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Abstract: In an Internet of Things (IoT) environment, a large volume of potentially confidential
data might be leaked from sensors installed everywhere. To ensure the authenticity of such sensitive
data, it is important to initially verify the source of data and its identity. Practically, IoT device
identification is the primary step toward a secure IoT system. An appropriate device identification
approach can counteract malicious activities such as sending false data that trigger irreparable security
issues in vital or emergency situations. Recent research indicates that primary identity metrics such
as Internet Protocol (IP) or Media Access Control (MAC) addresses are insufficient due to their
instability or easy accessibility. Thus, to identify an IoT device, analysis of the header information of
packets by the sensors is of imperative consideration. This paper proposes a combination of sensor
measurement and statistical feature sets in addition to a header feature set using a classification-
based device identification framework. Various machine Learning algorithms have been adopted to
identify different combinations of these feature sets to provide enhanced security in IoT devices. The
proposed method has been evaluated through normal and under-attack circumstances by collecting
real-time data from IoT devices connected in a lab setting to show the system robustness.

Keywords: device identification; IoT Security; device profiling; real-time traffic; machine learning

1. Introduction

We are witnessing the dawn of the Internet of Things (IoT) era, providing intercon-
nection between the physical and the digital worlds with a remarkable impact on every
aspect of our lives. Correspondingly, IoT has been paving its way in multiple sectors,
recently including household and industrial solutions. The number of IoT devices can be
predicted to reach up to 500 devices per household by 2022 [1]. In IoT-based smart city
environments, an enormous number of physical devices are employed throughout the city,
which are highly accessible and consequently, making their physical security of paramount
importance. Such issues related to weak physical security as easy device disassembling,
access of device data by malicious means, and removable storage media are considered
major security threats [2]. Henceforth, despite the various benefits imparted by them in
terms of flexibility and usability, these also entail a multitude of security concerns and
attacks [3]. A foremost consideration in attack prevention for IoT devices is isolating such
devices with restrictive communications to other devices through a gateway. Apparently,
instead of device isolation, proper IoT device identification is a better approach for network
administration considering security risks [4].

Additionally, the provision of a secure communication channel is another challenge
apart from physical security. Presently, secure communication is provided by public and
private key pairs or certificate installation on these devices, which helps provide the identity
of the device. Again, there are limitations to using these certificates; for instance, if these
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certificates are accessed by an unauthorized entity, it will allow identity theft, allowing
the transmission of false data to other devices in the network. It will impact the decision-
making process because decisions are usually made on the aggregated data from different
devices and a single falsification of data will affect the entire system. As a countermeasure,
hardware-based and software-based approaches can be applied. The Root of Trust (RoT) is
an example of hardware-based solutions that can be equipped by using either hardware like
a chip called the Trusted Platform Module (TPM) or using software like Trusted Execution
Environment (TEE). Using RoT, which is embedded on an IoT device, the authenticity of
other certificates can be verified by the root, which is chained to those certificates [5].

Apart from hardware-based approaches to countermeasure these types of identity
thefts, the system should be capable enough to identify these threats. The identity claimed
by the user is validated and proved by employing authentication techniques which in-
clude certificates, local user/password setting, or OAuth server connection (as shown in
client-side identification of Figure 1). This problem has been resolved by using Facebook
authentication with OAuth2 and an Access Control List (ACL) approach, where access
rules are specified using a tree-based information structure [6].

Figure 1. Identification in Internet of Things (IoT).

In contrast, there are very few options for verifying the device identity as shown in
device-side identification of Figure 1. The main challenge on the device-side is to authenti-
cate the origin of the received messages on the server to detect identity thefts. One solution
is using a certificate, which can easily be spoofed. Device fingerprinting can be considered
a more optimal solution in which the process of identification of connected devices can be
automated by network administrators [7]. Similar to fingerprinting, device profiling can be
an approach for continuous device identification by monitoring behavioral features.

Paper Contribution: This work addresses the challenge of IoT device identification
within a network by analyzing and classifying network traffic data for device identification
from arriving packets with high accuracy by taking machine learning (ML) approaches. We
solve this problem by presenting an identification approach based on sensor measurements,
statistics, and header information for device behavior or device profiling by monitoring the
data packets coming from smart devices to protect the server from receiving and spreading
false data. Each device’s behavior is defined by its features, which are characterized by
seven profiling models specified in the proposed framework. We adopt ML methods to
learn unique features of each IoT device without expert supervision and evaluate them
using network performance and algorithms’ accuracy. For proof-of-concept, we implement
a demonstrator system for the IoT system comprising of temperature and humidity sensors
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integrated through open standards called Open Messaging Interface (O-MI) and Open
Data Format (O-DF). The present paper is an extended version of our paper, presented at
the INDIN conference [8]. This paper significantly expands the feature sets and develops
realistic results by running a real use-case, collecting real data, and evaluating the system
through various attack scenarios.

2. Literature Review

As there is a need for multiple users and devices to authenticate each other using
trustable services, it is imperative that identity authentication be managed in IoT networks.
The device identification idea for handling data privacy was first coined by Sarma and
Girao [9] in 2009, however, most of the identity management systems based on Service
Oriented Architecture (SOA) in IoT such as Shibboleth, Card-Space, and Liberty Alliance
rarely considered the identity of devices in the framework [10]. To identify the device
identity, the security module can either employ its identity or its specific features. Recently,
various types of features in communication networks have been adopted by researchers for
device identifications. The most common features lately applied could be location based
on Global Positioning System (GPS) and Wi-Fi [11,12], the familiarity of devices derived
from Bluetooth, time [12], identity (MAC—Media Access Control, IP—Internet Protocol, or
RFID—Radio-Frequency Identification tag) [12], unique hardware-specific characteristics
such as clock skew [13–15], device fingerprinting using MAC and properties of packets
received from a device such as address and port of client and server [16], inter-arrival
time [17], padding, packet size, and destination IP counter [18]. During attack detection,
real-time and environmental factors also need to be considered to avoid false alarms [19].

Header information has been adopted extensively for device identification methods
in the literature. A device identification technique has been proposed for the identification
of the device model and type based on header information’s similarity calculation and
this method is built for factory-used devices and network cameras by relying on general
communication information [20]. Another method employs device fingerprinting for
authentication and identification purposes by training an ML method based on extracted
features from the network traffic for the detection of similar types of devices [21]. An
automated classification system was also developed for device characteristics known as
System Identifier (SysID) [4]. They applied Genetic Algorithms (GA) to distinguish the
most unique features and various ML methods to classify the device type. ML algorithms
were used in another approach on network traffic data for device identification of the
devices connected in an IoT network [22]. The labeled data were employed for training and
validating the classifier where labeled data were collected from nine unique IoT devices,
smartphones, and personal computers. A multi-stage meta classifier was trained using
supervised learning in the first stage to distinguish the IoT and non-IoT devices generating
traffic and in the second stage, a unique class has been associated with each IoT device.

In some use-cases, the non-white list (not allowed to be used within any premises
of organization) devices for trustworthy IoT device types need to be detected. For this
purpose, a supervised ML algorithm, Random Forest (RF) was adopted to train extracted
features from network traffic data with an objective to correctly identify the types of IoT
devices from the white list [23]. A multi-stage classification algorithm was developed based
on the network activity, demonstrating its ability to identify particular IoT devices [24].
A device identification approach was proposed where packet sequences from high-level
network-flow traffic data were analyzed using supervised ML techniques to extract distinct
flow-based features to create device fingerprinting [25]. The proposed approach was able
to automatically identify device types in the white list and the individual device instances
in the IoT network. Furthermore, a system security model was also designed to enable
rules enforcement to constrain IoT device communications according to their privileges.
This helps in suspicious device identification with abnormal behavior restricting their
communication to avoid further monitoring. A similar ML approach based on sent and
received packet streams was proposed to recognize connected IoT device types in an exper-
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imental smart home network and the designed model helps describe IoT device network
behaviors [26]. Another system named AuDI (Autonomous Device Identification) [27] was
proposed by analyzing the device-related network communications to identify the device
type in an IoT network traffic. An unsupervised learning algorithm was used for model-
ing periodic IoT devices’ communication traffic for identification. Hence, after the initial
learning phase, AuDI’s operation is fully automatic for the identification of previously
unfamiliar devices and device types in any operational mode or device lifecycle stage.

Table 1 represents a summary of state-of-the-art from various perspectives. Most of
the current identification methods focus on identifying the types of IoT devices from the
predefined list of legitimate devices while our method verifies identities of the devices
by making profiling models for each of them. The proposed method in this paper is
considered a traffic analysis method with certain differences. Since payloads mostly are
encrypted in traffic analysis, payload information is not operational in constructing the
fingerprinting. However, in our implementation, due to the new messaging standards (O-
MI/O-DF), the unencrypted payload data are accessible on the server. Therefore, we adopt
the payload data for device identification alongside header information and generated
statistical features. The idea of using payload data or sensor measurements for device
identification is initially proposed by [8]. This identification framework employs only
payload data and some extracted statistical features from a public dataset without taking
into consideration any attack scenarios. However, in the current paper, by collecting data
from a real use-case, header information can also be extracted to be combined with payload
data, which creates a variety set of diverse features. In addition, the paper accomplishes the
experimental results by evaluating the classification results under various attack situations.

Table 1. Comparison of the proposed work with state-of-the-art techniques.

Pap. Purpose Identification Method Considered Features Implementation Attack Status

[20] To identify the device
type and device model

Calculating the similarity of fea-
tures

Communication features ex-
tracted from header

Network cameras and
factory-used devices

No attack

[21] To employ behavioral fin-
gerprinting for identifica-
tion and authentication

K-nearest-neighbors (K-NN),
Decision Trees (DT), gradient
boosting, and majority voting

Header feature and payload-
based features

14 home IoT devices No attack

[4] To automatically classify
the IoT devices using
TCP/IP packets

ML algorithms (DT, K48, OneR,
PART) to classify device type

GA to determine most unique
features from network, trans-
port, and application layer

a database from [18] No attack

[22] To identify IoT devices us-
ing ML algorithms on net-
work traffic data

Two-stages classifier:
I. distinguish IoT vs non-IoT
II. determine device class

features from network, trans-
port, and application layer +
data from Alexa Rank and
GeoIP

9 distinct IoT devices,
and PCs and smart-
phones

No attack

[23] To identify IoT device
types from the white list

multi-class classifier using RF Features from Transmission
Control Protocol/Internet
Protocol (TCP/IP) sessions

17 different IoT devices
(9 device type) by differ-
ent vendors

Based on local
organizational
security policies
violations

[24] To classify IoT devices us-
ing traffic characteristics

multi-stage ML:
Stage-0. Naïve Bayes
Stage-1. RF

statistical attributes:
activity cycles, port number,
signaling patterns, and cipher
suites

a living lab with 28 IoT
devices

User Datagram
Protocol (UDP)
reflection and TCP
SYN attacks

[26] To recognize IoT devices
by analyzing the gener-
ated network traffic

RF, DT, Support Vector Machine
(SVM), k-NN, Artificial Neural
Network and Gaussian Naive
Bayes

Size of first 10 pack sent/ re-
ceived and interval times

experimental smart
home network of 4
devices

No attack

[25] To automatically identify
white-listed device types

ML classifiers ( e.g., SVM and K-
NN)

behavioural and flow-based
features

31 off-the-shelf IoT de-
vice (27 device types)

Adversaries com-
promising devices
on network

[27] To identify device-type
without human interven-
tion

unsupervised learning method 4 types of features: periodic
flaws, periodic accuracy, pe-
riod duration, and period sta-
bility

a dataset comprising 33
typical commercial IoT
devices

Spoofing device
fingerprints

Our
work

To identify the device us-
ing device profiling

ML methods (RF, SVM, and Lo-
gistic Regression (LR))

header information, sensor
measurements, and statistical
features

2 types of sensors in an
office

physical and
remote attacks
(Object emulation
and Botnet attack)
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3. Device Identification Framework

Figure 2 presents a high-level overview of the framework, which makes device iden-
tity decisions by performing automatic classification of IoT devices. Such classification
works based on sensor measurements, traffic data, and a classifier model. This system
overall encompasses four layers: data collection, dimension extraction, analysis engine,
and security management. The system also includes two key modules, namely, Model
Management and Security Management. Model Management will be responsible for detecting
the most adequate features and investigating their weight or importance through ML
methods. Once the dimensions have been extracted and the ML model of the current
device is identified, Security Management decides on the security options, whether it is
authenticated or not, and provides the enforcement support. Additionally, two databases
(DBs) are also accessible to manage the data. The first DB, Sensor and Header DB consists of
the sensor measurements, header information, and dimension names. Once the required
dimensions have been loaded from the first DB, the value of each dimension will be elicited
from the observation and the learned model will be stored in Classifier DB.

Figure 2. IoT device identification framework.

This is a data-driven framework obtained from sensor devices via GPS (Global Posi-
tioning System), Wi-Fi, and Bluetooth at the beginning of the Data Collection layer. Simul-
taneously, a packet analyzer such as Pyshark captures the traffic features extracted from
packet headers. Then, the Features Extraction module applies all the features for calculating
the feature vector to describe the present observation based on the value of the extracted
features. Subsequently, a data query will be sent to Sensor and Header DB by the Data
Preparation module for finding the necessary sensor and header information. During the
device’s learning phase, the sensor data and extracted features are trained to build the
model for the device using a training and testing set. The Classifier DB stores the trained
model from the Classification Engine.

Once the learning phase is completed, it is time for the prediction phase (red lines
in Figure 2), as the next step in model processing. After extracting the features from the
new input, the features and the classifier models loaded from the Classifier DB will be
employed by the Classification Engine to classify new observations. As the classification
result is prepared, the engine will assign a security level (e.g., binary value) to the classifier
and forward it to the Security Management layer, which considers the security level during
the verification of device identity. The Identification module verifies the identity and labels
the available feature set of current observations as malicious or legitimate. The feature
set in the last module can be composed of header features, sensor measurement, some
statistical features, or a combination of them all.
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4. Enforcement

The implementation details including system methodology and steps, model creation
and selection, and feature extraction are discussed as follows.

4.1. Methodology

To describe the device identification framework, Figure 3 depicts a workflow of
implementation steps. As seen in the figure, the first step in implementing the device
identification framework is to set up the environmental modules including the O-MI node,
security modules on top of the O-MI node, IoT gateways such as Raspberry Pi (RPi) and
Electronic Stability Program (ESP), and sensors connected to IoT gateways. From thereon,
all the modules will be operated over the O-MI server, which is implemented on a virtual
machine at Aalto University. All these modules generate a concrete security module that is
easy to plug-in on various servers, due to its modularity. On the other hand, running all
the security modules in a single place convert it to a new product that can be reused on
any other smart environment with minor patches.

Once all the required modules are running, in the Data capturing and preparation step,
the sensor measurements can be stored in the sensor-DB on the O-MI server. Simulta-
neously, header information related to HTTP messages arriving from the sensors can be
captured and extracted to the header-DB. Python has been selected as the core program-
ming language of this phase and the remaining phases. Thus, to allow Python packet
capturing and packet parsing, a Python wrapper called Pyshark has been employed which
uses Wireshark dissectors (or tshark).

Figure 3. Implementation steps.

Alongside the sensor measurements and header features, few time-based features
are also calculated based on the date-time attribute measured by sensors. Such features
generate the third category called statistical features, which will be stored in sensor-DB.
Therefore, for each sensor data sent to the server, three categories of features (sensor
measurements, header features, and statistical features) can be incorporated in seven
combinations as input vectors for the Training phase. Accordingly, seven classifiers are
defined for each gateway device with their best estimators. These classifiers will be stored
in classifier-DB and later during the Testing phase, they will be fetched from the same
DB. Once the classifiers are loaded in the Testing phase, seven input vectors similar to the
training vector but containing testing data are created and the real-time data are evaluated
with previously learned classifiers. The best classifier is selected based on the evaluation
results. Finally, to investigate the effect of attacks on the evaluation results and if the
best classifier can efficiently find the attack, some attacks will be implemented and the
performance results will be compared.
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4.2. Model Creation and Selection

Since it is a classification problem, first we need to collect data for both classes (normal
and abnormal) and train the model according to these data using ML algorithms, which are
chosen based on the data linearity or non-linearity. Then, we can use this model to classify
the new data. We use classification since it is more accurate than unsupervised models. For
this purpose, we make a unique classifier model for each device that serves as the device
profile. We employ the One-Vs-Rest classifier also called the One-Vs-All classifier, which
is a multi-class classifier training one classifier per class. As a result, N classifiers will be
created for N classes [25]. To achieve this, any f lowx (i.e., a sequence of packets) captured
on the server will be labeled either as 1 or 0 in n profiles (n = number of devices). For
instance, to create the profile for devicei (pro f ilei, i = 1, 2, .., n), the label for f lowx equals
1 if such flow arrives from device i and equals 0 if it arrives from other devices j 6= i. In
other words, f lowx will be labeled as 1 in pro f ilei, and as 0 in pro f ilej(j 6= i), as seen in
Equation (1). As a result, n device profiles are available for learning the model. Then after
finishing the device profiling, the features in profiles (including sensor measurements,
statistical features, and header information) will be divided to make seven possible models
as inputs to ML algorithms. The models are Statistic-only, Measurement-only, Header-only,
Statistic-Measurement, Statistic-Header, Measurement-Header, and Statistic-Measurement-
Header or Aggregation.

pro f ilei =

{
1 if x = i (x is id of arriving flow)
0 if x = j (j 6= i)

(1)

Once the models are created, the ML algorithm will acquire the models for each device
and learn or load the classifier whether it is in the training or testing phase. To implement
the ML algorithms, Scikit-learn Library parameters are applied with their best estimators.

4.3. Feature Extraction

In this paper, considering six sensor sets and IoT gateways, the real-time sensor data
and their header packet information are collected on the virtual machine and stored in
separate datasets including header-DB and sensor-DB. Packet headers were captured using
Pyshark, and the nominated header features have been stored in header-DB. It is imperative
that the verification of continuous identity considers the selected features. Once the sensor
data are received by the server, the data and their behaviors are verified by comparison
with the previous values present in the feature database.

All binary or integer features with zero variance such as IP version (value = 4), IP
header length (value = 20), IP protocol (value = TCP), IP header checksum (value = 2)
were removed from header-DB. Besides, to avoid redundancy, we keep only one feature
among highly correlated features. For instance, the Sequence number is stored between
the Acknowledgment number and the Sequence number or the Next sequence number is
chosen between the Segment length and the Next sequence number. Besides, sensor-DB
consists of two sensor measurements (Temperature and humidity) and two statistical fea-
tures (flow duration, inter-arrival time). The inter-arrival time is calculated for each packet
according to the time interval between two consecutive packets (current and previous
packets). Table 2 represents the list of features with their importance rate calculated through
the RF algorithm. Features with a higher importance rate have a more significant impact on
the algorithm results. As seen in the table, the sensor measurements and statistical features
have a much higher impact compared to header-based features.
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Table 2. List of features.

Type Attribute Header Sub-Attributes Importance

Header (19)

Network layer (2) ’length’
’time_to_live’

0.0429
0.0071

Transport layer (15) ’source_port’
’stream_index’
’length’
’sequence_number’
’next_sequence_number’
’header_length’
’window_size_value’
’window_size’
’window_size_scalefactor’
’options’
’analysis_initial_rtt’
’analysis_bytes_in_flight’
’analysis_push_bytes_sent’
’time_relative’
’time_delta’

0.0095
0.0034
0.0498
0.0288
0.0662
0.0069
0.011
0.0187
0.0061
0.0077
0.0017
0.0214
0.0341
0.0334
0.0037

Application layer (1) ’content-length’ 0.0655

Packet length 0.0514

Measurements (2)
Temperature 0.2409

Humidity 0.0597

Statistics (2)
Flow duration 0.1997

Inter-arrival time 0.181

5. Adversary Model

As IoT devices are spreading around the world, cyber-attacks are becoming more
sophisticated in multiple stages by coordinating various attacks from different places,
thus requiring more complex defense mechanisms and vulnerability assessments. To
properly assess the vulnerabilities, the network requires to face a simulated attack. In
other words, a real synthetic attack scenario will occur in the network so that the potential
breaches or vulnerabilities and the related defense mechanisms can be identified [28]. In
this investigation of two general attack categories called physical attack and remote access
attack, we simulate two attacks from these categories including object emulation attack
and Botnet attack. However, only one set of results is presented in the paper, since both
attacks have the same effect on the system, and as a result, they yield similar evaluation
results. “we introduce two types of common attack scenarios in IoT environments, which
can be detected by our device identification approach. We want to show that our model
not only identifies the device identity but also can detect the attacks originating from the
identity theft.”

5.1. Our Attack Model
5.1.1. Physical Attack

A physical attack or object emulation attack [19] occurs when an extra device of the
same identity as an authorized device is attached to the IoT network where this identity
is used for falsification of the messages to convey an illusion as if the actual legitimate
user is sending these messages. The device certificates are physically accessed from an
authorized device by an attacker for installation on any other IoT device, by which the
malicious device is granted access to send wrong data to the server (see the malicious
device in Figure 4). These false data can be used by an attacker to trigger a false alarm (e.g.,
fire alarm) inducing a disaster. Hence, this type of physical security generally possesses
two possible solutions [29]: network layer security control or barrier placing around the
network. As barriers in open environments and large spaces, such as public places and
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smart campuses are impractical, the exploration of the network layer security control is a
more feasible solution.

5.1.2. Remote Access Attack

Botnet attack is the most popular remote access attack. The attacker remotely connects
to an RPi (bot) through a Secure Shell (SSH) connection simply by knowing its login
credential. Then, using this bot, the attacker can control the data sending process from the
sensor to the server. From now on, whenever the user requests temperature and humidity
data, the bot can forge the data passing the RPi. For instance, if the sensor measurement is
24 for temperature and 26 for humidity, the bot modifies the data to 10 and 10. Eventually,
by receiving the false temperature and humidity, the user might turn on the heater or
humidifier and triggers a critical incident in environments such as hospitals demanding
careful consideration. Figure 4 displays the attack scenario.

Figure 4. Object emulation attack and Botnet attack model in IoT.

6. Evaluation

In this section, initially, the testing scenario and performance metrics will be defined.
Then, according to the introduced metrics, the classification results will be analyzed in
various circumstances: the normal implementation of the network with no attack and the
implementation while the attack running on the network.

6.1. Scenario Description

To evaluate our approach, a prototype system in a real environment (i.e., an office) has
been established as shown in Figure 5. It generally contains six sensors, six IoT gateways,
six wireless routers, a virtual server, and the security module running on the server. In such
a prototype, two different temperature and humidity sensors including 1-Wire and SHT-20
are respectively connected to two IoT gateways Raspberry Pi 3 (RPi3) and ESP8266, which
are all installed in an office in the Aalto ASIA (Adaptive Systems of Intelligent Agents) Lab.
By connecting to the Internet through various wireless routers, IoT gateways forward the
sensors’ data in tree-based O-DF ontology to the O-MI server. In other words, a wrapper
is running over the IoT gateway which reads the sensor value, translates it to the O-DF,
makes an O-MI Write request, and finally sends an HTTP POST request. The O-MI server
then manages the device identification via running the security service.
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Based upon three categories of features (measurement-based, header-based, and sta-
tistical), seven profiling methods are established: Measurement-only, Header-only, Statistic-
only, Measurement-Header, Measurement-Statistic, Header-Statistic, and Aggregation. The
Measurement-only, Header-only, and Statistic-only methods include only the sensor mea-
surements (Temperature and Humidity), header features (first set of features in Table 2),
and statistical features (flow duration, inter-arrival time), respectively. In the same vein,
the Measurement-Header, Measurement-Statistic, and Header-Statistic methods contain
a combination of two sets of features as defined in their names. Finally, the Aggregation
method combines all three sets of features into one model.

Figure 5. Experimental setup for data collection.

6.2. Performance Metrics

Various performance metrics have been used for the evaluation of the efficiency of the
proposed system, which are described below.

6.2.1. Confusion Matrix

The exactness and reliability of a system are calculated through a confusion matrix
which is also termed an error-matrix. This matrix promotes a clear idea of the system
performance by analyzing the misclassification rate and accuracy.

• True Positive (TP): When the predicted and actual classes are identically at true
class (1).

• True Negative (TN): When an element is predicted to be in False class (0) and it truly
belongs in false class (0).

• False Positive (FP): When the system predicts an element to be in true class (1) but in
actual it does not.

• False Negative (FN): When the system predicts that an element does not belong to a
false class (0) but in actual it does.

6.2.2. Accuracy

Accuracy refers to the total number of correct classifications performed by the network
out of the total number of classifications made. As shown in Equation (2), accuracy is the
rate of true predictions by all the true and false predictions combined.

Accuracy =
(TP + TN)

(TP + FP + FN + TN)
(2)
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6.2.3. Recall or Sensitivity

Recall is the rate of accurately predicted positives to genuine positives. Recall provides
us with an idea about a model’s performance proportionate to false negatives.

Recall =
TP

(TP + FN)
(3)

6.2.4. Precision

Precision is the rate of accurately predicted positives to all the predicted positives.
Precision is about predicting frames correctly, whereas Recall is about predicting all the
positive frames correctly [30]. So, to minimize false negatives, we must focus on enhancing
Recall as high as possible with a decent and acceptable Precision value. The values of both
Precision and Recall can be monitored by a single value performance metric called the
F1-score.

Precision =
TP

(TP + FP)
(4)

6.2.5. F-Score

To consider the role of both precision and recall, the F1-score is computed. As presented
in Equation (5), the F1-score is simply the harmonic mean of precision and recall. In the case
of unbalanced class distribution in the dataset, the F1-score is a more optimal evaluation
metric than accuracy. A low value of the F1 score indicates a problem when either Precision
or Recall has a low value. In that case, the F1-score is closer to the smaller value than the
bigger value out of these two.

F1− score =
(2× Precision× Recall)
(Precision + Recall)

(5)

6.3. Classification Results Under Normal Situation

During the training phase, data are collected for 25 h in Comma-Separated Values
(CSV) format in which columns represent the nominated features and each row includes a
list of features related to one arriving packet. Then, the seven profiling systems defined in
Section 4.2, will be trained through three ML methods, namely, RF, Support Vector Machine
(SVM), and Logistic Regression (LR). Henceforth, during the testing phase, once the data
are collected for the next 5 h in CSV data format, the trained models will be adopted to
verify the device identity by measuring the performance metrics. This process continuously
occurs every five hours. Due to data collection being performed in 25 and 5 h, the ratio
between the training and testing set will be 80–20, which is the most common proportion
of training and testing data. The average values of performance metrics are calculated for
six classifiers corresponding to each IoT device. The experimental results for three ML
methods are represented in Tables 3–9.

Table 3. Classification performance for aggregation.

Accuracy Recall Precision F_Score Build Time

RF 81.36% 0.6666 0.5205 0.7989 12

SVM 86.20% 0.6734 0.5574 0.8134 2.96

LR 81.33% 0.8475 0.5888 0.8305 15.06
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Table 4. Classification performance for Measurement_Header.

Accuracy Recall Precision F_Score Build Time

RF 86.21% 0.4611 0.4799 0.8232 13.56

SVM 88.47% 0.5792 0.6949 0.8696 2.91

LR 85.41% 0.9247 0.6704 0.8633 17.75

Table 5. Classification performance for Measurement_statistic.

Accuracy Recall Precision F_Score Build Time

RF 85.65% 0.4958 0.4236 0.8334 12.64

SVM 89.42% 0.7932 0.6664 0.8935 4.20

LR 91.79% 0.5909 0.7595 0.8518 3.88

Table 6. Classification performance for Header_statistic

Accuracy Recall Precision F_Score Build Time

RF 81.82% 0.5101 0.3975 0.7871 12.20

SVM 81.47% 0.5984 0.4803 0.808 3.13

LR 78.45% 0.7540 0.5483 0.7959 16.38

Table 7. Classification performance for Measurement_only.

Accuracy Recall Precision F_Score Build Time

RF 89.64% 0.5885 0.6786 0.8777 11.93

SVM 92.62% 0.6461 0.7911 0.9118 3.4

LR 89.66% 0.5263 0.5766 0.8609 2.46

Table 8. Classification performance for Header_only.

Accuracy Recall Precision F_Score Build Time

RF 80.35% 0.3803 0.2884 0.7665 12.88

SVM 82.57% 0.4482 0.4106 0.7958 5.95

LR 80.14% 0.6440 0.4679 0.7922 19.75

Table 9. Classification performance for Statistic_only.

Accuracy Recall Precision F_Score Build Time

RF 71.94% 0.2939 0.1719 0.6929 11.55

SVM 72.55% 0.2915 0.2288 0.6894 2.2

LR 75.99% 0.0448 0.05 0.7005 2.58

Considering all the tables, it can be determined that SVM has the highest accuracy
and F1-score compared to other ML methods in most of the profiling models. Moreover,
although both SVM and LR generally perform fast, SVM has the fastest building time
(in seconds) in our case scenario. Hence, we nominate SVM for attack analysis in the
next step. Our data have two fundamental properties: (I) they include a relatively small
level of sparsity, and (II) classes are not linearly separable. SVM can nicely handle binary
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classification tasks where the classes are not linearly separable while LR is unable to cope
with such problems well. We think the reason why SVM outperforms RF is because of
the first property of the data above. Although the sparsity level is not large, it can still
negatively affect the performance of RF. Furthermore, SVM is intrinsically suitable for
binary classification tasks, same as our classification task, while RF is suitable mostly for
multi-class classification tasks. On the other hand, regarding the profiling system, the
Measurement-only model reports the best results for all the ML methods. The next best
models are measurement-statistic and measurement-header. Therefore, we can conclude
that models including measurement features generally perform better compared to the rest
of the profiling models.

6.4. Classification Results Under Attack Situation

This section evaluates performance results through the attack scenario where the SVM
method is employed for device identification. In other words, the best classifiers in the
previous analysis under normal situation is employed in this section to detect attacks and
the effect of attacks on the results is evaluated based on the FP rate. As a result, we can
analyze whether the best profiling models and features in a normal situation are also able
to efficiently detect the attack or other models and sets of features operate better under the
attack situation. Two main attack scenarios are introduced. In the first scenario (Scenario 1),
the attacker forges both sensor measurements including temperature and humidity while
in the second scenario (Scenario 2), only one of them (temperature) will be modified by the
attacker through one infected IoT gateway. The attacker could also send the forged data in
different inter-arrival times (30, 50, 70, and 100), in which 100 s is the same as the original
inter-arrival time of the legitimate device. Since the attack should be detected at the earliest
opportunity, we evaluate the model performance over each scenario for every hour.

A FP rate is selected to analyze the performance of various profiling methods during
attacks. The lower FP rate represents a higher performance for the profiling model. As seen
in Figures 6 and 7, the profiling methods with measurement features (i.e., Measurement-
header and Measurement-statistics) have a minimum FP rate explaining that these can be
employed for higher performance. In other words, the best profiling methods under normal
circumstances can also make the best performance results during the attack scenario. It can
also be explained with the help of Table 2, where measurement features have the highest
importance but when they are combined with header features (which have the next highest
feature importance) they even perform better, which is clear from the results presented in
Figures 6 and 7.

As seen in Figure 8, the measurement-header has the lowest FP rate for both Scenario
1 and Scenario 2. At the same time, measurement-statistic has a slightly higher FP rate and
finally measurement-only has the highest while comparing these three profiling methods.
Hence, when measurement features are combined with other features especially header
features, they perform on a higher level.
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Figure 6. False Positive (FP) rate for attack scenario 1 for all the profiling models.

Figure 7. FP rate for attack scenario 2 for all the profiling models.

Figure 8. FP rate for attack scenario 1 (s1) and scenario 2 (s2).

Since measurement features have a more profound effect on the results, they are
selected and the performance metrics for the measurement-only and measurement-header
are calculated using the SVM classifier and presented in Table 10. The values are calculated
for the different inter-arrival times for both the attack scenarios. Further, the measurement
header performs better than measurement only for all the inter-arrival times.
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Table 10. Support Vector Machine (SVM) results for measurement-only and measurement-header
during attack scenarios.

Scenarios Inter-Arrival Time (s) Accuracy Recall Precision F_Score

Measurement-Only

Scenario 1

30
50
70
100

80%
76.19%
74.12%
74.44%

0.4
0.4
0.2
0.2

0.2556
0.24
0.2
0.0667

0.815
0.7648
0.7592
0.7029

Scenario 2

30
50
70
100

79.09%
77.65%
75.71%
75.71%

0.2267
0.2
0.1
0.04

0.26
0.1333
0.2
0.2

0.8194
0.7892
0.7675
0.782

Measurement-Header

Scenario 1

30
50
70
100

93.91%
89.52%
88.24%
0.9%

0.4
0.36
0.18
0.4

0.37
0.35
0.2
0.36

0.9131
0.8742
0.855
0.8804

Scenario 2

30
50
70
100

90.91%
88.24%
81.43%
84.29%

0.16
0.2
0.15
0.2

0.2
0.2
0.2
0.2

0.8884
0.862
0.8107
0.8331

7. Conclusions and Future Work

After proposing an IoT device identification in our previous work, and presenting
two profiling methods, we learned that this framework is fixable enough to run more
variety of profiling methods. Accordingly, seven profiling models have been defined.
First, three methods are based on a single data category (the sensor measurement-only,
header-only, and the statistic-only). Second, three methods are based on double data
categories (measurement-header, measurement-statistic, and header-statistic). Finally,
the last type is the aggregation of all features provided by the first three methods. The
performance of these models is evaluated by implementing a real IoT use-case. Our results
show a significant accuracy improvement in the measurement-based models, especially
the measurement-header model. Future work ought to be dedicated to increase the type
and number of IoT devices and to collect real-time network data for a longer period of time.
We also plan to include behavioral features for device identification.
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