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Abstract: The direction-of-arrival (DoA) estimation of an acoustic source can be estimated with a
uniform linear array using classical techniques such as generalized cross-correlation, beamforming,
subspace techniques, etc. However, these methods require a search in the angular space and also have
a higher angular error at the end-fire. In this paper, we propose the use of regression techniques to
improve the results of DoA estimation at all angles including the end-fire. The proposed methodology
employs curve-fitting on the received multi-channel microphone signals, which when applied in
tandem with support vector regression (SVR) provides a better estimation of DoA as compared to
the conventional techniques and other polynomial regression techniques. A multilevel regression
technique is also proposed, which further improves the estimation accuracy at the end-fire. This
multilevel regression technique employs the use of linear regression over the results obtained
from SVR. The techniques employed here yielded an overall 63% improvement over the classical
generalized cross-correlation technique.

Keywords: correlation coefficient; curve fitting; direction-of-arrival estimation; machine learning;
microphone array; support vector regression

1. Introduction

Applications such as hands-free mobile communication, hearing aids, target tracking,
surveillance of aerial targets, etc., require a close estimation of the direction-of-arrival of a
sound source [1–18]. Techniques based on microphone arrays and acoustic vector sensors
(AVSs) can be employed for the accurate estimation of the DoA of the incoming acoustic
wave [19–27]. However, the DoA estimation using the above techniques encounters practi-
cal challenges as the sound wave undergoes reflections and scattering from several objects
and the surface enclosures in the surroundings. The irregular reflections of the sound
waves create reverberations, and the presence of unwanted interfering sound sources
causes a deterioration in the quality of the sound wave. Furthermore, ambient noise and
sensor noise give rise to an additional disturbance in the acoustic wave. The estimation of
the DoA can be carried out by acquiring signals impinging on a uniform linear array (ULA)
of microphones/sensors. Different algorithms can be applied to the digital signals acquired
on these microphones to compute the DoA. The classical known techniques/algorithms
are beamforming, maximum-likelihood, the subspace method, time-difference of arrival
(TDoA), etc. [28–32]. However, due to the presence of noise, interference and reverbera-
tions cause a higher deviation from the true value of the DoA, therefore being less suitable
for many applications. In [33], the phase-mismatch error and gain-mismatch error among
the sensors of the ULA were rectified using a compensated covariance matrix and phase
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retrieval for DOA estimation. In [34], a high-resolution, low-complexity method was pre-
sented with the use of unfolded coprime linear arrays, where the uniform property of the
sub-arrays and the polynomial root finding method were used. A strategy was proposed to
overcome the effect of sensor failure in a co-prime array for DoA estimation by employing
the singular-value thresholding algorithm [35]. To overcome the grid-mismatch limitation,
a solution was proposed in [36] that addressed the DOA estimation problem in an off-grid
mode under a sparse framework. The authors in [37] reported a method for near-field and
far-field localization with higher accuracy for underdetermined cases by exploiting the
co-array property.

The advent of machine learning (ML) in the present era has opened up avenues for
the exploration of different ML algorithms for DoA estimation [38]. In this paper, the
acoustic digital signals acquired by the ULA were used to compute the feature, Pearson
product moment correlation coefficients (PPMCCs). The PPMCCs paired with the known
DoA were used to train the ML model for the prediction of the DoA. We carried out a
comparative study for the performance of DoA estimation using multiple ML algorithms
viz. linear regression, multivariate polynomial regression, and support vector regression
(SVR), and compared its result with a classical technique based on the TDoA using gener-
alized correlation coefficients (GCCs). After the assessment of the best ML model for the
DoA estimation, we further proposed a curve-fitting-based pre-processing technique for
improving the DoA estimation. Furthermore, a multilevel regression scheme was proposed
for reducing the error in the DoA estimate at the end-fire.

The rest of the paper is organized as follows. In Section 2, the signal model is explained.
Section 3 gives a brief discussion of the techniques used. In Section 4, the methodologies
used are explained, and the progressive improvement with comparative results is presented
in each subsection. Section 5 concludes the paper.

2. Signal Model

The incoming acoustic waves moving with speed c were assumed to be from the
source placed in the far-field; therefore, the incident wave-front was planar. The received
signals were assumed to be a narrowband signal, s(t), with the center frequency F (where
F = c/λ and λ is the wavelength). It was assumed that the sound source and the ULA
were in the same plane. The DoA with respect to the normal of the ULA is denoted by θ.
There were M number of microphones in a ULA, and each microphone was assumed to be
of a point size and to have an omnidirectional pattern. The adjacent microphones in the
ULA were separated by a distance d, as shown in Figure 1.

Figure 1. Signal impinging on a uniform linear array, where filled triangles indicate the position of
omni-directional microphones.
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The signal received by the mth (m = 1 to M) sensor of the array was a phase shifted
signal in the frequency domain, which can be formulated as:

xm(t) = s(t)e−j2 π
λ Dm + nm(t) (1)

where Dm is the wave path difference between different microphones in the ULA, which is
expressed as Dm = (m− 1)d sin θ, and nm(t) is the noise added to the mth sensor. We can
rewrite Equation (1) as:

x(t) = [x1(t), x2(t), .....xm(t)]T = a(θ)s(t) + n(t). (2)

where a(θ) is the steering vector of the ULA, n(t) is the noise vector, and [.]T denotes the
transpose. The M×M correlation matrix Rxx of received signal vector x(t) is expressed as:

Rxx = E
[
x(t)xH(t)

]
= a(θ)SaH(θ) + Rn, (3)

where E[.] and [.]H denote the ensemble average and conjugate transpose, respectively. The
signal and noise correlation matrices S and Rn can be expressed as:

S = E
[
s(t)sH(t)

]
(4)

and

Rn = E
[
n(t)nH(t)

]
, (5)

respectively. We assumed that all the noise components were zero mean, mutually uncorre-
lated, and had the same power. Thus, we have:

Rn = σ2I, (6)

where I is the identity matrix and σ2 is the noise power. Then, Equation (3) can be written
as:

Rxx = a(θ)SaH(θ) + σ2I. (7)

3. Brief Discussion of the Techniques Used

In this paper, the process of DoA estimation employed several techniques, which
when applied in tandem helped the near-accurate estimation of the DoA. A brief discussion
of these techniques is given in the following subsections.

3.1. Polynomial Regression

Linear regression is a technique that helps to find a linear relationship between
predictors x and the response y. On the other hand, polynomial regression is a technique
that helps identify a non-linear relationship between predictors and the response. As
explained in [39], the degree of polynomial regression has to be predetermined before the
training. Based on the degree of the polynomial, n, a parameterized equation is of the form:

y = bx + ε, (8)

where b = [b1, b2...bn] is the parameter vector to be estimated for the best fit and
x = [x, x2, x3, ..., xn]T . The non-linear terms like x2, x3, ... , are considered to be de-
rived dimensions based on the base dimension x. The polynomial regression involves
performing multivariate linear regression considering higher order terms to be a separate
dimension. A univariate regression is a regression involving a single predictor variable,
whereas a multivariate regression involves multiple predictor variables.
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3.2. Support Vector Regression

Support vector regression (SVR) is a technique that finds a non-linear mathematical
relationship between predictors and the response where the prior information of the
polynomial degree is not required [40,41]. The technique involves projecting the predictor
space into a multidimensional space using a kernel function. In this work, the radial basis
function (RBF) was used as the kernel function. The RBF is given as:

K(x, x’) = exp(−γ|x− x’|), (9)

where x and x’ are the two vectors in the feature space. This kernel function expands
into multidimensional terms. The error estimation is measured using the following
loss function,

L = max
{

0, |y− F(x, ŵ)| < ε
|y− F(x, ŵ)| − ε, otherwise.

(10)

As mentioned in [40], F(x, w) is a family of functions parameterized by w, ŵ is that
value of w that minimizes a measure of the error between y and F(x, w). This loss function
is termed as the ε-insensitive loss function. It identifies a high-dimensional tube of diameter
ε. If the estimate is within the tube, then the loss is zero; otherwise, the loss is the distance
from the point of estimation to the closest tube periphery. The objective is to flatten this
tube to the maximum extent possible. In the training part, linear regression was performed
on this high-dimensional space. As a result of the regression process, a linear hyperplane
was identified that reduced the overall loss.

The roots of the SVR method are the same as the popular support vector machine
(SVM) method, which is used in classification problems and utilizes the same underlying
theory. SVM cannot be directly applied here as the DoA estimation was modeled in this
work as a regression problem rather than a classification problem.

3.3. Pearson Product Moment Correlation Coefficient

As explained in [42], the Pearson product moment correlation coefficient (PPMCC)
quantifies the degree of association between two statistical variables. It also ascertains
whether the variables are directly or inversely associated with each other. The PPMCC
ranges between +1 and−1. The value +1 indicates the highest degree of association between
the variables, which indicates that an increase in one variable is commensurate with an
increase in the other variables. The PPMCC value of −1 indicates the highest degree of
dissociation between the two variables where an increase in one variable is commensurate
with a decrease in another variable. The values in between intervals (−1, +1) are indicative
of the corresponding association between the variables proportional to the measure of
their values. If L is the sample size, {pi}L

i=1 and {qi}L
i=1 are two variables, p̄ is the mean of

{pi}L
i=1, and q̄ is the mean of {qi}L

i=1, then the PPMCC, rpq, is given by:

rpq =
∑L

i=1(pi − p̄)(qi − q̄)√
∑L

i=1(pi − p̄)2
√

∑L
i=1(qi − q̄)2

. (11)

3.4. Curve Fitting

Curve fitting is the process of identifying a curve that wraps around a series of
data points in the best possible manner. The identification of the mathematical model
or the curve starts with the proposition of a parameterized mathematical model. The
objective of curve fitting identifies the value of these parameters such that the mathematical
model minimizes the overall fitting error. For the best fit, the objective function has to
be minimized with respect to the parameters, p, using the Levenberg–Marquardt (LM)
algorithm explained in [43,44]. The LM algorithm internally uses a combination of two
different methods viz. the Gradient Descent Method (GDM) and the Gauss–Newton
Method (GNM). In the LM algorithm, the GDM dominates when the parameters are far
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apart from their actual values; however, the GNM dominates when the parameters are
nearby. The goodness-of-fit is measured using the chi-squared error as given below:

χ2(p) =
m

∑
i=1

[ g(ti)− ĝ(ti; p)
σgi

]2
(12)

where σgi is the average error, ĝ(t; p) is the fitted function of independent variable t and a
vector of n parameters p, and m is the number of data points in the data set.

The combination of the GDM and GNM is accomplished using a parameter λ that is
tuned to fall into the appropriate method based on its magnitude,

[ ∂ĝ
∂P

T
Θ

∂ĝ
∂P

+ λI
]

hm =
∂ĝ
∂p

T
Θ(g− ĝ), (13)

where Θ is a diagonal matrix with elements wii = 1/σ2
gi

and hm is the perturbation
parameter that reduces the chi-squared error. To reach closer to the global minimum,
the first few steps are taken to be small in the steepest direction. This is accomplished by
keeping the value of λ small. The equation behaves closer to the Gauss–Newton update
with a small λ. If an iteration gives a high error, then λ is increased and the equation
behaves like gradient descent. The scipy package in Python provides the function curve_fit
with its optimized class that provides the curve fitting function using multiple algorithms.
In this work, we used this function for the LM algorithm. Since the acoustic waves received
at the microphone array were sinusoidal with additive white Gaussian noise (AWGN), to
fit the curve, sinusoidal function a sin(bx + φ) was been used where a, b, and φ are the
parameters to be tuned to fit the curve.

4. Methodologies and Results

The ULA of omnidirectional microphones was used to record the spatial signals for
developing the machine learning model for DOA estimation. The data set consisted of
multiple recordings of microphones of a duration of 25 ms each, which were acquired for
angles 0◦, 2◦, 4◦, 6◦, ..., 90◦ of a sound source with different signal-to-noise ratio (SNR)
values. For each such angle with sensor noise of SNR = 26 dB, one-thousand four-hundred
independent realizations of 25 ms in duration were used for training. For testing, a new
data set was created with angles 0◦ to 90◦ with an increment of 1◦ for SNR = 22 dB, 18 dB,
14 dB, and 10 dB. For the recorded signals at each angle, we took the PPMCC between
the discrete signals from the microphones. Discrete signals from the 1st, 2nd, 3rd, and
4th microphone produced six pairs of correlations. These signals were further processed
to estimate the DoA. The following subsections explain the different methodologies that
were applied for DoA estimation and exhibit the result obtained with these methods. Since
various techniques and methodologies were assessed for improving the DoA estimation,
each succeeding subsection employs a technique that improves over the best obtained in the
preceding subsection. The result is obtained in terms of root mean squared angular error
(RMSAE) and RMSAE and in each subsection, and it is compared with the results in the
preceding subsections. The RMSAE and RMSAE are defined in Equations (14) and (15),
respectively,

RMSAE(θ) =

√
∑N

i=1(θ − θi)2

N
(14)

and

RMSAE =
1

TOA

90◦

∑
θ=0◦

RMSAE(θ) (15)

where θi is the ith prediction of the true angle θ, N is the total number of predictions
realized, and the TOA is the total number of angles observed.
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4.1. Regression Techniques with PPMCC

The PPMCCs were calculated between different signals s1(t), s2(t), s3(t), and s4(t)
recorded by four microphones m1, m2, m3, and m4, respectively. The PPMCC between each
microphone signal produced six coefficients, c12, c13, c14, c23, c24, and c34. These PPMCCs
were used for training on the data set to produce the mathematical model of the DoA
estimate. We trained the signals on the data set with SNR = 26 dB. The feature set was
composed of the correlation coefficients mentioned above, and the response was the actual
DoA. The regression techniques that were used and analyzed in this experiment were SVR,
polynomial regression of order 1 (PR1), polynomial regression of order 2 (PR2), polynomial
regression of order 3 (PR3), polynomial regression of order 4 (PR4), polynomial regression
of order 5 (PR5), polynomial regression of order 6 (PR6), and polynomial regression of
order 7 (PR7). In addition to these regression techniques, we also estimated the DoA for
comparison with the conventional generalized cross correlation (GCC) technique.

Figure 2 shows the comparative assessment of SVR, PR1, PR2, and GCC. Polynomial
regression of orders higher than two is not shown in this figure as their RMSAE values
were too high and difficult to show. In the following section, we propose a mechanism to
reduce their RMSAE values. Figure 2 also reveals that the SVR gave a low RMSAE for
higher SNR values, i.e., 22 dB and 18 dB. However, at lower SNR values of 14 dB and 10
dB, the GCC was robust. Moreover, the GCC provided an RMSAE closer to SVR even
on higher SNR values. In short, the GCC was a better estimator as it consistently gave
good approximation at low, as well as high SNR values (the next section improves the
performance of ML algorithms). Among the regression techniques, SVR performed better
than PR1, which in turn performed better than PR2. The RMSAE of all the regression
techniques and GCC are shown in Table 1. Another observation was that the regression
techniques had a higher RMSAE at the broadside (ranging between 0◦ to 5◦), as well as at
the end-fire (ranging from 80◦ to 90◦). The cause for higher RMSAE near the end-fire was
identified as follows. Consider the data set with SNR = 26 dB: the PPMCCs were computed.
Then, we took the ensemble average of PPMCCs (E[c12], E[c13], E[c14], E[c23], E[c24], and
E[c34]) for each DoA, which is shown in Figure 3. This revealed that the correlations at the
end-fire were steady with almost the same values, which was due to a smaller change in
the relative time-delay with respect to the DoA. The relative time-delay, τi,i+1, between
the signals of two adjacent microphones (mi(t) and mi+1(t)) for a planar wave-front are
approximated by:

τi,i+1 ≈
d
c

sin(θ), (16)

where d is the microphone separation, c is the speed of sound, and θ is the direction of
arrival of a planar wave with respect to the axis normal to the ULA. The rate of change of
relative delay with respect to θ is given by:

dτi,i+1

dθ
≈ d

c
cos(θ), (17)

which shows that at θ ≈ 90o, the dτ
dθ is small, therefore the rate of change of the PPMCC

is also small. This steady value of τi,i+1 caused the same values of all ensemble PPMCC
over a span of DoAs, thereby causing the regression techniques to have an error in the
estimation of the DoA near end-fire. For the no noise case, the signal at all microphones
would have similar waveforms, which would indicate that the PPMCC should be unity;
however, random noise at the microphones caused the random variation of the PPMCC,
and thereby, the learning/training of the machine was poor from the data at the broadside,
hence the higher RMSAE.
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Figure 2. Comparison of different regression techniques (SVR, PR1, and PR2) and the GCC for (a) SNR = 22 dB,
(b) SNR = 18 dB, (c) SNR = 14 dB, and (d) SNR = 10 dB.
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4.2. Improvement with Curve Fitting

To improve on the DoA estimation using regression techniques, curve fitting was
applied on the noisy sinusoidal signal recorded by the microphones, which was described
in Section 3.4. The process of curve fitting reduced the noise in the recorded signals, thereby
providing a sanitized input for improved results. After pre-processing with curve fitting
on the recorded noisy signals, the regression techniques mentioned in Section 4 were
applied. The RMSAE versus DoA results with the SNR ranging from 22 to 10 dB with
a decrement of 4 dB are shown in Figure 4. It also shows the results obtained from the
GCC for comparison. A closer look at the results reveals that pre-processing with curve
fitting reduced the RMSAE of the DoA estimates with regression techniques. Amongst all
the regression techniques, SVR outperformed then in terms of the RMSAE. Polynomial
regression of higher order yielded poor results of DoA estimation without curve fitting
with a too high RMSAE. It can be seen that after pre-processing with curve fitting, the
RMSAE of the DoA estimate was significantly reduced. The GCC continued to perform
better with a consistently lower RMSAE, but it had a highly rugged curve with respect to
the true DoA. Figure 5 shows the performance comparison of SVR and the GCC with and
without curve fitting. It was observed that SVR with curve fitting had a lower RMSAE. A
comparison in terms of RMSAE of different regression techniques and the GCC with and
without curve fitting is shown in Table 1. It can be seen from this table that the RMSAE
of SVR with curve fitting had the lowest values for each experiment with particular SNR
values of 22 dB, 18 dB, 14 dB, and 10 dB. In contrast to the GCC, as the SNR value decreased,
the curve fitting showed more improvement in the performance of SVR.

0 20 40 60 80
True DOA (Degrees)

0

2

4

6

8

10

R
M
S
A
E
 (
D
e
g
re
e
s
)

SNR = 22 dB
SVR

PR1

PR2

PR3

PR4

GCC

(a)

0 20 40 60 80
True DOA (Degrees)

0

2

4

6

8

10

R
M
S
A
E
 (
D
e
g
re
e
s
)

SNR = 18 dB
SVR

PR1

PR2

PR3

PR4

GCC

(b)

0 20 40 60 80
True DOA (Degrees)

0

2

4

6

8

10

R
M
S
A
E
 (
D
e
g
re
e
s
)

SNR = 14 dB
SVR

PR1

PR2

PR3

PR4

GCC

(c)

0 20 40 60 80
True DOA (Degrees)

0

2

4

6

8

10

R
M
S
A
E
 (
D
e
g
re
e
s
)

SNR = 10 dB
SVR

PR1

PR2

PR3

PR4

GCC

(d)

Figure 4. Comparison of different regression techniques (SVR, PR1, and PR2) and the GCC with curve fitting for (a)
SNR = 22 dB, (b) SNR = 18 dB, (c) SNR = 14 dB, and (d) SNR = 10 dB.
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Figure 5. Comparison of SVR and the GCC with and without curve fitting for (a) SNR = 22 dB, (b) SNR = 18 dB,
(c) SNR = 14 dB, and (d) SNR = 10 dB.

4.3. DoA Estimation Improvement at the End-Fire

As mentioned in Section 4.1, it can be observed from all the preceding results that
the RMSAE error was consistently high at the end-fire ranging from 80◦ and above. To
mitigate this high error, the bias and standard deviation analysis of the DoA estimates were
performed. Based on this analysis, we proposed a multilevel regression to reduce the bias
and further improve the accuracy at the end-fire.

4.3.1. Analysis of the DoA Estimation: Bias and Standard Deviation

The bias of a DoA estimator is the difference between the estimated DoA and the true
DoA. If the bias of a DoA estimator is a certain value, then the estimation can be improved
by subtracting the bias from the estimated value. The standard deviation of the DoA
estimate indicates how much an estimated DoA differs from its expected value, which is a
random error and cannot be compensated for a given estimate. Figures 6 and 7 show the
bias and standard deviation of the DoA estimation for SVR and the GCC with curve fitting.
It can be observed from Figures 6 and 7 that the bias for SVR was stable, whereas the bias
for the GCC fluctuated with respect to true DoA. This stable bias in the SVR was beneficial
as it aided in bias error compensation. The standard deviation of the DoA estimate for SVR
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was relatively more stable than the GCC. In contrast to SVR, the standard deviation of the
DoA estimate for the GCC showed spikes. Therefore, it can be concluded that SVR with
curve fitting provided the best DoA estimate amongst all techniques considered.

Table 1. RMSAE (degrees) values with multiple regressions and conventional techniques.

Base Technique SNR (dB)
RMSAE (Degrees)

Without Curve Fitting With Curve Fitting

SVR

22 0.428 0.41
18 0.551 0.429
14 0.966 0.464
10 2.039 0.53

PR1

22 1.212 1.194
18 1.418 1.217
14 2.587 1.264
10 5.567 1.363

PR2

22 4.23 0.655
18 10.351 0.687
14 25.232 0.772
10 59.379 1.034

PR3

22 22.086 0.326
18 Too High 0.398
14 Too High 0.948
10 Too High 4.811

PR4

22 Too High 0.286
18 Too High 0.983
14 Too High 7.95
10 Too High 73.604

PR5

22 Too High 0.27
18 Too High 1.932
14 Too High 19.671
10 Too High High

PR6

22 Too High 0.275
18 Too High 2.183
14 Too High 21.895
10 Too High High

PR7

22 Too High 0.326
18 Too High 2.967
14 Too High 31.947
10 Too High High

GCC

22 0.983 0.983
18 0.988 0.988
14 0.998 0.998
10 1.027 1.027
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Figure 6. Bias comparison of SVR with curve fitting and the GCC with curve fitting for (a) SNR = 22 dB, (b) SNR = 18 dB,
(c) SNR = 14 dB, and (d) SNR = 10 dB.

4.3.2. Improved DoA Estimation with Multilevel Regression

It can be observed from Figure 4 that despite curve fitting, the DoA estimation error
in the range between 80◦ and 90◦ (end-fire) was relatively higher as compared to the DoA
ranging between 0◦ and 80◦. Even after applying curve fitting, there was no substantial
improvement in DoA estimation at the end-fire. Figure 6 reveals that the SVR bias curve
for DoA estimation was increasing near the end-fire. To remove this bias, a second-level
regression model (SLRM) was applied at the end-fire. The input to the SLRM was the DoA
estimated from the SVR with curve fitting (SVR-CF) model, and the output was expected
to compensate for this bias. The SLRM was trained with linear regression (LR) for angles
estimated to be between 80◦ and 90◦ at SNR = 26 dB. The response from this second-level
regression for (a) SNR = 22 dB, (b) SNR = 18 dB, (c) SNR = 14 dB, and (d) SNR = 10 dB
is shown in Figure 8. It was observed that the RMSAE was reduced significantly at the
end-fire with the maximum RMSAE reducing from 6◦ to 2◦ by this improvement. Table 2
compares the results of the SVR-CF model and the SVR-CF tandem with LR (SVR-CF-LR)
model in terms of RMSAE. It can be seen that the RMSAE values significantly reduced,
indicating the SLRM further improved the DoA estimation.
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Figure 7. Comparison of the standard deviation of SVR with curve fitting (SVR-CF) and the GCC with curve fitting for (a)
SNR = 22 dB, (b) SNR = 18 dB, (c) SNR = 14 dB, and (d) SNR = 10 dB.

Table 2. RMSAE of the DoA estimate for SVR-CF and SVR-CF-LR at the end-fire.

Technique SNR (dB) RMSAE (Degrees)

SVR-CF

22 0.410
18 0.429
14 0.464
10 0.530

SVR-CF-LR

22 0.294
18 0.322
14 0.375
10 0.473
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Figure 8. Comparison between SVR-CF and SVR-CF-LR for the DoA estimate in terms of the RMSAE at the end-fire for
(a) SNR = 22 dB, (b) SNR = 18 dB, (c) SNR = 14 dB, and (d) SNR = 10 dB.

5. Conclusions

DoA estimation of a sound source has many applications such as unmanned aerial
vehicles, hearing aids, surveillance, etc. Many techniques such as beamforming and the
GCC, employing a uniform linear array of microphones, have been studied in the past.
However, these techniques have not been as effective and produced errors in the estimated
angle owing to the impact of noise that blends with the received signals. This work
aimed at increasing the efficacy of DoA estimation by exploring multiple machine learning
techniques. The models for polynomial regression of order one to order seven and SVR
were trained with the PPMCC as the feature selected, then compared with the classical GCC
technique for comparative analysis. Since the results were not very impressive, we explored
pre-processing techniques on the incoming signals for improved results. Curve-fitting as
the pre-processing technique was applied, and the same regression models PR 1-7 and SVR
were trained and tested after pre-processing and compared with each other. Among the
regression techniques used, SVR fared the best with a minimum error when compared
with the PR techniques and the GCC. However, all the techniques were shown to yield
high errors near the end-fire. To reduce the error at the end-fire, multilevel regression was
applied with linear regression as the second-level regression on the results of SVR. This
technique proved to be nearly accurate, stable, and unbiased and produced approximately a
63% improvement in the estimated angle when compared with the classical GCC technique.



Sensors 2021, 21, 2692 14 of 16

Author Contributions: Conceptualization, F.A. and M.W.; Methodology, F.A. and M.W.; Software,
F.A. and M.W.; Validation, M.U. and H.I.A.; Formal Analysis, F.A., M.U., H.I.A. and M.W.; Investiga-
tion, F.A. and M.W.; Resources, M.U. and H.I.A.; Writing – Original Draft Preparation, F.A. and M.W.;
Writing – Review & Editing, F.A., M.U., H.I.A. and M.W.; Visualization, F.A. and M.W.; Supervision,
M.W.; Project Administration, M.U.; Funding Acquisition, H.I.A. All authors have read and agreed
to the published version of the manuscript.

Funding: The authors would like to acknowledge the support from Taif University Researchers
Supporting Project Number (TURSP-2020/264), Taif University, Taif, Saudi Arabia.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DoA Direction of arrival
SVR Support vector regression
AVS Acoustic vector sensor
ULA Uniform linear array
TDoA Time-difference of arrival
ML Machine learning
PPMCC Pearson product moment correlation coefficient
GCC Generalized correlation coefficient
SVM Scalable vector machine
LM Levenberg–Marquardt
RBF Radial basis function
GDM Gradient descent method
GNM Gauss–Newton method
SNR Signal-to-noise ratio
AWGN Additive white Gaussian noise
PRn Polynomial regression of order n
SLRM Second-level regression model
SVR-CF SVR with curve fitting
SVR-CF-LR SVR-CF in tandem with linear regression
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