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Abstract: Pulsed Thermography (PT) data are usually affected by noise and as such most of
the research effort in the last few years has been directed towards the development of advanced
signal processing methods to improve defect detection. Among the numerous techniques that have
been proposed, principal component thermography (PCT)—based on principal component analysis
(PCA)—is one of the most effective in terms of defect contrast enhancement and data compression.
However, it is well-known that PCA can be significantly affected in the presence of corrupted data
(e.g., noise and outliers). Robust PCA (RPCA) has been recently proposed as an alternative statistical
method that handles noisy data more properly by decomposing the input data into a low-rank
matrix and a sparse matrix. We propose to process PT data by RPCA instead of PCA in order to
improve defect detectability. The performance of the resulting approach, Robust Principal Component
Thermography (RPCT)—based on RPCA, was evaluated with respect to PCT—based on PCA, using
a CFRP sample containing artificially produced defects. We compared results quantitatively based
on two metrics, Contrast-to-Noise Ratio (CNR), for defect detection capabilities, and the Jaccard
similarity coefficient, for defect segmentation potential. CNR results were on average 40% higher
for RPCT than for PCT, and the Jaccard index was slightly higher for RPCT (0.7395) than for PCT
(0.7010). In terms of computational time, however, PCT was 11.5 times faster than RPCT. Further
investigations are needed to assess RPCT performance on a wider range of materials and to optimize
computational time.

Keywords: Robust PCA; RPCA; PCP; OIALM; Orthogonal IALM; noise reduction; pulsed thermog-
raphy; CFRP

1. Introduction

The unique features that make carbon fiber reinforced plastics (CFRP) preferable to
other materials are their high strength-to-weight ratio, good corrosion resistance, high
fatigue resistance, and very low coefficient of thermal expansion. These interesting char-
acteristics made CFRP a preferred choice in aerospace and other industries where manu-
facturing quality, weight, and user safety are of paramount importance. Non-destructive
testing (NDT) techniques are regularly used to evaluate the efficiency and locate anomalies
non-invasively. infrared thermography (IRT) is a fast, non-contact, and non-invasive NDT
approach to detect and characterize anomalies (surface or sub-surface defects) in materials.
Pulsed thermography (PT) is one of the most popular active IRT approaches [1]. It is based
on thermal heat transfer analysis in transient mode (during cooling).
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In PT, a short pulse of energy is applied to the surface of the object being inspected;
once the light reaches the sample, it becomes a thermal wave propagating through the ma-
terial by conduction. An infrared camera records the surface temperature decay. Following
the thermal pulse, materials without defects cool down uniformly. However, the presence
of a discontinuity will change the diffusion rate, which will affect the heat distribution of
the object. These thermal changes will appear at the surface at different times, depending
on the properties of the object and the defects, as well as their depths. The deeper is the
discontinuity, the later it is observed and the lower is its thermal contrast. However, pulsed
thermography data is affected by electronic noise as well as thermal and optical artifacts
that may reduce defect detectability. To extract meaningful information from the noisy
recorded data, different mathematical methods have been proposed.

Principal component thermography (PCT) [2] is one of such processing methods,
which is based on principal component analysis [3]. PCA is a tool for high-dimensional
data processing that highlights the similarities and dissimilarities in data and estimates
the low-dimensional subspace. As shown in [4], PCA can provide contrast enhancement
and flaw depth estimation with a reconstructed data matrix. The goal of this method is to
efficiently and accurately estimate the low intrinsic matrix lying on original data. Suppose
matrix M is a stacked column-vector of data:

M = L + S (1)

where L has a low-rank and S is a small perturbation matrix. Classical PCA looks for the
rank-k estimate of L by solving Equation (2):

Minimize‖(M− L)‖ (2)

subject to : rank(L) 6 K

where ‖M‖ denotes the 2-norm and K � min(m, n) is the target dimension of the subspace.
In addition, when S is small and independent and identically distributed (i.i.d) Gaussian
noise, it is convenient to solve the problem via singular value decomposition (SVD). PCA
works efficiently when the data enjoy a low level of noise; otherwise, in highly corrupted
data, the estimated L can be significantly affected.

Candès et al. [5] proposed an interesting method for rendering PCA more robust,
where the objective is to recover the low-rank matrix L from highly corrupted measure-
ments M. According to Candès et al., unlike classical PCA in which noise should be small,
the entries in S can have an arbitrarily large magnitude; therefore, it has been used on
data containing high levels of noise, outliers, and distortions. To do so, Candès et al.
decomposed the input data into a low-rank matrix and a sparse matrix, where the sparse
matrix is an estimation of the noise in the data, and the low-rank matrix is an estimation of
the data without noise. Candes et al.’s method is known as Robust Principal Component
Analysis (RPCA).

RPCA has been used in a wide range of applications such as background estimation
and foreground estimation [6], video surveillance [7], face recognition [8], speech recogni-
tion [9], latent segmentation indexing [10], and ranking and collaborative filtering to cite
a few. Recently, Song et al. [11] employed the RPCA technique for noise reduction and
signal enhancement in distributed detection of micro-cracks on structural elements with
very small crack opening displacements. The method used by Candès et al. to decom-
pose the data is known as principal component pursuit (PCP). Several other approaches
in order to decompose input data into a low-rank matrix and sparse matrix have been
proposed [7,12–14]. The minimization method used in the PCP has itself been the topic of
many studies. Xue et al. [15] and Yang et al. [16] offered two new implementations of the
PCP decomposition approach, named Exact Augmented Lagrange Multiplier (EALM) and
Inexact Augmented Lagrange Multiplier (IALM). Guyon et al. [14] proposed to solved PCP
by using a Linearized Alternating Direction Method with Adaptive Penalty (LADMAP),
while Wang et al. studied the accelerated proximal gradient (APG) algorithm to solve it [7].
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In this paper, we introduce a new variation for the decomposition by PCP. Then, we
compare its performance with respect to the state-of-the-art PT processing techniques.

The paper is organized as follows. Section 2 introduces some recent works regard-
ing both PT data processing as well as NDT applications using RPCA. In Section 3, we
present the details of the proposed algorithm. Section 4 details the different aspects of our
investigations. Section 5 introduces the results we obtained, while Section 6 analyzes and
discusses the results we obtained. Finally, Section 7 concludes this study.

2. Literature Review

As previously stated, PT is a field that is eagerly searching for new processing methods
to improve the detection of defects. Thus, over the years, several approaches have been
proposed. In this section, we briefly introduce methods among the recently proposed.

Khan et al. [17] used a convolutional-auto-encoder-based approach for Intrusion
detection, which is fast, simple, and efficient in terms of power and cybersecurity. In
addition, Zhang et al. [18] developed an approach combining domain adaption (DA) and
adaptive convolutional neural network (ACNN) for steel surface defect detection, which
showed an improved accuracy with respect to other methods.

Fleuret et al. [19] investigated the possible application of the Monogenic-Signal to PT
data. Promising results were found; nevertheless, the method proved to be highly sensitive
to noise. The same year, Yousefi et al. [20] studied an application of Sparse-PCA to PT,
under the name SPCT, which outperformed existing methods in terms of defect detection
although requiring a significantly higher computational time.

Wen et al. [21,22] used an improved version of the Sparse-PCA to speed up processing.
This method named Edge-Group Sparse PCA (ESPCT) [23] was significantly faster than
SPCT, although still noticeably slower than PCT. It offered higher defect contrast, making
it very promising for the detection of smaller defects in composite materials.

Yousefi et al. [20,24,25] investigated the application of several non-negative matrix
factorization (NMF) methods on a wide set of materials. These studies highlighted that
NMF offers noticeably better results than other component-based approaches.

The implementation of independent component analysis (ICA) on pulsed thermogra-
phy inspection of CFRP has been investigated by several authors [26–28]. Rengifo et al. [26]
reported achieving a sensitivity of 70% on a sample test. Liu et al. [27] highlighted the
ability of the ICA to handle thermal inhomogeneities, and other noise sources, as well
as providing good defect contrast. Fleuret et al. [28] observed that ICA was compara-
ble to PCT in terms of performance, but with the advantage of being less sensitive to
background noise.

Fleuret et al. [29] investigated the application of another approach named Latent
Low-Rank Representation (LatLRR) to PT data under the name LatLRRT. This approach
differs from most of the previous works because it is based on the assumption that the
data are composed of three signals: the observed data, the sparse noise, and the unob-
served data. The authors concluded that LatLRRT used as a post-processing method can
significantly improve results with respect to state-of-the-art approaches such as PPT [30].
Nevertheless, for the moment, the memory cost prevents this method from being used as a
processing method.

Recently, Liu et al. [31] introduced an approach that uses data augmentation generated
by the deep-learning models. The assumption was that deep-learning models would be
able to learn statistical features from the data. Liu et al.’s method provided good results on
composite materials compared with state-of-the-art methods such as PCT [4,32]. The same
authors evaluated their work using ICA as a detection method [33]. Similar to the previous
one, this method provides good results on composite materials.
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Lopez et al. [34,35] proposed partial least square (PLS) regression to improve the
general quality of the image sequences. During the regression step, the PLS algorithm can
model both spatially and temporally the evolution of the signal. It was originally proposed
as a denoising technique allowing synthetic data reconstruction in a manner similar to
thermographic signal reconstruction (TSR) [36].

Inspired by these works, Fleuret et al. [37] investigated the use of a pair of support
vector machine (SVM) algorithms [38] to enhance defect contrast. The first algorithm
computes a regression in the time domain, while the second computes a regression in the
space domain. Then, the output sequence is reconstructed from these regressions providing
images with enhanced defect contrast.

Even though RPCA is a well-known tool for background-foreground subtraction
with improved robustness to noise in several imaging application, it has seldom been
investigated in infrared thermography. Zhu et al. [39,40] used RPCA to reduce noise from
eddy current pulsed thermography (ECPT) data. Their work was based on the RPCA
method proposed by Candès et al. [5]. Liang et al. [41] studied the use of a tensor-based
RPCA approach proposed by Lu et al. [42] on ECPT. They concluded that TRPCA is a high
accuracy defect extraction algorithm. Xiao et al. [43] studied the application of yet another
type of RPCA for data fusion.

The RPCA method we proposed is inspired by the work of Candès et al. [5], however
more recent works have been suggested since then. For instance, Peng et al. [44] proposed
a highly scalable convex RPCA based on ALM and matrix factorization. Sun et al. [45]
proposed a graph-based RPCA. Liu et al. [46] also proposed a graph-based method that
has the advantage of being adaptive, ensuring in this way that the local structure of the
data is well represented in the low-rank matrix.

Wang et al. [47] introduced the Double RPCA (DRPCA), which offers increased ro-
bustness regarding the topology of the regions in the image. In addition, unlike most of the
RPCA approaches, which are transductive, DRPCA is an inductive approach, which makes
it suitable for online application. Ma et al. [48] offered a review of the most popular RPCA
methods used for convex optimization. Van Luong et al. [49] proposed an RPCA method
for online application such as background and foreground separation. Cai et al. [50] intro-
duced a rapid RPCA based on an accelerated inexact low-rank estimation.

Several other methods can be found in the literature. We included here a selection of
studies on which we based our approach. In particular, our choice regarding the work of
Candès et al. [5] is due to the stability and robustness of their approach, which for these
reasons has become a reference. Nonetheless, as detailed in next section, our proposed
approach is better adapted for the PT applications.

3. RPCA via OIALM

Among the different methods proposed in the literature to overcome the limitation
of the PCA regarding noisy data, the one proposed by Candès et al. [5] has become very
popular. In their work, Candès et al. used a convex optimization; the formulation they used
is known as principal component pursuit (PCP). Other formulations and improvements
of the PCP, have since been proposed. In particular, the work of Lin et al. [51] has become
well-known due to its ability to converge faster than similar methods such as accelerated
proximal gradient (APG).

Lin et al. proposed two variations of the PCP formulation using the augmented
Lagrangian multiplier (ALM) approach, named Exact Augmented Lagrangian Multiplier
(EALM) method and Inexact Augmented Lagrangian Multiplier (IALM). Even though
both methods attempt to optimize the sparse and low-rank matrix, their main difference
is a condition applied on a set of penalty parameters that allow the IALM algorithm to
converge faster than EALM by avoiding the minimization of a sub-problem.
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Our approach is inspired by the IALM formulation. Given an observation matrix D,
which is assumed to be the combination of two matrices, A (low-rank) and E (a sparse
matrix), the straightforward formulation to minimize the energy function is to use the
l0-norm:

min rank(A) + λ‖E‖0 (3)

D = A + E

where ‖·‖0 is the l0-norm, that is, the number of the non-zero items of the matrix, and
implies the sparsity. λ is the balance parameter to determine the contributions of A and E in
minimizing the objective function. Since Equation (3) is an NP-hard problem, i.e., at least as
hard as the hardest problems in non-deterministic polynomial (NP) time, Candès et al. [5]
reformulated this equation into a similar convex optimization problem as follows:

minL,S(‖A‖∗ + λ‖E‖1) (4)

subject to D = A + E

where ‖A‖∗ and ‖E‖1 are the nuclear norm of A and l1-norm of E, respectively. The balance
parameter λ is defined as:

λ = 1/
√

max(m, n) (5)

where m is the number of rows and n is the number of columns of the 2D input ma-
trix. Lin et al. [51] solved Equation (4) using a generic ALM method, which solves the
constrained optimization problem:

min f (x), subject to h(x) = 0 (6)

f : Rn → R, h : f : Rn → Rm

The Lagrange function can be defined as:

L(X, Y, µ) = f (X) + 〈Y, h(X)〉+ µ

2
‖h(X)‖2

F (7)

According to the Lagrange multiplier method, Equation (6) can be reformulated to
solve the RPCA problem as follows:

X = (A, E), f (X) = ‖A‖∗ + λ‖E‖1. (8)

h(X) = D−A− E

The Lagrange function of Equation (8) is defined as:

L(A, E, Y, µ) = ‖A‖∗ + λ‖E‖1 + 〈Y, D−A− E〉+ µ

2
‖D−A− E‖2

F (9)

where Y is the Lagrange multiplier and penalty parameter µ is a positive scalar parameter.
The approximate exact augmented Lagrange multiplier algorithm used to solve the RPCA
problem is shown in Algorithm 1. Y0 has been initialized to Y0 = D/J(D) [52], making the
objective function value 〈Y0, D〉 reasonably large. In addition, J(D) = max(‖A‖2, λ−1‖Y‖∞),
where ‖.‖∞ is the maximum absolute value of the input matrix. In each iteration after
solving Ak+1 and Ek+1, the low-rank matrix L is updated by Incremental-PCA [53].

In Step 1 of Algorithm 1, ρ is the learning rate and µ0 is the initialization of the penalty
parameter that influences the convergence speed. In [51], it is proven that the objective
function of the RPCA problem (Equation (4)), which is non-smooth, has an excellent
convergence property. In addition, it has been proven that, to converge to an optimal
solution (A∗, E∗) of the RPCA problem, it is necessary for µk to be non-decreasing and
∑+∞

k=1 µ−1
k = +∞. As can be noticed from Equation (10), our proposed approach differs
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from the IALM in that the low-rank matrix is projected into an orthogonal space, which is
why we named this approach Orthogonal IALM:

Ak+1 = argmax
u∈Rn

uTAT
k+1Ak+1u

= argmax
u∈Rn

uTCu (10)

where u is a unit vector so uTu = 1. This projects the low-rank value into an orthogonal
space while maximizing the variance between the projected data. This step provides
relevant information to be projected among the projected matrix’s first dimensions; there-
fore, it is possible to reduce the computational cost by only keeping γ dimensions, which
corresponds to a PCA.

Algorithm 1: RPCA via the Orthogonal IALM method

Input: Data: D ∈ Rm×n, balance parameter λ,
dimensionality reduction scalar: γ(≤ n)
Y0 = D

J(D)
; E0 = 0; µ0 > 0; ρ > 1; k = 0;

while not converged do
// Lines 3-4 update A by solving Ak+1 = argmin

A
L(A, Ek, Yk, µk)

(U, S, V) = svd(D− Ek + µ−1
k Yk);

Ak+1 = US
µ−1

k
[S]VT ;

// Line 5 update E by solving Ek+1 = argmin
E

L(Ak+1, E, Yk, µk)

Ek+1 = S
λµ−1

k
[D−Ak+1 + µ−1

k Yk];

// Lines 6 Updating A by solving Ak+1 = argmax
u∈Rn

uTAT
k+1Ak+1u

Ak+1 = argmax
u∈Rn

uTAT
k+1Ak+1u;

Yk+1 = Yk + µk(D−Ak+1 − Ek+1);
Yk+1 = {Y1

k+1, Y2
k+1, . . . Yγ

k+1} ;
Update µk to µk+1;
k← k + 1;

end
Output: (Ak, Ek)

In the next section, we describe our experiments and analysis and present our data.

4. Methods

In the previous section, we introduce RPCA. Now, we describe the different aspects of
the experiments we conducted in order to evaluate its performance. Figure 1a shows our
research block diagram, which presents all of the steps.
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Figure 1. (a) Research block diagram; and (b) proposed method block diagram.

4.1. Data Acquisition

An academic CFRP plate (30.8 cm × 46 cm × 2.57 mm) was used in this study. It pos-
sesses 73 defects of three different types: 23 round flat-bottom holes (FBH), 25 triangular
Teflon inserts, and 25 triangular pullouts. These types of manufactured flaws are employed
to represent delaminations in CFRP laminates in Ultrasonic Testing because the change
in acoustic impedance between the composite and the defect (Teflon or air) produces a
variation in the ultrasonic signal when it passes through [54]. This plate was already used to
study the adequateness of such artificial defects to represent delamination in thermography
and shearography NDT [55] as well as for research on PCA analysis in shearography [56,57].
Defect size, depth, and thickness are indicated in Table 1, and their respective locations are
shown in Figure 2a.

The PT experimental setup consists of two flash lamps (5 ms thermal pulse, 6.4 KJ/flash
(Balcar, France)), a cooled infrared camera (FLIR Phoenix (FLIR Systems, Inc., Wilsonville,
OR, USA), InSb, midwave, 3–5 mm, Stirling Cooling), and a computer to store the thermal
sequences. The data were acquired at a frequency of 180 Hz. A control unit was also
required to control and synchronize the data acquisition with flash triggering. Our experi-
ments were performed using a PC (Intel(R) Xeon(R), 128 Gb memory, (Intel Corporation,
Santa Clara, CA, USA)). Figure 2b, shows the PT approach in reflection mode.
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(a)

(b)
Figure 2. (a) CTA CFRP plate, where Z is the defect depth and labels are used to identify the location
of each defect; and (b) pulsed thermography setup. a, PC; b, IR camera; c1 and c2, left and right
flashes; d, CFRP specimen.

4.2. Metrics

In this section, we briefly introduce the different metrics we used to quantitatively
assess the performance of our proposed approach RPCT, and compare it to PCT.

4.2.1. Contrast to Noise Ratio (CNR)

The Signal-to-noise ratio (SNR) is a metric that measures image quality by estimating
the signal level with respect to the background noise. The Contrast-to-noise ratio (CNR) is
similar to SNR although based on the difference (i.e., the contrast) between two features in
an image. This contrast can be calculated, for instance, for a defect area with respect to a
sound area. This is interesting since it provides a tool to quantitatively assess the defect
detection capabilities of a given method. Several CNR definitions can be found in the
literature, as summarized by Usamentiaga et al. [58]. This study also proposes to use the
following definition, as it has been shown to be the most robust against noise and image
enhancement operations (e.g., Gamma correction):
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CNR =
| µS − µN |√

(σ2
S+σ2

N)
2

(11)

where µS is average level of the signal in the defect region, µN is the average level of the
noise in the sound area, σS is standard deviation of the signal in the defect area, and σN is
standard deviation of the noise in the reference region.

Table 1. Defect specifications for the CFRP Plate, Z is the depth of the defect below the inspected surface. Thickness is the
defect thickness or thickness of the holes in case of the FBH type of defect.

Defect
Code

Z
[mm]

Dimensions
[mm]

Thickness
[mm]

Defect
Code

Z
[mm]

Dimensions
[mm]

Thickness
[mm]

Defect
Code

Z
[mm]

Dimensions
[mm]

Thickness
[mm]

Teflon Inserts Pull-Outs FlatBottom Holes

Tef-A 2.43 12.7 × 50.8 0.17 PO15-A 2.43 12.7 × 50.8 0.15 FBH-1J 2.28 12.70 0.29
Tef-B 2.28 12.7 × 50.8 0.17 PO15-B 2.28 12.7 × 50.8 0.15 FBH-2K 2.00 12.70 0.57
Tef-C 2.14 12.7 × 50.8 0.17 PO15-C 2.14 12.7 × 50.8 0.15 FBH-3L 1.71 12.70 0.86
Tef-D 2.00 12.7 × 50.8 0.17 PO15-D 2.00 12.7 × 50.8 0.15 FBH-4M 1.43 12.70 1.14
Tef-E 1.86 12.7 × 50.8 0.17 PO15-E 1.86 12.7 × 50.8 0.15 FBH-5N 1.28 12.70 1.29
Tef-F 1.71 12.7 × 50.8 0.17 PO15-F 1.71 12.7 × 50.8 0.15 FBH-6P 1.00 12.70 1.57
Tef-G 1.57 12.7 × 50.8 0.17 PO15-G 1.57 12.7 × 50.8 0.15 FBH-7Q 0.71 12.70 1.86
Tef-H 1.43 12.7 × 50.8 0.17 PO15-H 1.43 12.7 × 50.8 0.15 FBH-8R 0.57 12.70 2.00
Tef-J 1.28 12.7 × 50.8 0.17 PO15-J 1.28 12.7 × 50.8 0.15 FBH-8S1 0.57 12.70 2.00
Tef-K 1.14 12.7 × 50.8 0.17 PO15-K 1.14 12.7 × 50.8 0.15 FBH-8S2 0.57 12.70 2.00
Tef-L 1.00 12.7 × 50.8 0.17 PO15-L 1.00 12.7 × 50.8 0.15 FBH-8S3 0.57 12.70 2.00
Tef-M 0.86 12.7 × 50.8 0.17 PO15-M 0.86 12.7 × 50.8 0.15 FBH-8S4 0.57 12.70 2.00
Tef-N 0.71 12.7 × 50.8 0.17 PO15-N 0.71 12.7 × 50.8 0.15 FBH-8S5 0.57 12.70 2.00
Tef-P 0.57 12.7 × 50.8 0.17 PO15-P 0.57 12.7 × 50.8 0.15 FBH-3H 1.71 6.35 0.86
Tef-Q 0.43 12.7 × 50.8 0.17 PO15-Q 0.43 12.7 × 50.8 0.15 FBH-4G 1.43 6.35 1.14
Tef-R 0.29 12.7 × 50.8 0.17 PO15-R 0.29 12.7 × 50.8 0.15 FBH-5G 1.28 6.35 1.29
Tef-S 0.14 12.7 × 50.8 0.17 PO15-S 0.14 12.7 × 50.8 0.15 FBH-6F 1.00 6.35 1.57
Tef-B2 2.28 12.7 × 50.8 0.17 PO10-B2 2.28 12.7 × 50.8 0.10 FBH-7E 0.71 6.35 1.86
Tef-D2 2.00 12.7 × 50.8 0.17 PO10-D2 2.00 12.7 × 50.8 0.10 FBH-8E1 0.57 6.35 2.00
Tef-F2 1.71 12.7 × 50.8 0.17 PO10-F2 1.71 12.7 × 50.8 0.10 FBH-8E2 0.57 6.35 2.00
Tef-H2 1.43 12.7 × 50.8 0.17 PO10-H2 1.43 12.7 × 50.8 0.10 FBH-8E3 0.57 6.35 2.00
Tef-J2 1.28 12.7 × 50.8 0.17 PO10-J2 1.28 12.7 × 50.8 0.10 FBH-8E4 0.57 6.35 2.00
Tef-L2 1.00 12.7 × 50.8 0.17 PO10-L2 1.00 12.7 × 50.8 0.10 FBH-8E5 0.57 6.35 2.00
Tef-N2 0.71 12.7 × 50.8 0.17 PO10-N2 0.71 12.7 × 50.8 0.10
Tef-P2 0.57 12.7 × 50.8 0.17 PO10-P2 0.57 12.7 × 50.8 0.10

4.2.2. Jaccard Similarity Coefficient Score

The Jaccard similarity coefficient (also known as Jaccard index or Intersection-Over-
Union (IoU)), initially proposed by Paul Jaccard [59], is a statistical method that measures
the similarity between two datasets and is defined as the ratio of the intersection size to the
union size of two sample sets (as illustrated in Figure 3).The Jaccard index is a useful and
very straightforward metric.

A ∩ B

BA

Intersection over Union = 
(IoU)

Ground-truth

Prediction

A U B

(a)

Poor Good Excellent

(b)
Figure 3. (a) Jaccard Index similarity definition; and (b) similarity between the ground-truth and the detected area.
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In this approach, four steps should be taken into account:

1. Count the number of members (i.e., pixels) that are shared between both
sets (intersection).

2. Count the total number of members in both sets i.e., the union (shared and unshared).
3. Divide the number of shared members (1) by the total number of members (2).
4. Multiply the computed result from Step 3 by 100.

J(A, B) provides a value between 0 (no similarity) and 1 (identical sets). Hence, the
higher is the value of IoU, the higher is the level of similarities between two sets (Figure 3b).

J(A, B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∩ B|

0 ≤ J(A, B) ≤ 1
(12)

4.3. Analysis

We chose to compare our approach RPCT that is based on RPCA, with principal
component thermography (PCT) [32] that is based on PCA, to verify if the use of RPCA
will effectively reduce the impact of noise.

The calculation of the score for each one of our two metrics was carried out using
two different protocols. For the calculation of the Jaccard Index, we developed a custom
automatic segmentation approach, as illustrated in Figure 4. This approach is based on
four steps: First, the image’s contrast is corrected using a percentile normalization between
the second and ninety-eighth percentiles. The choice of the percentile normalization is due
to the ability of this approach to increase the contrast even in the presence of local light
artifacts. Then, a bilateral filter [60] is used to smooth the image. To smooth efficiently, we
selected a spatial filter with a kernel of size 31× 31 pixels and a range filter with kernel of
size 7× 7 pixels. The third step consists in applying a local thresholding approach based
on a block of 101× 101 pixels. The last step consists in removing the small objects in 2
connectivity with smaller than 64 pixels present in the image. The reason for the latter step
is to remove artifacts that could have been generated by the third step.

Once the images of the different methods are segmented, they can be compared with
a manually labeled reference image in order to compute the metric score.

Regarding the CNR score, before the experiments, both the defect regions and sound
areas were manually labeled, as can be seen in the two examples shown in Figure 5, where
three boundaries can be seen: red, green and blue. The sound area is located in between
the outermost boundary (in red) and the middle boundary (in green), while the defect area
corresponds to the area inside the innermost boundary (in blue). The average and standard
deviation values required in Equation (11) are calculated from these areas. The exact same
areas were used to estimate the CNR values from raw, PCT, and RPCT data.

Input Data
(PCT / RPCT)

OUTPUT

Contrast Correction

Local Thresholding

Bilateral Filter

Remove small object

Segmentation

Ground Truth

Jaccard Index

Masks

Data

Figure 4. Segmentation and Jaccard index computation flow graph.
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Figure 5. Examples of reference and defect regions. The boundaries of the reference region are
between the green and red lines, while the defective region is inside the blue line area.

The following section presents the results.

5. Results

The original PT sequence (raw data) was processed by PCT and RPCT. Figure 6 shows
some representative results (selected arbitrarily) of the different methods.

(a) (b) (c)
Figure 6. (a) Raw data at Frame 5; (b) fifth component of PCT data; and (c) fifth component of
RPCT data.

Raw data correspond to the original unprocessed data. The arithmetical difference
between a defective and a non-defective (sound) pixel (or group of pixels) is called the
absolute thermal contrast, or simply the contrast. A given defect would be visible, i.e., its
contrast would be higher than zero during a certain time that depends on different factors
(defect type, size and depth, inspection method, amount of delivered energy, etc.). The
thermal contrast typically varies from zero to a maximum, and then it gradually returns to
zero. For instance, considering defect FBH-4M (at the center of the plate, highlighted in
Figure 7), Figure 7 shows the thermal profiles, i.e., temperature vs. time plots, for a pixel
inside the defect area (red plot), the profile of a pixel in the sound pixel close to this defect
(blue plot), and the thermal contrast (green plot).

Hence, defects are visible at different degrees during several frames. In the case
illustrated in Figure 7, defect FBH-4M can be detected roughly from 0.1 to 10 s, which
corresponds to the time range where the contrast is higher than the noise. All other defects
in the inspected plate produce similar profiles, with deeper defects appearing later and
with lesser contrast.

PCT and RPCT, on the other hand, are statistical methods based on PCA and RPCA,
respectively, that reorder data according to their variability and project them into an
orthonormal space in such a way that the most valuable information is compressed in the
first few components while subsequent components contain mostly noise. Figure 8 shows
some selected PCT components: (Figure 8a) first PCT component showing several defects
but also a strong non-uniform heating pattern (two ellipses, left and right) that accounts
for most of the variability of the data and are therefore concentrated in the first component;
(Figure 8b,c) second and third components, respectively, showing most of the defects and
lesser impact from non-uniform heating; and (Figure 8d,f) later components (21st, 500th,
and 3500th, respectively) showing mostly noise.
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Figure 7. Thermal profiles (temperature vs. time plots on a semi-logarithmic scale) of a pixel inside
defect FBH-4M (red plot); a sound pixel close to this defect (blue plot); and the absolute thermal
contrast between these two (green plot).

(a) (b) (c)

(d) (e) (f)
Figure 8. PCT components: (a) first; (b) second; (c) third; (d) 21st; (e) 500th; and (f) 3500th.

Table 2 summarizes the computational time for each of the processing techniques. As
can be seen, RPCT takes significantly more time to compute (483 s) than PCT (42 s). Further
optimization of the processing algorithm would be required to reduce this gap.

Table 2. Processing time of RPCT and PCT methods.

Process RPCT PCT

Run time (sec) 483.06 42.007
ROI size (px) 229 × 320 229 × 320

Number of frames 3998 3998

The CNR values of all defects and all processing techniques were calculated using
the defects and reference areas as the ones shown in Figure 5. The highest CNR value
(CNRmax) was then found for each case and the results are summarized in Table 3. The
maximum CNR values between different methods are in bold.

Figure 9 presents selected CNR curves for raw, PCT, and RPCT data that correspond
to defects at the same depth (Z = 1.43 mm) but of different types (FBH, pull-outs, and
inserts) in which the CNRmax value is indicated together with the frame of occurrence.
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Figure 9. Comparative CNR curves for defects at the same depth (Z=1.43 mm) but different types
(FBH, pull-outs and inserts): (Row 1) raw data; (Row 2) PCT; and (Row 3) RPCT. Columns 1–5
represent FBH-4M, FBH-4G, PO10-F2, PO15-H, and Tef-H, respectively.

To further analyze results, the CNRmax values are gathered by defect type in Figure 10
and by defect depth in Figure 11.
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Figure 10. CNRmax by defect type as a function of the defect depth for all data sequences (PCT and
RPCT).
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Table 3. Maximum CNR (CNRmax) values for RPCT and PCT methods in all depths (Z).

Teflon CNRmax FBH D= 12.7 mm CNRmax PO th = 0.15 mm CNRmax

Code Z RPCT PCT RPCT vs. PCT Code Z RPCT PCT RPCT vs. PCT Code Z RPCT PCT RPCT vs. PCT

Tef-A 2.43 1.408 1.214 16% FBH-1J 2.28 4.098 3.025 35% PO15-A 2.43 0.839 0.697 20%
Tef-B 2.28 2.0465 1.3865 48% FBH-2K 2 12.887 8.795 47% PO15-B 2.28 1.163 0.754 54%

Tef-B2 2.28 FBH-3L 1.71 12.255 9.081 35% PO15-C 2.14 2.897 1.466 98%
Tef-C 2.14 2.216 1.385 60% FBH-4M 1.43 17.464 12.346 41% PO15-D 2 3.439 2.254 53%
Tef-D 2 2.937 1.988 48% FBH-5N 1.28 17.808 11.174 59% PO15-E 1.86 2.399 0.908 164%

Tef-D2 2 FBH-6P 1 17.155 11.012 56% PO15-F 1.71 3.673 1.343 173%
Tef-E 1.86 3.085 2.457 26% FBH-7Q 0.71 15.347 11.432 34% PO15-G 1.57 3.994 1.906 110%
Tef-F 1.71 4.008 2.8225 42% FBH-8R 0.57

11.084 10.2143 9%

PO15-H 1.43 4.057 3.118 30%
Tef-F2 1.71 FBH-8S1 0.57 PO15-J 1.28 4.734 3.545 34%
Tef-G 1.57 4.581 3.778 21% FBH-8S2 0.57 PO15-K 1.14 4.231 3.493 21%
Tef-H 1.43 5.5655 5.3225 5% FBH-8S3 0.57 PO15-L 1 4.916 4.479 10%

Tef-H2 1.43 FBH-8S4 0.57 PO15-M 0.86 4.63 4.597 1%
Tef-J 1.28 5.7675 5.531 4% FBH-8S5 0.57 PO15-N 0.71 4.202 3.718 13%

Tef-J2 1.28 FBH D= 6.35 mm CNRmax PO15-P 0.57 4.344 3.722 17%

Tef-K 1.14 5.507 4.979 11% Code Z RPCT PCT RPCT vs. PCT PO15-Q 0.43 4.278 3.295 30%

Tef-L 1 6.8795 5.412 27% FBH-3H 1.71 8.817 5.182 70% PO15-R 0.29 5.151 5.035 2%
Tef-L2 1 FBH-4G 1.43 7.769 5.993 30% PO15-S 0.14 4.65 3.595 29%

Tef-M 0.86 9.418 6.719 40% FBH-5G 1.28 9.44 6.277 50% PO th=0.15 mm CNRmax

Tef-N 0.71 8.8715 7.744 15% FBH-6F 1 16.581 7.276 128% Code Z RPCT PCT RPCT vs. PCT

Tef-N2 0.71 FBH-7E 0.71 13.755 7.985 72% PO10-B2 2.28 1.34 1.111 21%
Tef-P 0.57 9.292 7.6725 21% FBH-8E1 0.57

14.8234 6.2194 138%

PO10-D2 2 1.969 1.552 27%
Tef-P2 0.57 FBH-8E2 0.57 PO10-F2 1.71 2.939 2.334 26%
Tef-Q 0.43 6.417 7.953 −19% FBH-8E3 0.57 PO10-H2 1.43 2.873 2.998 −4%
Tef-R 0.29 7.799 5.851 33% FBH-8E4 0.57 PO10-J2 1.28 2.561 3.005 −15%
Tef-S 0.14 5.016 4.542 10% FBH-8E5 0.57 PO10-L2 1 2.383 3.33 −28%

PO10-N2 0.71 3.021 3.041 −1%
PO10-P2 0.57 3.711 3.51 6%
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Figure 10 shows the evolution of the CNR as a function of the depth and each pro-
cessing method for each defect type. Similarly, Figure 11 shows the evolution of the CNR
as a function of the material type for the raw data and each processing method for some
selected defects.

Finally, Table 4 presents the best Jaccard Index score obtained for each processing
method computed through time.

In the next section, the results are analyzed and discussed.

Table 4. Jaccard Index values of RPCT and PCT segmentation.

Method RPCT PCT

Jaccard Index 0.7395 0.7010

6. Discussion

As can be seen in Table 2, the proposed RPCT method has, for this specific and given
dataset, a processing time that is considerably longer than PCT (11.5 times). This can be
explained by the convex optimization operation. More precisely, to compute the low-rank
and sparse matrix, several SVD are computed at each iteration of the optimization loop until
it converges. Nonetheless, despite the increased time compared with the state-of-the-art
methods, a computation time of 8 min 3 s is still reasonable for most NDT applications.

Approaches such as General-purpose computing on graphics processing units (GPGPU)
can significantly reduce the computation time; however, such implementation exceeded
this study’s goals.

Several observations can be made from the results in Figures 10 and 11:

• In general, flat-bottom-holes (FBHs) present by far the highest CNRmax values, as
expected, while pull-outs (POs) and Teflon inserts (TEFs) are very close, although
with slightly higher values for the latter contrary to what was expected. Delamination-
like artificial defects such as pull-outs should, in principle, present a higher thermal
contrast than Teflon inserts, given that the thermo-physical properties of Teflon are
closer to those of CFRP than those of air. It can be concluded that these two types of
artificial defects are not different enough to produce a noticeable variation in CNR.

• In the case of FBHs at the same depth, larger defects have slightly higher CNR values
than smaller defects, i.e., FBHs with D = 12.7 showed higher CNRmax than FBHs with
D = 6.35 mm (as expected).

• For pullouts at the same depth, thicker defects have higher CNR values than thinner
defects, i.e., th = 0.15 vs. 0.10 mm (as expected).

• Regarding the relative depths, in all cases (FBHs, POs, and TEFs), the deeper is the
defect, the lower is the CNR value (as expected).

• The improvement in CNRmax score after processing (RPCT and PCT) is generally
more pronounced for deeper depths.

• CNR values (considering all defect types) were on average 40% higher for RPCT
compared to PCT, which may be taken as an indication of global performance im-
provement thanks to the use of RPCA.

• In the case of FBHs, CNRmax values were 60% higher for RPCT vs. PCT.
• In the case of POs, CNRmax values were 27% higher for RPCT vs. PCT.
• In the case of TEFs, CNRmax values were 24% higher for RPCT vs. PCT.

In the next section, we provide our conclusion regarding the proposed approach.

7. Conclusions

In this paper, we propose a new formulation of the RPCA named Orthogonal Inexact
Augmented Lagrangian Multiplier (OIALM). We evaluated the performance of the resulting
approach, Robust Principal Component Thermography (RPCT), for detecting defects and
discontinuities in CFRP and compared the results with those of PCT using two quantitative
metrics: Contrast-to-Noise Ratio (CNR) and the Jaccard similarity coefficient. The CNR
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was computed frame by frame and the maximum value was identified for every defect and
all techniques (raw, PCT, and RPCT).

The low-rank and sparse matrices in RPCT are projections of thermal data onto the
noiseless data and noise, and the low-rank matrix is optimized in each iteration using
incremental PCA. RPCT enables noise to be removed from the thermal sequences, therefore
improving defect contrast and increasing defect detection.

Considering CNR results from all defect types, RPCT reported CNRmax values 40%
higher than PCT. The improvement was greater for flat-bottom-holes (60%) compared to
pull-outs (27%) and Teflon inserts (24%). In the case of the Jaccard index, RPCT performed
slightly better than PCT (0.74 vs. 0.70). The computation time was however 11.5 times
longer for RPCT than for PCT.

Although RPCT, to the best of our knowledge, has never been applied to pulsed
thermographic data before, this study demonstrates its efficiency for defect enhancement
capabilities over mixed and various types of defects typically addressed in IRT in composite
materials. The goal of the study was to introduce this approach; further improvement in
terms of computational speed could be achieved by using low-level programming language
and hardware optimization. RPCT can therefore be considered as a powerful analysis tool
that may help to push the limit of defect detection by IRT.

It should be pointed out that the RPCT method is not limited to data acquired by
pulsed thermography (in which only the cooling phase is analyzed), but it could potentially
be applied to other IRT techniques such as square pulse thermography (in which the
heating and cooling phase may be of interest) and lockin thermography (in which regular
periodic cycles are observed).

Future research will be directed towards the application of RPCT to different materials
(glass fibers, aluminium, etc.), to the implementation of software/hardware optimization
solutions (e.g., through the use of GPGPUs), and to the application of RPCT to other IRT
techniques (e.g., square pulse thermography and lockin thermography).
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Abbreviations
The following abbreviations are used in this manuscript:

ALM Augmented Lagrangian Multiplier
APG Accelerated Proximal Gradient
CFRP Carbon Fiber Reinforced Plastic
CNR Contrast to Noise Ratio
DRPCA Double Robust Principal Component Analysis
EALM Exact Augmented Lagrange Multiplier
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ECPT Eddy Current Pulsed Thermography
ESPCA Edge-Group Sparse Principal Component Analysis
ESPCT Edge-Group Sparse Principal Component Thermography
FBH Flat Bottom Holes
GPGPU General-purpose computing on graphics processing units
IALM Inexact Augmented Lagrange Multiplier
ICA Independent Component Analysis
IoU Intersection over Union
IRT InfraRed Thermography
LADMAP Linearized Alternating Direction Method with Adaptive Penalty
LatLRRT Latent Low-Rank Representation Thermography
MWIR Mid-Wave InfraRed
NDT Non Destructive Testing
NMF Non-negative Matrix Factorization
NP Non-Deterministic Polynomial
OIALM Orthogonal Inexact Augmented Lagrange Multiplier
PCA Principal Component Analysis
PCP Principal Component Pursuit
PCT Principal Component Thermography
PLS Partial Least Square
PLST Partial Least Square Thermography
PO Pull-Outs
PPT Pulsed Phase Thermography
PT Pulsed Thermography
RPCA Robust Principal Component Analysis
RPCT Robust Principal Component Thermography
SNR Signal to Noise Ratio
SPCA Sparse Principal Component Analysis
SPCT Sparse Principal Component Thermography
SVM Support Vector Machine
Tef Teflon Inserts
TSR Thermographic Signal Reconstruction
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