n, ts) = (a1a4 − a2a3)TAR(n, ts) (4)

where TÂR is TAR value after the affine transformation. It is obvious that TÂR is invariant
for affine transformation.

2.5. Elimilation of Fales Matches

The difficulty of feature points matching lies in noise, intensive affine transformation,
etc. For instance, some feature points are shifted from their original positions and become
abnormal points in an image. Nowadays, there are many point matching algorithms, most
of which are based on the similarity of local features, spatial relationships, or both. In some
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existing algorithms, affine invariant operators are utilized to detect whether a matching
point is an abnormal point, through global information [28]. For example, the RANSAC
(Random Sample Consensus) algorithm establishes a model for the correspondence be-
tween point pairs to estimate transform parameters. If false matches are not more than 50%,
the algorithm can eliminate them effectively [29]. In this work, we use the affine invariance
of TAR to eliminate false matches. The procedure consists of three steps: constructing
KNN-TAR (K-Nearest Neighbor-Triangle-Area Representation) operators [30], processing
candidate outliers and removing false matches.

Most of the outliers can be found by KNN-TAR, but a few outliers have the same
nearest neighbors. The removal of such outliers is very important, and it directly effects
the registration performance of the proposed algorithm. The outlier removal in this study
includes three parts: the KNN-TAR descriptor, the process of the candidate outliers, and
the removal of the remaining outliers. That is:

1. Constructing KNN-TAR operators. Supposing that the nearest neighbors of the
outliers have more structural dissimilarity, the TAR value is used to construct an
affine invariant variable, which is calculated by the K nearest neighbor (KNN) in
order to find outliers.

2. Dealing with candidate outliers. Whether the suspected outliers sifted by KNN-TAR
are real false matches is determined by the local structure of the single matching pair
and the global transform error.

3. Removing false matches. Adjust the parameter setting of KNN-TAR, so as to eliminate
the outliers with the same KNN.

3. Experimental Results

The setup of the hardware environment requires an Intel core i5-4570 processor at
3.20 Hz, with 4.00 GB RAM. The operating system is 64-bit Windows 7, and our program-
ming software is MATLAB R2014a. Here, we compare the proposed algorithm with other
existing algorithms using four pairs of satellite-borne optical remote sensing images.

The first pair of experimental images is acquired by the GF-1 Panchromatic and Multi-
spectral sensor (PMS) at Mao County, which is a multispectral image with
3000 × 1012 pixels. The preprocessed images are shown in Figure 4.
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Figure 4. A GF-1 image pair: (a) acquired on 19 February 2015; (b) acquired on 11 May 2015.

Figures 5 and 6 display the extracted feature points and the rough matching result for
the GF-1 image pair, respectively. It can be seen that our proposed algorithm in this work
can detect enough point features.
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By rough matching, 251 pairs of points are obtained. The straight lines in Figure 6
connect the corresponding points in the two images. It is obvious that there are some
crossing lines between the two images, that is, there are obvious false matches. After the
RANSAC algorithm eliminated one point pair, the obtained affine transform matrix for
registration is presented in Equation (5).

HRANSAC =

 1.0292 −0.0006 −363.8828
−0.0003 1.0308 50.3609

0 0 1

 (5)

After 16 point pairs were eliminated by the proposed KNN-TAR algorithm, the
obtained affine transform matrix for registration is given in Equation (6).

HTAR =

 1.0293 −0.0007 −363.9619
−0.0004 1.0308 50.3757

0 0 1

, (6)

Figure 7 exhibits the GF-1 image pairs after eliminating false matches using the
two methods. The registration results for GF-1 are listed in Table 1. The RMSE (Root
Mean Square Error) of our algorithm is 0.8619 pixels, which is better than that of the
RANSAC algorithm.

Table 1. Comparison of the KNN-TAR and RANSAC algorithms for GF-1 images.

Match Methods Number of Pairs by
Rough Matching

Number of Pairs by
Fine Matching Time (ms) RMSE (Pixels)

RANSAC
251

250 44 0.8818
KNN-TAR 235 51 0.8619



Sensors 2021, 21, 2695 8 of 13
Sensors 2021, 21, x FOR PEER REVIEW 8 of 13 
 

  

(a) (b) 

Figure 7. The GF-1 image pairs after eliminating false matches: (a) Finely matched by the RANSAC (Random Sample 
Consensus) algorithm; (b) finely matched by the KNN-TAR (K-Nearest Neighbor-Triangle-Area Representation) 
algorithm. 

Table 1. Comparison of the KNN-TAR and RANSAC algorithms for GF-1 images. 

Match Methods 
Number of Pairs by 

Rough Matching 
Number of Pairs by Fine 

Matching 
Time 
(ms) 

RMSE 
(Pixels) 

RANSAC 
251 

250 44  0.8818 
KNN-TAR 235 51  0.8619 

Moreover, according to the obtained transformation parameters, the bilinear 
interpolation method is utilized to realize image mosaicking. The final stitched GF-1 
image is shown in Figure 8. 

 
Figure 8. The stitched GF-1 image. 

The second pair of experimental images was acquired by the GF-2 PMS sensor at 
Mao County, which is a multispectral image with 2400 × 1800 pixels. The preprocessed 
and stitched GF-2 images are shown in Figure 9. The registration results for GF-2 are 
listed in Table 2. The RMSE of our algorithm is 5.7423 pixels, which is also better than 
that of RANSAC. 

  

Figure 7. The GF-1 image pairs after eliminating false matches: (a) Finely matched by the RANSAC (Random Sample
Consensus) algorithm; (b) finely matched by the KNN-TAR (K-Nearest Neighbor-Triangle-Area Representation) algorithm.

Moreover, according to the obtained transformation parameters, the bilinear inter-
polation method is utilized to realize image mosaicking. The final stitched GF-1 image is
shown in Figure 8.
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Figure 8. The stitched GF-1 image.

The second pair of experimental images was acquired by the GF-2 PMS sensor at Mao
County, which is a multispectral image with 2400 × 1800 pixels. The preprocessed and
stitched GF-2 images are shown in Figure 9. The registration results for GF-2 are listed
in Table 2. The RMSE of our algorithm is 5.7423 pixels, which is also better than that
of RANSAC.

Table 2. Comparison of the KNN-TAR and RANSAC algorithms for GF-2 images.

Match Methods Number of Pairs by
Rough Matching

Number of Pairs by
Fine Matching Time (ms) RMSE (Pixels)

RANSAC
1150

1150 96 5.8743
KNN-TAR 1135 123 5.7423
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Figure 9. A GF-2 image pair: (a) Acquired on 19 February 2015; (b) acquired on 24 February 2015; (c)
the stitched GF-2 image.

The third pair of experimental images are acquired by the visible/near infrared part of
the ASTER sensor, with spatial resolutions of 15 m. The preprocessed and stitched ASTER
images are shown in Figure 10 and they are pseudo-color synthetic images. The registration
results for ASTER are listed in Table 3. The RMSE of our algorithm is 0.5362 pixels, which
is also better than that of the RANSAC algorithm.
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Figure 10. An ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) image
pair: (a) Acquired on 15 August 2020; (b) acquired on 20 October 2020; (c) the stitched ASTER image.
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Table 3. Comparison of TAR and RANSAC algorithms for ASTER images.

Match Methods Number of Pairs by
Rough Matching

Number of Pairs by
Fine Matching Time (ms) RMSE (Pixels)

RANSAC
111

111 20 0.5666
KNN-TAR 103 23 0.5362

The fourth pair of experimental images is from GF-1 and GF-2. The preprocessed and
stitched images are shown in Figure 11. The registration results for ASTER are listed in
Table 4. The RMSE of our algorithm is 0.5362 pixels, which is also better than that of the
RANSAC algorithm.
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Figure 11. A multi-source image pair: (a) Acquired by GF-1 on 19 February 2015 (800 × 600); (b)
acquired by GF-2 on 24 February 2015 (2400 × 1800); (c) the stitched multi-source image.

Table 4. Comparison of the TAR and RANSAC algorithms for multi-source image images.

Match Methods Number of Pairs by
Rough Matching

Number of Pairs by
Fine Matching Time (ms) RMSE (Pixels)

RANSAC
26

25 33 3.0044
KNN-TAR 24 28 2.9001

From the above experimental results, it is found that as the number of rough matching
points increases, there are slight increases in the matching time of the KNN-TAR algorithm
compared to that of the RANSAC algorithm. However, as for satellite-borne optical remote
sensing images from different sources, the proposed algorithm in this work can eliminate
false matches and realize accurate registration. Through comparative experiments, it can
be proven that its registration accuracy is better than that of the RANSAC algorithm.

Moreover, we also compare the proposed method with three popular image regis-
tration methods, SIFT, SURF (Speed-Up Robust Features) and ORB (Oriented FAST and
Rotated BRIEF). They also combined the BBF with RANSAC algorithm in feature point
matching, and the SIFT algorithm still uses the Harris operator for feature extraction in-
stead of global matching in the original version. The comparison results are also presented
in Table 5. As revealed in Table 5, the proposed registration method outperforms the other
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methods for GF-1, ASTER and Multi-view images. Even for the GF-2 image, its registration
result is also acceptable.

Table 5. Registration performance comparison of different methods.

Image
Sensors

SIFT SURF [31] ORB [32] Proposed Algorithm

Matched
Point Pairs

RMSE
(Pixels)

Matched
Point Pairs

RMSE
(Pixels)

Matched
Point Pairs

RMSE
(Pixels)

Matched
Point Pairs

RMSE
(Pixels)

GF-1 250 0.8818 114 1.0976 41 1.2530 235 0.8619
GF-2 1150 5.8743 1221 5.5924 63 1.6358 1135 5.8423

ASTER 111 0.5666 64 0.7330 17 1.3132 103 0.5362
GF-1 & GF-2 23 3.0044 70 5.2689 47 3.6736 24 2.9001

4. Conclusions

Because of small view differences of satellite remote sensing images, a registration
method based on point features is designed in this study. The Harris operator, with its
fast detection speed, is chosen to extract image features, and the SIFT operator is used to
describe the features in order to ensure accuracy. After that, the BBF algorithm combined
with the first/second-nearest neighbor method is adopted to realize rough matching of
feature points. Then, a TAR method is introduced into false match elimination in order
to enhance matching accuracy. The experimental results indicate that the method used
in this work has better registration accuracy compared with RANSAC and some other
existing registration algorithms. However, due to the combination of different optimization
methods, the proposed algorithm has no significant advantages in time efficiency. With
the increase in image resolution and size, registration time will increase. Therefore, other
effective optimization algorithms may be utilized to accelerate parameter fitting processes
to improve the speed of registration. Our proposed strategy is only effective in two-
dimensional space, and cannot perform well for images with many view differences. In the
future, it can be modified to adapt to three-dimensional space.
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