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Abstract: The combination of onboard sensors on vehicles with wireless communication has great
advantages over the conventional driving systems in terms of safety and reliability. This technique is
often called cooperative perception. Cooperative perception is expected to compensate for blind spots
in dynamic maps, which are caused by obstacles. Few blind spots in dynamic maps can improve
the safety and reliability of driving thanks to the additional information beyond the sensing of the
onboard sensors. In this paper, we analyzed the required sensor data rate to be exchanged for the
cooperative perception in order to enable a new level of safe and reliable automated driving in
overtaking scenario. The required sensor data rate was calculated by the combination of recognition
and vehicle movement to adopt realistic assumptions. In the end of the paper, we compared the
required sensor data rate with the outage data rate realized by the conventional V2V communication
and millimeter-wave communication. The results showed the indispensability of millimeter-wave
communications in automated driving systems.

Keywords: 5G; automated driving; cooperative perception; collective perception; V2V communica-
tion; millimeter-wave communication; extended sensor

1. Introduction

Vehicles play a key role in modern transportation systems and are indispensable in
our daily lives. Market research predicts a continuous growth of the ownership rate of
vehicles in the coming years, especially in developing countries. However, as the vehicle
penetration rate increases, various social issues arise. Traffic accidents are one of the typical
issues. It is said that 93% of traffic accidents are caused by human failure [1]. The lack of
public transport for senior citizens in a rural area is also a typical social problem. In Japan,
the service frequency of public transport will be halved after the elapsing of 30 years [2].
Since the lack of drivers causes this problem, it is a severe problem in an aging society.
Therefore, automated vehicles are expected to make car traffic safer by reducing the impact
of human failure and become a new form of transportation in rural areas.

In current Japanese work, automated driving trials are performed to realize Level 2
and 3 automated driving defined by the SAE (Society of Automotive Engineers) [3]. To
realize a high level of automated driving, a concept called connected car society is planned.
It is designed to connect vehicles to a network so that new services will be started and
more advanced automated driving will be realized. The new services can be classified into
four groups such as safety, car life support, agent, and infotainment. We focused on safety
service among these services to realize Level 4 and 5 automated driving.

One of the biggest challenges of realizing automated vehicles is that automated
driving vehicles must recognize the surrounding environment sufficiently in order to detect
and localize all objects, obstacles, and pedestrians for safe and effective route planning.
Dynamic maps, or HD (High-Definition) maps, are the maps for automated vehicles and
are believed to be a key element for safe automated driving. To perform both navigation
and collision avoidance, dynamic maps consist of dynamic and static information [4].
Static information provides geographical information that helps an automated vehicle
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navigate to a destination. On the other hand, dynamic information provides information
about surrounding objects that help to prevent a collision. This dynamic information is
gained by onboard sensors such as cameras, radar sensors, and LiDAR sensors, which
results in a significant hardware cost. Unfortunately, when obstacles block the sensor view,
dynamic information has no way to provide information about blind spots. One solution
to this problem is connecting an automated vehicle with other sensors, which is called
cooperative perception.

The key idea of cooperative perception is to share sensor data obtained from different
locations via wireless communication, as shown in Figure 1. It is said that the demands
of the data rate for cooperative perception will grow heavily as the level of automated
driving grows [5]. This is because the system in an automated vehicle has to recognize
the surrounding environment and drive safely by itself. Although many groups have
presented the requirements for multiple use cases such as cooperative perception, it is
still an open question to find the minimum required sensor data rate to guarantee safe
automated driving. Since automated driving roughly consists of obtaining sensor data,
processing the sensor data, and reflecting the results of the process in vehicle movement,
the requirements for safe automated driving should also consider these processes. Focusing
on the sensor data rate, in [6], it was said that an automated vehicle gathers nearly 750
megabytes per second, which will require a high data rate for cooperative perception.
Moreover, when raw sensor data are sent for cooperative perception, this high data rate
will have a big impact on the performance of wireless communication. From these two
facts, it is expected that conventional V2V (Vehicle-to-Vehicle) communications are not
enough to support safe automated driving using cooperative perception.

Figure 1. An illustration of the concept of cooperative perception. Although the red oncoming vehicle
is invisible to the green ego vehicle due to the blue vehicle blocking it, the cooperative perception
between the ego vehicle and blocking vehicle changes it to visible.

In order to discuss the data rate required for safe automated driving, we focused
on overtaking on a two-lane road and derived the required data rate to prevent car-car
accidents. This scenario selection was due to the statistics in Japan, which say that head-on
collisions account for 50% of accidents in basic road sections [7]. The contributions of this
paper consist of the derivation of the requirements that consider safety and showing that
millimeter-wave communication has a great ability to share raw sensor data and guarantee
safety. In this paper, we adopted a vehicle movement and a recognition process in the
required data rate analysis to discuss it under a more realistic assumption. Moreover,
we adopted raw sensor data sharing for both processed and raw sensor data sharing
for high reliability. In the end, we derived the minimum sensor data rate required to
ensure safety. In addition, we proved that millimeter-wave communication is a promising
candidate to exchange sensor data among vehicles and allow driving at high speed in the
overtaking scenario.
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The rest of this paper is organized as follows. Section 2 introduces related works and
highlights our contributions. Section 3 explains the system model. Firstly, it introduces
cooperative perception and explains the scenario analyzed in this paper. Secondly, it
explains the vehicle movement assumed in the scenario and derives the distance to overtake
safely. Finally, it explains the process of recognition and derives the required sensor data
rate by combining with the vehicle movement. Section 4 shows and compares the safe
overtaking realized by the conventional and millimeter-wave V2V communications. In
more detail, it explains the V2V channel model, analyzes the antenna space for height
diversity, and analyzes the result. Finally, Section 5 concludes this paper.

2. Related Works

Our analysis for deriving the minimum data rate required for safe automated driving
can be separated into two types of work. The first is about the requirements of the data rate
to support V2X (Vehicle-to-Everything) applications. Currently, the requirements of the
data rate have been presented by multiple groups. The first group is 3GPP (3rd-Generation
Partnership Project). In [8], 3GPP describes requirements for multiple applications such as
vehicle platooning, information exchange, and remote driving. In particular, the collective
perception of the environment describes the requirements for cooperative perception. This
use case considers sharing not only pre-processed data, but also raw data for distributed
verification of sensor data. The data rate requirement for pre-processing is 50 Mbps and for
raw data is 1 Gbps.

In [5], 3GPP specifies service requirements in six areas, and furthermore, the require-
ments are described for each level of automation. Cooperative perception can be classified
into the area of extended sensors. In the case of a higher degree of automation, the data
rate for extended sensors is required to be from 10 to 1000 Mbps.

The second group is 5GAA (5G Automotive Association), who develops end-to-
end solutions for future mobility and transportation services. 5GAA defines multiple
groups based on the use cases and groups defined by 3GPP and presents requirements in
multiple use case scenarios for C-V2X (Cellular-V2X) [9–11]. Moreover, 5GAA defines SLRs
(Service Level Requirements) that include factors about not only wireless communication
performance, but also automotive information (e.g. velocity, positioning, etc.). For example,
cooperative perception corresponds to a use case of high-definition sensor sharing that
belongs to the group of autonomous driving. In high-definition sensor sharing, the specific
data rate is not required, but a max packet size of 1000 bytes is required for processed data,
and a larger packet size is required for raw data.

The third group is ETSI (European Telecommunications Standards Institute). In [12],
ETSI studies collective perception services that ITS-Ss (Intelligent Transport Systems-
Stations) enable to share information about other road users and obstacles that were
detected by local sensors. ETSI performs two simulations to get a deeper understanding
of collective perception services. In the simulations, radar sensors are assumed as local
perception sensors, and processed data such as confidence, geometry, and automotive
information are shared. At the end, three factors, which is a trade-off between the generated
channel load and the generated awareness, transmission configurations, and message
segmentation, are discussed.

As introduced above, 3GPP and 5GAA present the requirements related to cooperative
perception. However, both requirements do not have an explicit description of considering
safety. On the other hand, ETSI analyzes the performance of collective perception under
different traffic scenarios, and a specific message format that includes the processed radar
sensor data is defined. Certainly, transmitting the processed data including the reliability
of the results rather than transmitting the raw data reduces the channel load. However,
the recognition results and the reliability heavily depend on the data transmitter, which
will be vulnerable to incidents such as cyber attacks and software errors in the transmitter.
Therefore, the option of transmitting raw data by which the receiver can check the results
should be also available, which will require a large data rate. In our analysis, the data rate
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required for cooperative perception was derived by guaranteeing the safety of no collision
with other vehicles. Namely, we derived the requirements not by reading the current sensor
data rate, but by considering the recognition process and vehicle movement. Moreover, we
assumed transmitting raw sensor data, which would require a severe data rate to clarify
whether the conventional and the millimeter-wave communications can support it or not.

The second is about clarifying the relation between the safety and performance of
wireless communication. In [13], transmitting raw LiDAR sensor data and sharing pro-
cessed data between vehicles and a mobile edge computing unit were realized by LTE-V2X.
Although the authors concluded that there were no negative influences on the automated
driving, the driving scenario did not include oncoming vehicles, so that a discussion about
safe automated driving was not enough. We also worked with clarifying the relation as fol-
lows. In [14], the minimum data rate to overtake was derived, and cooperative perception
using millimeter-wave V2V communications contributed to improving safe overtaking.
However, the recognition method did not consider the density of lasers from a LiDAR
sensor, so that a vehicle would recognize an object even if many lasers were emitted on a
very small area of the object. In [15], the minimum data rate required for safe overtaking
was derived. However, safe overtaking was discussed only for comfortable braking. In [16],
a proof-of-concept of cooperative perception using millimeter-wave communications was
performed. It was shown that millimeter-wave communications have the ability of sharing
raw sensor data. Although a real-time LiDAR sensor sharing and visualizing blind spots
were shown, safety was not analyzed.

In this paper, we adopted edge points as feature points, and the recognition process
considered the density of feature points on the visible area. Namely, in order to recognize
an object, feature points had to be obtained on the whole area. We also considered the more
realistic vehicle movement of overtaking.

3. Required Data Rate in V2V for Safe Overtaking
3.1. Cooperative Perception and Scenario Description

Once a route destination is decided, automated vehicles calculate a suitable route
according to context information, e.g., traffic congestion and toll fees. Information-enriched
maps, called dynamic maps, are considered as a promising tool to provide such infor-
mation to automated vehicles. Dynamic maps consist of static information and dynamic
information. In detail, the dynamic information includes information about surrounding
moving obstacles such as vehicles and pedestrians, and static information includes HD 3D
geographic information, e.g., 3D object distribution and lane information.

Automated vehicles need such dynamic information in order to detect and avoid
obstacles. Since dynamic maps must provide various information to perform detection
and avoidance, automated vehicles are equipped with various sensors such as radar
sensors, stereo cameras, and LiDAR sensors. These sensors provide specific data and
information about the vehicle environment and update the dynamic map continuously.
LiDAR/radar sensors measure the time it takes for an optical/electrical pulse to return to
the LiDAR/radar sensor and provide the distance to the object. Cameras can capture objects’
shapes and movements and even estimate distance by parallax angles with stereoscopic
setups. The detailed characteristics of the three sensors are the following:

• LiDAR sensors provide the distance to an object, and the accuracy is significantly
higher than from a radar sensor. Therefore, it can generate a precise 3D map of the
surroundings, but it is hard to provide high accuracy data in bad weather, and LiDAR
sensors generate a large amount of data.

• Radar sensors estimate the velocity, distance, and angle of an object and can work in
bad weather, but have difficulty providing high-accuracy data.

• Cameras are good at the classification of objects because they can see color, but the
operation is degraded in bad weather or when there is dust in the optical path.

In this paper, we focused on LiDAR sensors in more detail, because these sensors
contribute to creating HD dynamic maps, and their output data rate is dominant among
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automotive sensors, which has a great effect on cooperative perception. According to the
measurement principle of LiDAR sensors, when an obstacle is in the FOV (Field-Of-View)
of a LiDAR sensor, it can provide the location of the obstacle. On the other hand, it cannot
provide any information about an obstacle in a blind spot. Furthermore, as an obstacle that
partially blocks a LiDAR sensor’s FOV approaches the LiDAR sensor, the visible area of the
LiDAR sensor becomes narrower. As a result, the ability to recognize all obstacles by using
only onboard sensors becomes extremely low. To obtain information about blind spots,
sharing other sensor data through V2V and V2I (Vehicle-to-Infrastructure) communication
is proposed. Sharing sensor data between vehicles is often called cooperative perception.
The main advantage of cooperative perception is that it can provide an extended sensing
area without substantial additional costs. This additional sensing area contributes to
improving traffic efficiency, as well as traffic safety. In [17], it was shown that cooperative
perception effectively helped to trigger the early lane changing in the experiment, which
contributed to comfortable and safe driving.

The resolution of onboard sensors is an important factor in cooperative perception or
recognition. Furthermore, the performance of communication is also an important factor
in cooperative perception. Since automated vehicles are equipped with many sensors to
recognize their surrounding obstacles, the amount of the generated data is very large, and
these data need to be transmitted and processed within the given latency requirements. So
far, there are two types of standardized V2V communication systems. One is IEEE (Institute
of Electrical and Electronics Engineers) 802.11p, which is one of the dedicated short-range
communications. IEEE 802.11p is designed to reduce the latency in V2V communications
and consists of two main features. Firstly, it does not require the establishment of a basic
service set. Secondly, CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance)
is adopted to avoid collision due to simultaneous access. However, the usage of the
CSMA/CA mechanism degrades the performance in high traffic density areas mainly due
to frequent simultaneous access and many hidden nodes [18]. The other option is LTE
(Long-Term Evolution) V2V services. From Release 14, LTE has started to support V2V
communications. It has a PC5interface for direct communications and a Uuinterface for
long-range cellular network communications. The main advantage of LTE V2V is that it can
reuse the same technology for cellular communications. Therefore, we can directly use the
already deployed hardware such as base stations. Furthermore, the provided capacity is
higher than IEEE 802.11p. However, as the performance of DSRC (Dedicated Short-Range
Communication) degrades in high traffic density, the performance of C-V2X also degrades.

Currently, not only conventional V2V communications, but also millimeter-wave
communications are expected to be used for cooperative perception. In [19], the authors
experimented with cooperative perception without using millimeter-wave communications.
Although a 2D LiDAR sensor, which generates fewer data points than a 3D LiDAR sensor,
was used in the experiment, position estimation errors were still caused, especially for
a high vehicle velocity. This suggests that conventional V2V communications are not
sufficient to share HD 3D sensor data. Furthermore, applications for automated driving
such as machine learning prefer raw sensor data to compressed sensor data, which leads to
requiring a very high data rate [20]. These problems can be solved by using millimeter-
wave communications, which provide a high data rate. For example, IEEE 802.11ad has
a more than 8 GHz continuous band in four channels, which provides a large channel
capacity to transmit sensor data. In [8], as shown in the related works, the requirement for
the transmission of raw sensor data rate was estimated as 1 Gb/s. Therefore, we compared
the realized safety between conventional and millimeter-wave communications.

Using V2V communications and high-speed information processing technology, au-
tomated vehicles are expected to improve traffic efficiency and safety in various driving
scenarios. Since considering all driving scenarios makes the analysis complicated, we
focused on a driving scenario on a two-lane road where head-on collisions often occur.
One of the driving maneuvers on a two-lane road is overtaking. In [21], an overtaking
maneuver was included in tactical and operational maneuvers of ADS (Automated Driving
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Systems), and many Level 4 automated vehicles have the feature of an overtaking maneu-
ver. This fact indicates that, although an overtaking maneuver is riskier than following the
leading vehicle, it is necessary to improve traffic flow and shorten the trip time. In human
driving, overtaking at a high velocity is very dangerous especially on a road without a lane
separator for the oncoming traffic like on a highway.

A human driver is trained to slow down to make space behind the leading vehicle and
then try to obtain a clear view of traffic to observe the curvature of the road and closer to
the center of the neighbor lane. Once the road ahead is considered safe for overtaking, the
driver accelerates and starts the maneuver. With traffic information beyond the limitations
of a human FOV from a driver seat, automated vehicles with V2V communication are
expected to overtake with less acceleration and deceleration at a high velocity.

To realize safe overtaking, we assumed an overtaking scenario on a two-lane road, as
illustrated in Figure 2, and estimated the amount of generated sensor data. This scenario
focused on a transition period in which both automated vehicles and human-driven
vehicles drive on the road, which limits cooperating vehicles. The driving scenario was that
the ego vehicle tries to overtake the blue leading vehicle. Since frequent acceleration and
deceleration do not occur on a straight road, the ego and the oncoming vehicles run with
the same velocity V for simplicity. When the ego vehicle tries to overtake, the blue vehicle
drives slow enough for simplicity. Moreover, considering that many Level 4 automated
vehicles are equipped with the feature of lane centering, we assumed that all vehicles
ran on the center of the road [21]. Using this lane centering function, we also assumed
that beam alignment for the V2V communication was ideally performed. When the ego
vehicle recognizes the oncoming vehicle by a 3D LiDAR sensor on a roof and safety is not
ensured, the ego vehicle does not execute overtaking. The problem is that many beams
from the LiDAR sensor are blocked by the leading vehicle. From this point, we call the
leading vehicle the blocking vehicle. In this analysis, the blocking vehicle was assumed as
an automated vehicle, and the oncoming vehicle was assumed as a human-driven vehicle.
Therefore, the ego vehicle can communicate with the blocking vehicle and compensate for
the blocked area by cooperative perception. The following sections explain the details of
the scenario factors.

Figure 2. Illustration of the ego vehicle equipped with a 3D LiDAR sensor trying to execute overtak-
ing. The yellow region is the sensing region of the ego vehicle’s LiDAR sensor.

3.2. Vehicle Movement

In this section, a condition for safe overtaking is discussed from the viewpoint of
vehicle movement. In [22], it was said that preventable accidents that can be predicted
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rationally must not be caused in the ODD (Operational Design Domain) of automated
vehicles. From this rule, collision with the oncoming vehicle that can be predicted by
automotive sensors should be prevented in the assumed overtaking scenario. To achieve
this goal from the viewpoint of vehicle movement, we focused on overtaking movement
and braking. The braking movement was considered for an emergency case where the ego
vehicle and the oncoming vehicle have to brake during the overtaking. This movement
ensures no collision after the braking of both vehicles. The overtaking movement was
considered for safe overtaking. This movement ensures no collision with the blocking and
oncoming vehicles during the overtaking. The following paragraphs explain the details.

To ensure no collision in an emergency case, we defined the required braking distance.
Braking types are classified into the emergency type and comfortable type. When a driver
notices an unexpected object on a road, emergency braking occurs with a deceleration of
more than 4.5 m/s2. Usually, almost all drivers brake with a deceleration of more than
3.4 m/s2. This deceleration enables a driver to keep the vehicle in a lane without losing
control when braking on a wet roadway. Furthermore, 3.4 m/s2 is regarded as being a
comfortable rate of deceleration. Comfortable braking is desirable to provide comfortable
driving in automated vehicles. The comfortable braking distance is given as follows[23,24].

d0 = 0.039 · V2

3.4
(1)

where V is the velocity (km/h) of a vehicle and d0 is the braking distance (m). Considering
the reaction time of drivers, the minimum brake reaction times can be 0.64 s for alerted
drivers and 1.64 s for an unexpected event [23]. In automated vehicles, electronic control
units can perform control in milliseconds. Therefore, the brake reaction time was regarded
as negligible. Since both the ego vehicle and the oncoming vehicle have to avoid the
collision in this scenario, the required braking distance became 2d0.

To ensure overtaking movement, firstly, we defined a driving path for overtaking. The
driving path is shown in Figure 3 as a black arrow. This driving path was designed to
avoid the collision with the blocking vehicle so that the ego vehicle had to turn two times.
For example, if we wanted to describe this driving path very simply, it could be described
by four quadrants. However, this curve design did not consider vehicle dynamics.

Figure 3. The driving path of overtaking and the two types of curves for approximation.
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x(t) =

∫
t

0
cos

Aθ2

2
dθ

y(t) =

∫
t

0
sin

Aθ2

2
dθ

(2)

The clothoid described as Equation (2) is one of the curves that considers the vehicle
dynamics, where A is the clothoid parameter. The clothoid is defined as a trajectory
that meets RL = A2, where R is the radius of curvature and L is the length of the curve.
Curvature κ of the clothoid can be calculated as κ = At. Curvature and vehicle dynamics
relate in terms of vehicle handling. In general, when a vehicle enters a curve, a driver has to
turn the steering wheel along the curve. If we make the driving path with four quadrants, a
vehicle entering this driving path has to turn the steering wheel quickly. This quick turning
is caused by a curvature gap between a straight line and a quadrant. On the other hand, if
we use a part of the clothoid from t = 0, as shown in Figure 3, the driver does not have to
turn the steering wheel quickly, and since κ increases linearly from κ = 0, it is enough to
turn at a constant velocity.

As explained, the clothoid is suitable to design the driving path in terms of linearly
increasing curvature, so it is hard to handle analytically. Therefore, we used the sigmoid
curve in our simulation. The characteristics of the sigmoid curve are that it is easier to
configure and compute than the clothoid [25].

y(x) =
B

1 + e−ax (3)

The function of the sigmoid curve and its parameters B, a are shown in Equation (3).
The way to construct the driving path with the sigmoid curve is shown in Figure 3. In other
words, half of the driving path consists of two sigmoid curves that have a mirror symmetry.

In order to configure the sigmoid curve, we needed to determine the B, a, x0 param-
eters. The parameter B depends on the road width. In this driving path, the ego vehicle
was assumed to move from the center of the lane to the center of the neighbor lane, then
return to the first lane. From this assumption, B is equal to the width of a single lane.
The parameter a determines the curvature of the sigmoid curve. In order to determine
a, we considered a slip and constructed a sigmoid curve that does not cause slip at a
minimum curvature radius shown in Figure 4. The judgment of the slip is performed by
the following formula.

mv2

R
Q µmg

 slip:
mv2

R
> µmg

safe: otherwise

(4)

where m is the mass of the vehicle, v is the velocity of the vehicle, R is the curvature
radius at the point where the vehicle places, µ is the coefficient of static friction, and g
is gravity acceleration. Since we assumed that the ego vehicle drives along the path at
a constant velocity, the minimum curvature radius without slip is Rmin = v2/µg from
Equation (4). Finally, the parameter x0 determines the length of the sigmoid curve. The
length is determined by the duration to complete the overtaking, which was set in advance.
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Figure 4. The parameters for the sigmoid curve under a = 5 and the location of the minimum
curvature radius.

Figure 5 shows the examples of the driving path at 20 km/h and 50 km/h. From the
figure, it is shown that when the vehicle velocity becomes low, the slope of the driving path
becomes steep. This can be explained by the definition of Rmin. In other words, a vehicle
driving at a low velocity can turn sharply without slipping.

Figure 5. The examples of two driving paths where the duration to complete the overtaking is 5 s.

To compare with the distance required by the braking, firstly, we derived the distance
for the overtaking driving path. Since the oncoming vehicle drives on the neighboring lane,
the ego vehicle has to finish overtaking by the time the oncoming vehicle arrives at the
collision point.



Sensors 2021, 21, 2659 10 of 26

Figure 6 shows both driving paths from the start point to the collision point, where v is
the velocity of the vehicle, to is the duration to complete the overtaking, and x0 is shown in
Figure 4. The collision occurs when the ego vehicle moves to the center of the neighboring
lane to overtake the blocking vehicle. Since the driving path is a mirror symmetry curve,
when the ego vehicle arrives at the center of the neighbor lane, the oncoming vehicle
moves for to/2. Therefore, the distance required for the overtaking driving path becomes
vto/2 + 2x0.

Figure 6. The distance that the ego and oncoming vehicle have moved by the collision of both vehicles.

From the above discussion, we combined the distance required for the driving path
and the comfortable braking. Figure 7 shows the distance required for comfortable braking
and for the three driving path cases. It is shown that the driving path required a larger
distance than the comfortable braking distance at a low velocity, and this was reversed at
a high velocity. Therefore, considering the driving path is important especially at a low
velocity. Namely, the required distance dreq can be formulated as follows.

dreq = max

(
2× 0.039×

V2

3.4
,

vto

2
+ 2x0

)
(5)

Figure 7. The distance required for the driving path and comfortable braking.
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3.3. Derivation of the Required Data Rate

In this section, the details of the recognition process are introduced. In general,
object recognition can be classified into two cases. One is specific object recognition.
This recognition tries to classify an object as a specific object. The other is general object
recognition. In contrast to the former recognition, this recognition tries to classify an
object as a generic object. Since we focused on the recognition of a vehicle, specific object
recognition was adopted, and we refer to the recognition target as the target vehicle. In
this case, the ego vehicle wants to prevent a collision with the oncoming vehicle so that
the oncoming vehicle becomes the target vehicle. The recognition part consists of three
phases. The first phase is the simulation of LiDAR sensor data in the virtual environment
and clustering point cloud about the target vehicle. The second phase is the extraction of
feature points from the clustered points. The final phase is the decision about recognition.
The following paragraphs explain the details of each phase.

In the first phase, regarding lasers from a LiDAR sensor as geometric optics, ray-
tracing simulation of LiDAR sensor data was adopted. In order to implement ray tracing
easily, objects such as vehicles, buildings, and roads consist of triangle meshes. From this
setting, a point p on a triangle mesh can be described with three position vectors p1, p2,
and p3 and two parameters u, v as the following formula.

p = (1− u− v)p1 + up2 + vp3 (6)

Furthermore, the point p can be also described by a normalized direction vector d
departing from the laser source O to p.

p = O + td (7)

Since the laser propagates in three-dimensional space, the departure angle can be de-
scribed by azimuth angle φ and elevation angle θ. When a point is on the mesh, parameters
u and v have to meet 0 ≤ u, v ≤ 1 and 0 ≤ u + v ≤ 1. On the other hand, parameter t has
to meet 0 ≤ t. In order to confirm whether these conditions are met or not, we solved these
parameters by combining Equations (6) and (7) and adopting Cramer’s rule.

As mentioned above, before extracting the feature points only from the target vehicle
points for recognition, clustering is needed to remove irrelevant points. In this simple ray
tracing algorithm, the function of linking the hit object to the laser is implemented. As a
result, the LiDAR sensor in our simulation knows which object the laser is reflected from
so that we can only select the points of the target vehicle and perform clustering easily.

In the second phase, we extracted feature points from the clustered points. When we
want to describe features of point cloud data, or LiDAR sensor data, a feature descriptor
is often used. SHOT (Signature of Histogram of OrienTation) and PFH (Point Feature
Histogram) are the typical feature descriptors. These descriptors use a histogram to
describe features around a point [26,27]. In general, the calculation time of a feature
descriptor depends on the dimension of the descriptor. In order to avoid this complicated
discussion, we used edge points, which are basic features. Extracting edges was performed
by PCA (Principal Component Analysis) [28]. This PCA method is faster and more robust
to noise than using a Gauss map. The key point of this process is that edge points are
extracted by the eigenvalues of a covariance matrix. The quantity made of the eigenvalues
is called the surface curvature, and it is calculated for each point. When the surface
curvature exceeds a threshold, the point is regarded as an edge point. The threshold is
tuned by observing the distribution of the surface curvature.

The final phase is the decision about recognition. In this simulation, we adopted
model-based recognition. This recognition method is a matching problem between scene
and model points. Scene points are obtained from the output of the LiDAR sensor. On the
other hand, model points are prepared in advance and have enough points to extract the
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feature points of the target vehicle. The process of this recognition consists of calculating
the feature points of the model and scene points and searching for the correspondence of
the feature points between the model and scene points. If there are corresponding points,
clustering with regard to the corresponding points is performed.

We simplified two points about this model-based recognition process. The first point
is using not the entire scene points, but the points clustered from the scene points. This
extraction is performed in the first phase of ray tracing. The second point is the decision
way of recognition. We defined a recognition score S as the ratio of the number of edge
points shown in Equation (8). Nget and NLOS are the number of edge points calculated
from the two configurations, as shown in Figure 8.

S =
Nget

NLOS
(8)

The difference of these configurations is that the right configuration includes all objects,
but the left configuration only includes the target vehicle, as shown in Figure 8. In the
Figure 8a case, the sensing range of the LiDAR sensor for the ego vehicle is described by
the green range. This environment enables the ego vehicle to sense the target vehicle with
an LoS (Line-of-Sight). In the Figure 8b case, there are two LiDAR sensors. One is on the
ego vehicle, but contrary to the former case, the blue vehicle blocks the sensing, as shown
by the yellow range. The other is on the blue blocking vehicle, which senses with an LoS
the same as the former case. The edge points obtained in the Figure 8a case are regarded as
the maximum number of edge points of the target vehicle that the ego vehicle can obtain.
On the other hand, the edge points in Figure 8b can be obtained in two ways, that is using
cooperative perception or not. Using cooperative perception, the edge points calculation
is based on the yellow and blue sensing range, while without cooperative perception, it
is only based on the yellow sensing range. Figure 9a shows the entire edge points in the
model points. Figure 9b shows two points. One is the white edge points obtained under
the Figure 8a configuration, and the other is the red points obtained under the Figure 8b
configuration using cooperative perception. Since the red points are also obtained from an
LoS place, the red and white points’ distribution is similar.

Counting the number of edge points is different between the two configurations. NLOS
in Equation (8) is the number of LoS edge points obtained in the Figure 8a case. In detail,
firstly, the LoS edge points of the model points are calculated by PCA edge extraction
and voxelized. The resolution of the voxelization is based on the error range of a LiDAR
sensor. Secondly, the edge points are moved and aligned with the target vehicle. Finally,
the voxelized edge points that are in the LoS from the ego vehicle are extracted. On the
other hand, the first process for Nget is the simulation of the LiDAR sensor data under the
Figure 8b configuration. Since we focused on whether the scene points are on edges or not,
we defined that the scene points have information about one feature point when a scene
point is near the voxelized edge points of the model points. As a result, Nget is the total
number of voxelized edge points obtained from the scene points. After the calculation of
NLOS and Nget, the ratio and threshold were compared, and when the ratio was more than
the threshold, we defined that the ego vehicle recognized the target vehicle.
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(a) Simulation with the target vehicle. (b) Simulation with all objects
Figure 8. The two configurations for the recognition score.

(a) The edge points extracted from the model
points.

(b) The white points show the LoS edge
points, and the red points show the points
emitted on the target vehicle with coopera-
tive perception.

Figure 9. Examples of the point cloud used in the recognition process.

In the vehicle movement part, we derived the required distance dreq to avoid a collision.
Furthermore, from the recognition process, we can judge that the ego vehicle recognizes
the target vehicle at a given distance. Therefore, the combination of the required distance
dreq in Equation (5) and the recognition process derives the required sensor data rate Rreq
to avoid a collision as follows.

{rφ, rθ} = arg min
{rφ , rθ}

S(rφ, rθ | dreq, dbe) > 0.9 (9)

Rreq =

(⌊
Aφ

rφ

⌋
+ 1

)
×
(⌊

Aθ

rθ

⌋
+ 1

)
× Fscan × Dsymbol (10)

where S is the recognition score in Equation (8), Aφ and Aθ are the scanning range in the
azimuth and elevation angle, Fscan is scan frequency (Hz) of the LiDAR sensor, and Dsymbol
is the amount of information per one laser point (bit). Note that the required sensor data
rate depends on the velocity v of the ego vehicle and the distance dbe. Finally, we can derive
the realized maximum overtaking velocity by obtaining the minimum outage capacity that
exceeds the required sensor data rate, which will be introduced in the simulation section.

Figure 10 shows the required sensor data rate with the two options such as cooperative
perception and driving path. The solid (dotted) line with square markers shows the
minimum required sensor data rate to overtake with (not) using cooperative perception
and not considering the driving path. The solid (dotted) line with circle markers considers
the driving path with (without) cooperative perception. From the figure, firstly, we can
see that all required sensor data rates rapidly increased. This rapid increase was due to
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the laser density, or the resolution of the LiDAR sensor, which became rapidly sparse at a
far place. In the case of no cooperative perception, since the blocking vehicle interrupted
the sensing, a much higher resolution was required so that the required sensor data rate
increased rapidly. Secondly, there was a difference between considering the driving path
or not. This reflects the result of the 5 s driving overtaking shown in Figure 7 so that no
difference was seen at more than 60 km/h.

Figure 10. The required sensor data rate with the options of cooperative perception and the driving
path when the distance between the ego vehicle and the blocking vehicle is 5 m.

Figure 11 shows the required sensor data rate with dbe = 5, 10, 15 m and 5 s overtaking.
In the case of using cooperative perception, as dbe becomes larger, the required sensor data
rate becomes smaller. When dbe is large, the blocking vehicle gets near to the oncoming
vehicle. This allows the blocking vehicle to recognize the oncoming vehicle with a low-
resolution LiDAR sensor. On the other hand, the required sensor data rate in no cooperative
perception depends on two factors, which leads to a complicated result. One is the distance
doe. When doe is large with the presence of the blocking vehicle, it is easy for a high-
resolution LiDAR sensor on the ego vehicle to see the shape of the whole oncoming vehicle
in a small sensing range, which obviously has a limit for the recognition. The other is
distance dbe. As the blocking vehicle gets near to the ego vehicle, the blocking vehicle
blocks a large part of the range that sees the oncoming vehicle except for a very near
location. Since the LiDAR sensor is on the roof, a large part of the blocking vehicle does
not block the sensing in the case of a very near location. From Figure 11, the required
sensor data rate becomes high from dbe = 15 m to dbe = 10 m, but it becomes low from
dbe = 10 m to dbe = 5 m. This result tells us that sensing with no cooperative perception
on a two-lane road heavily depends on many factors such as the size and the location of
vehicles, which will make the requirements complicated. On the other hand, sensing with
cooperative perception simply depends on dbe.
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Figure 11. The required sensor data rate with the options of cooperative perception and 5 s overtaking
when the distance between the ego vehicle and the blocking vehicle is 5, 10, and 15 m.

Figure 12 shows the required sensor data rate using two different LiDAR sensors. One
is a linear spacing LiDAR sensor, and the other is a non-linear spacing LiDAR sensor. In the
case of linear spacing, the LiDAR sensor has an equally spaced elevation angle resolution
such as Velodyne VLP-16. On the other hand, a non-linear spacing LiDAR sensor such
as Velodyne VLP-32 has a dense and sparse spacing part. In this analysis, we fixed the
number of lasers between the two LiDAR sensors. The details of non-linear spacing are
shown in Table 1. From the figure, we can see that a non-linear spacing LiDAR sensor has
a better ability to recognize a far object. However, notice that non-linear spacing provides
sparse information about a near object.

Figure 12. The required sensor data rate with the options of a linear and a non-linear spacing LiDAR
sensor at dbe = 10 m.
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Table 1. Simulation parameters.

LiDAR Parameters

Parameter Value

Location Vehicle’s roof +20 cm
Range 200 m

Elevation Angle Range ±15◦

Elevation Angle Resolution (rφ) [0.2◦, 0.1◦, 0.08◦,
0.06◦, 0.04◦, 0.02◦]

Azimuth Angle Range 180◦

Azimuth Angle Resolution (rθ) [0.2◦, 0.1◦, 0.08◦,
0.06◦, 0.04◦, 0.02◦]

Non-Linear Spacing dense spacing (−7.5◦–7.5◦)
sparse spacing (otherwise)

Return Mode Strongest
Scan Period 20 Hz

Data Size of One Point 16 bit (coordinate)
+ 12 bit (power)

V2V System Parameters in the [5, 30, 60] GHz Bands

Parameter Value

Height of Tx(ht) 38 cm
Height of Rx1(hr1) 38 cm
Height of Rx2(hr2) [98, 48, 43] cm
Height of Rx3(hr3) [182, 62, 50] cm
Transmitted Power 10 dBm

Boresight Gain [4.3, 20, 26] dB
Antenna Aperture Size 2.6 cm × 2.6 cm

Polarization vertical
Vertical Antenna Vibration Model Gaussian(σ =3.2 cm)

Bandwidth [10, 500, 1000] MHz
Antenna Diversity selection diversity

Noise Figure 10 dB

4. Performance Evaluation of Millimeter-Wave V2V
4.1. Millimeter-Wave V2V Communications with Antenna Height Diversity

In the current V2X (Vehicle-to-Everything) communication system, DSRC (Dedicated
Short-Range Communication) is the most popular V2X communication system. It is
natively designed to support communication with high-speed vehicles. However, since
it uses 5.8 or 5.9 GHz, which provides a several Mbps transmission rate, it has difficulty
supporting cooperative perception. Moreover, when the density of vehicles becomes
high, the performance becomes rapidly degraded due to CSMA/CA. On the other hand,
C-V2X (Cellular-V2X) was developed by 3GPP (3rd-Generation Partnership Project) to
enhance ITSs (Intelligent Transport Systems) and support automated driving. The main
characteristics of C-V2X are that the Uu and PC5 interfaces are prepared for different use
cases. When a user wants to access infrastructure such as an application server, the Uu
interface is used. The PC5 interface is prepared for direct communications between the
users. This direct communication can be utilized for cooperative perception. Although the
C-V2X function of scheduling can avoid communication collision, the data rate of PC5 is
not enough for cooperative perception due to it using 5.9 GHz [29].

As introduced above, the conventional V2X communications are not suitable for coop-
erative perception in terms of the data rate. Therefore, new V2X communication systems
such as IEEE 802.11bd and NR-V2X (New Radio-V2X) are currently under development.
Both IEEE 802.11bd and NR-V2X plan to include millimeter-wave communications to
support sending high-resolution 3D maps [30]. This use case can be realized by millimeter-
wave communications, which provide high throughput. However, millimeter-wave has a
greater path loss and is more easily blocked than the frequency used in conventional V2X
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communications. To compensate for these defects, strong directivity and ensuring LoS
are necessary. From a different point of view, these defects can be advantages for spatial
re-usability. In other words, blockage effects and strong directivity reduce interference to
surrounding vehicles [31]. In this paper, we compared the outage capacity of millimeter-
wave communication and conventional communication and estimated how much this
contributed to safe driving.

In this paragraph, the V2V (Vehicle-to-Vehicle) channel model for moving vehicles is
introduced. In [32,33], the authors measured 5 and 60 GHz and performed modeling of the
measured data. As a result, it was shown that the two-ray ground reflection model was
suited for the V2V channel. Therefore, we adopted the two-ray ground reflection model
as a large-scale path loss model in the simulation, as shown in Figure 13. The additional
characteristics of this model are that vibrating of both the transmitter and receiver due
to vehicle movement has an effect on small-scale fading [33]. To avoid the fading in
the driving environment, in [34], it was shown that, when one vehicle with multiple
receivers is chasing the other vehicle with a transmitter, diversity gain is maximized by
a vertically displaced antenna rather than a horizontally displaced antenna. In [35], the
authors analyzed the outage capacity under the 60 GHz two-ray ground reflection model
that follows the Rayleigh and the Rice distribution. They derived theoretically that height
diversity provides large improvements rather than horizontal space diversity. In [36], the
author derived that the antenna space for height diversity should be more than 10 cm. In
our analysis, we assumed height diversity at the receiver and discussed how much height
diversity improved the outage capacity. Since 99.99% reliability is required in cooperative
perception, we estimated the improvement by a 0.01% outage capacity [8]. Moreover, we
derived the best antenna space that improved the outage capacity among 5, 30, and 60 GHz.

Tx
Rx

Figure 13. V2V two-ray ground reflection channel model.

Firstly, we analyzed the basic characteristics of this channel model. As described
above, this channel model can be separated into the effect of two-ray ground reflection
and antenna vibration. The received power Pr under the two-ray ground reflection is
formulated as follows.

Pr =
Pt

L(rd)

∣∣∣∣√Gd

(
λ

4πrd

)
+
√

Gr

(
λ

4πrr

)
Γe−j{k(rd−rr)}

∣∣∣∣2 (11)

where Pt is the transmission power, Gd and Gr are the antenna gains for direct and reflected
waves, rd and rr are the optical path length for direct and reflected waves, L(rd) is the
absorption factor at 60 GHz by oxygen as 15 dB/km, λ is the wavelength, k is 2π/λ, and
Γ is the complex reflection coefficient. When the antenna vibration caused by the motor
on the vehicle is adopted in this channel model, it changes rd and rr. In [33], the authors
modeled this antenna vibration by a Gaussian distribution Nr

(
0, σ2

0
)

where σ0 is 0.0319 m.
This vibration causes a shift of all fading points, and all receiving places have the possibility
to encounter strong fading. To avoid strong fading, height diversity was adopted. In this
case, the receivers vibrated by the same motor so that they followed the same distribution
as Equations (12) and (13).



Sensors 2021, 21, 2659 18 of 26

htv = ht + δt where δt ∼ Nt

(
0, σ2

0

)
(12)

hrv1 = hr1 + δr
hrv2 = hr2 + δr

where δr ∼ Nr

(
0, σ2

0

)
(13)

Finally, the 0.01% outage capacity Cout was calculated under the height diversity.

P(c < Cout) = 0.01% (14)

Figure 14 shows the above discussion in the case of 60 GHz. The black solid line
shows the basic characteristic of the two-ray ground reflection model. The blue dotted
and dashed lines show the moment of vibrating to 3σ and −3σ. We can see that the strong
fading points are shifted to the left and right. The red dotted line shows the 0.01% outage
capacity under no height diversity. We can see that the fading occurred at an arbitrary V2V
distance. In particular, there were sharp drops at 18 and 35 m, and there was a sharp rise at
84 m. These sharp changes were due to antenna vibration, which made the fading point at
57 m move ±21 m and at 28 m move ±10 m. Considering that a shift from −3σ to +3σ
happened at around 99.7% and the shift of 0.01% outage capacity was larger than the shift
of ±3σ, this shift was a reasonable result. The red solid line shows the outage capacity
with height diversity. Although it was improved from no diversity, the outage capacity
gradually changed up and down. The main reason for this change was that there were
some places where both receivers encountered strong fading.

Figure 14. The channel capacity under the two-ray ground reflection model with and without the
antenna vibration and the 0.01% outage capacity with and without height diversity at 60 GHz.

To improve this outage capacity with height diversity, we had to solve the changing
up and down of the outage capacity. The following analysis consisted of two parts. The
first analysis focused on the best receiving antenna space for the second receiving antenna.
In this analysis, carrier frequency, inter-vehicle distance, the height of the transmitting
antenna, and the height of the first receiving antenna were given. The second analysis
focused on the relation between the communication range and the number of receiving
antennas. In the analysis of the receiving antenna space, firstly, we focused on the difference
of the phase difference between the direct wave path and the reflected wave path. When the
height diversity worked well, this phase difference was around π, as the following formula.
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2π

λ
{(rd2 − rr2)− (rd1 − rr1)} ≡ π (mod 2π) (15)

where rd1 (rd2), rr1 (rr2) are the lengths of the direct and reflected paths from the transmitter
whose height is htv to the lower (upper) receiver whose height is hrv1 (hrv2). Using the
approximation of

√
1 + x ≈ 1 + x/2 (1� |x|), Equation (15) can be described as follows.

2π

λ
{(rd2 − rr2)− (rd1 − rr1)}

≈ −
4π

dλ
htv(hrv2 − hrv1)

= −
4π

dλ
(ht + δt)(hr2 − hr1) (= Φ(δt)) (16)

where d is the inter-vehicle distance. From the above approximation, it was shown that
variable in the difference was only δt. We expressed the difference as Φ(δt). When there is
no vibration, that is δ = 0, we describe the solutions hn of Equation (16) as follows.

hn = hr2n − hr1n such that Φ(0 | hn) = −
4π

dλ
(ht + 0)hn = (2n + 1)π (17)

To choose the best hbest
n among the solutions hn, we estimated Φ where δt ranged

from −3σ0 to 3σ, which fell within around 99.73%. This was because, recalling that the
goal was to solve the changing up and down of the outage capacity due to the antenna
vibration, it was necessary to select one solution for which the phase difference Φ did
not change more than π/2 with a large probability. Since Φ(0 | hn)−Φ(−3σ0 | hn) and
Φ(3σ0 | hn)−Φ(0 | hn) were the same, we focused on Φ(0 | hn)−Φ(−3σ0 | hn). Moreover,
we restricted the maximum phase difference to 65◦, which ensured more than half power
at the other receiver.

The second analysis was about the communication range. In the first analysis, we
analyzed the best receiving antenna space under the fixed inter-vehicle distance. However,
it was not realistic to equip receiving antennas for each inter-vehicle distance, which would
require too many antennas. In order to solve this problem, we derived the range of the
inter-vehicle distance where the height diversity worked well and minimized the number
of receiving antennas. Under the hbest

n , we defined the valid communication range R as the
range for which the difference of Φ was from 115◦ to 245◦, as follows.

Rmin =
4π

2π 180+65
360 λ

hthbest
n

=
144
49λ

hthbest
n (18)

Rmax =
4π

2π 180−65
360 λ

hthbest
n

=
144
23λ

hthbest
n (19)

From Equations (18) and (19), as the antenna space hbest
n became large, the mini-

mum and maximum effective communication distance became large. Furthermore, as the
wavelength λ became short, these distances became also large.

For example, Figure 15 plots the several cases of the 0.01% outage capacity at 60 GHz.
The black line shows the outage capacity without height diversity. The red and blue lines
show the outage capacity with a 10 and a 20 cm antenna space. The red and blue two-
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headed arrows show the effective communication range in the case of a 10 and a 20 cm
antenna space. From Figure 15, we can see that the outage capacity in the effective range
was better than the outside. Although there are several solutions to Equation (15) at a 10 cm
antenna space in d < 22 m and at a 20 cm antenna space in d < 48 m, rapid fluctuation
of the difference of the phase difference degraded the outage capacity. On the other hand,
since the difference became stable at more than π in d > 48 m at a 10 cm antenna space
and in d > 95 m at a 20 cm antenna space, the improvement from no height diversity
gradually decreased.

Figure 15. The 0.01% outage capacity with height diversity under ht1, hr1 = 0.38 m, hr2 = 0.48 m,
and hr2 = 0.58 m and without diversity at 60 GHz.

From the above analysis, we concluded that the antenna space determined short-range
or long-range communication. The statistics show that the average speed on highways is
about 70 km/h and on roads is about 30 km/h [37]. Moreover, we adopted the two second
rule to decide the average V2V distance. From this rule, we derived the average distance
on roads, which was 17 m, and on highways, which was 39 m. Based on these average
distances, we proposed two additional receivers for height diversity that supported the
above two values. At 60 GHz, we set the first receiver at a 5 cm space whose effective
range was from 11 m to 24 m and the second receiver at a 12 cm space whose effective
range was from 27 m to 57 m. In the case of 30 GHz, ten centimeters and 24 cm of space
were necessary. Finally, in the case of 5 GHz, sixty centimeters and 144 cm of space were
necessary. Figure 16 shows the outage capacity at 5, 30, and 60 GHz with height diversity.
Note that 5, 30, and 60 GHz used three receivers as proposed in the above discussion. We
can see that all outage capacities had no sharp drop and decreased linearly.

4.2. Performance of Millimeter-Wave V2V Communications to Support Safe Overtaking

To estimate the amount of the minimum required sensor data for safe overtaking,
we performed a simulation. The required sensor data rate was derived with dbe and doe.
Figure 17a shows the process flow of the simulation. Firstly, the output of the LiDAR
sensors on the blocking and ego vehicle was simulated. When the ego vehicle used
cooperative perception, it could use not only its sensor data, but also the sensor data of
the blocking vehicle for the recognition process. In the recognition process, we defined
that if the recognition score described in Equation (8) was more than 0.9, the ego vehicle
recognized the oncoming vehicle. The recognition score was calculated under the prepared
LiDAR sensor resolution sets of (rφ, rθ). If the ego vehicle failed to recognize the oncoming
vehicle, it believed that there were no vehicles on the oncoming lane. Since the ego
vehicle did not know exactly whether there were vehicles on the oncoming lane, this
misunderstanding led to a collision. If the ego vehicle recognized the oncoming vehicle,
then it additionally checked two factors. One was ensuring a comfortable braking distance
for preventing a collision. The other was ensuring the driving path for overtaking. In this
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simulation, the required time for overtaking was set to 5 s. If the ego vehicle did not pass
either, it would stay on the lane. If it passed, it could overtake the blocking vehicle.

Figure 16. The 0.01% outage capacity with height diversity for 5, 30, and 60 GHz.

(a) Block diagram of safe overtaking.

(b) Algorithm of safe overtaking.
Figure 17. Description of the whole process in the simulation.

Figures 18–20 show the simulation result of dbe = 5, 10, 15 m under the parameters
of Table 1. The horizontal axis denotes the velocity of the ego vehicle, and the vertical axis
denotes the sensor data rate required for the safe overtaking and the outage capacity of
each carrier frequency. The black solid and dotted lines with markers show the required
sensor data rate with and without cooperative perception. Since the calculation time grew
drastically at more than 8 Gbps, extrapolation was used. The green, red, and blue solid
lines show the realized 0.01% outage data rate for each dbe at 5, 30, and 60 GHz. Figure 21
shows the result of dbe = 10 m using non-linear spacing LiDAR sensors.
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Figure 18. Required data rate and 0.01% outage data rate realized by the 5, 30 and 60 GHz bands
under dbe = 5 m.

Figure 19. Required data rate and 0.01% outage data rate realized by the 5, 30 and 60 GHz bands
under dbe = 10 m.



Sensors 2021, 21, 2659 23 of 26

Figure 20. Required data rate and 0.01% outage data rate realized by the 5, 30 and 60 GHz bands
under dbe = 15 m.

Figure 21. Required data rate using a non-linear spacing LiDAR sensor and the 0.01% outage data
rate realized by the 5, 30, and 60 GHz bands under dbe = 10 m.

Considering the realized data rate and the required sensor data rate using cooperative
perception, the maximum velocity for safe overtaking under dbe = 5, 10, 15 m at 60 GHz
was 66, 64, 67 km/h and at 30 GHz was 51, 49, 54 km/h. Since the realized data rate at
5 GHz was too small, the maximum velocity for safe overtaking was less than 20 km/h
in all cases. In all dbe cases, cooperative perception using 60 GHz constantly ensured
around 65 km/h for safe overtaking. In the case of using non-linear spacing LiDAR sensors,
when 5, 30, and 60 GHz were used for cooperative perception, the ego vehicle could safely
overtake 0, 9, and 7 km/h faster than using linear spacing LiDAR sensors. Although
non-linear spacing LiDAR sensors improved the overtaking, the effect of providing sparse
information about near objects should be noticed, especially in other driving scenarios.
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For the final discussion, we compared these results with the current requirements
for cooperative perception. In [5], one-thousand megabits per second and 10 ms of max
end-to-end latency were required for a higher degree of automation to prevent an imminent
collision by extended sensors or cooperative perception, which allowed the maximum
sensor data rate at 100 Mbps. On the other hand, in [8], one gigabit and 3 ms of end-to-end
latency were required for collective perception of environment or cooperative perception,
which allowed the maximum sensor data rate at 3 Mbps. In our analysis, even if an
automated vehicle drives at around 30 km/h, around a 1 Gbps sensor data rate is required
for safe driving. From the above comparison, although we considered only LiDAR sensors
for recognition, considering safety affected the requirements.

These results show that millimeter-wave communication has a big potential to con-
tribute to safe overtaking and smooth traffic. Although the actual data rate will be lower
than these outage data rates, millimeter-wave communication especially at 60 GHz has a
large margin. Therefore, we concluded that millimeter-wave communication has the ability
to perform safe overtaking at a high velocity, and considering the actual data rate, sixty
gigahertz would be a promising frequency.

5. Conclusions

The contribution of this paper focused on two aspects. Firstly, we derived the sensor
data rate required for the safe overtaking by considering the driving path and comfortable
braking and showed that as the velocity became higher, the required sensor generated
data rate increased drastically. At a low velocity, the effect of considering the driving
path became dominant, and at a high velocity, comfortable braking became dominant.
Secondly, techniques for cooperative perception with 30 and 60 GHz millimeter-wave
communication made it possible to safely overtake at a high velocity such as around 50
and 65 km/h due to the availability of sharing a large amount of sensor information in real
time. From this analysis, we concluded that, considering the actual data rate, using 60 GHz
for cooperative perception is a promising way to perform safe overtaking at a high velocity.
Finally, since the recognition process is classical, future tasks are the adoption of global or
local descriptors for the recognition process.
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Abbreviations
The following abbreviations are used in this manuscript:

V2V Vehicle-to-Vehicle
V2X Vehicle-to-Everything
3GPP 3rd-Generation Partnership Project
5GAA 5G Automotive Association
ETSI European Telecommunications Standards Institute
ITSs-S Intelligent Transport Systems-Station
FOV Field-Of-View
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V2I Vehicle-to-Infrastructure
CSMA/CA Carrier Sense Multiple Access/Collision Avoidance
LTE Long-Term Evolution
ADS Automated Driving System
ODD Operational Design Domain
SHOT Signature of Histogram of OrienTation
PFH Point Feature Histogram
LoS Line-of-Sight
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