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Abstract: Natural disasters not only disturb the human ecological system but also destroy the
properties and critical infrastructures of human societies and even lead to permanent change in
the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones,
floods, and wildfires. Many deep learning techniques have been applied by various researchers
to detect and classify natural disasters to overcome losses in ecosystems, but detection of natural
disasters still faces issues due to the complex and imbalanced structures of images. To tackle this
problem, we propose a multilayered deep convolutional neural network. The proposed model works
in two blocks: Block-I convolutional neural network (B-I CNN), for detection and occurrence of
disasters, and Block-II convolutional neural network (B-II CNN), for classification of natural disaster
intensity types with different filters and parameters. The model is tested on 4428 natural images
and performance is calculated and expressed as different statistical values: sensitivity (SE), 97.54%;
specificity (SP), 98.22%; accuracy rate (AR), 99.92%; precision (PRE), 97.79%; and F1-score (F1), 97.97%.
The overall accuracy for the whole model is 99.92%, which is competitive and comparable with
state-of-the-art algorithms.

Keywords: deep learning; natural disasters intensity and classification; convolutional neural network

1. Introduction

Natural disasters are inevitable, and the occurrence of disasters drastically affects the
economy, ecosystem and human life. Buildings collapse, ailments spread and sometimes
natural disasters such as tsunamis, earthquakes, and forest fires can devastate nations.
When earthquakes occur, millions of buildings collapse due to seismological effects [1].
Many machine learning approaches have been used for wildfire predictions since the 1990s.
A recent study used a machine learning approach in Italy. This study used the random
forest technique for susceptibility mapping of wildfire [2]. Floods are the most devastating
natural disaster, damaging properties, human lives and infrastructures. To map flood
susceptibility, an assembled machine learning technique based on random forest (RF),
random subspace (RS) and support vector machine (SVM) was used [3]. As the population
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is growing rapidly, people need to acquire land to live on, and as a result the ecosystem is
disturbed horrifically, which causes global warming and increases the number of natural
disasters. Populations in underdeveloped countries cannot afford damages disasters cause
to infrastructures. The aftermath of disasters leaves the humans in miserable situations,
and sometimes the devastating effects cannot be detected; additionally, rescue operations
cannot take place in most of the places and victims are unable to be identified due to
geographical factors of the different areas. Disasters such as forest fires spread rapidly in
dense areas, so firefighting is difficult to carry out; in this case, development of the strategy
to predict such circumstances is crucial so that such disasters can be prevented beforehand.

As the technologies are continuously improving, aviation systems have begun adopt-
ing smart technologies to develop unmanned aerial vehicles (UAVs) equipped with cam-
eras, which can reach distant areas to identify aftereffects of natural disasters on human life,
infrastructure, and transmission lines by capturing images and videos. Data acquired from
these UAVs helps to identify the facial expressions of victims, the intensity of their situation
and their needs in a post disaster scenario. It helps to take actions and carry out necessary
operations to tackle devastating scenarios. Raw images obtained from camera-equipped
UAVs are processed and neural network-based feature extraction techniques are applied to
analyze the intensity.

A deep learning method for the reconstruction of two-dimensional cardiac magnetic
resonance images was proposed to enhance the image data acquisition process. Cascade
deep convolutional neural networks use a 10-fold method to reconstruct the feature map
for the MR images. In this way, feature extraction sequence becomes very fast and it takes
less than 5 to 10 s to extract the feature matrix [4].

Neural networks provide multilevel network architectures, where Convolutional
Neural Networks (CNNs) are the most frequently implemented architecture as the direct
input of multidimensional vector images, speech recognition, and image processing can be
carried out with low complexity. CNNs efficiently perform feature extraction by denoising
the images and removing interference and achieve highly accurate results [5].

The proposed multilayered deep convolutional neural network method works in two
blocks of convolutional neural networks. The first block, known as Block-I Convolutional
Neural Network (B-I CNN), detects the occurrence of a natural disaster and the second
one, known as Block-II Convolutional Neural Network (B-II CNN), defines the intensity of
the natural disaster. Additionally, the first block consists of three mini convolutional blocks
with four layers each and includes an image input and fully connected layers. On the other
hand, the second block also consists of three mini convolutional blocks with two layers
each, including an image input layer and fully connected layer.

The remaining paper is divided into four sections: Section 2, describes the related
work. Section 3 presents the methodology which elaborates on the proposed technique. The
results and discussion are presented in Section 4 to explore the overall research outcomes
and describe the used dataset. Finally, the proposed work is concluded in Section 5.

2. Related Work

Studies analyzing the intensity of natural disasters have gained significant attention
in the current decade. A. Ashiquzzaman et al. [6] utilized a video source for fire detection;
processing video sources is a feasible task due to convolutional neural networks (CNNs),
which require high performance computational resources including graphics hardware,
and thus a smart and cost-effective fire detection network is proposed based on architecture
of convolutional neural networks.

In convolutional neural networks, a model to detect wildfire smoke named wildfire
smoke dilated dense net was proposed by Li et al. [7], consisting of a candidate smoke
region segmentation strategy using an advanced network architecture. Mangalathu et al. [8]
performed an evaluation of building clusters affected by earthquakes by exploring the
deep learning method, which uses long short-term memory.
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Natural disasters are unpredictable events, Hartawan et al. [9] enhanced multilayer
perceptron algorithm by including convolutional neural network implemented on rasp-
berry pi to find out the victims of natural disasters using streaming cameras and to aid
the evacuation team to rescue the disaster victims. Amit et al. [10] proposed applying
automatic natural disaster detection to a convolutional neural network using the features
of disaster from resized satellite images of landslide and flood detections. Aerial images
are able to show more specific and wider surface area of the ground, which helps acquire a
vast amount of information about the occurrence of disaster.

Social media networks such as Twitter where people share their views and information
have been used as data sources to carry out disaster analysis. S. Yang et al. [11] used the
information related to earthquake shared by users on Twitter as a dataset and input it
to the real time event detection system based on convolutional neural networks. Imple-
mentation of a CNN module made it possible to successfully achieve the detection of an
earthquake and its announcement by the government beforehand using information-based
tweets. As the tweets provide a significant amount of information, Madichetty et al. [12]
implemented a convolutional neural network to perform feature extraction on informative
as well as noninformative tweets, categorizing dataset containing tweets by an artificial
neural network.

Social media is considered as a main source of big data, with data shared in the form of
images, videos and text; after the occurrence of a disaster, social platforms are overflowed
with different sorts of information which helps response teams to rescue the victims. The
majority of the data contain ambiguous contents which makes it difficult for the rescue
teams to make the right decisions. Nunavath et al. [13] reviewed previous research based
on convolutional neural networks using social media as a dataset and efficiently analyzed
the effectiveness of big data from social media during disaster management.

Using the two-layer architecture of a convolutional neural network (CNN), an efficient
feature extraction method was applied to the extended Cohn-Kanade dataset to compare
three object recognition techniques: linear support vector classification, linear discriminant
analysis and softmax. More than 90% performance rates, with low standard deviations,
were achieved by Boonsuk et al. [14]. The use of manpower is difficult in case of natural
disaster occurrence in hilly areas, and continuous electric power supply is highly affected
in these areas due to maintenance issues of transmission lines. Therefore, in this case
autopilot aerial equipment is used to gather images, and hidden content from aerial images
needs to be identified in case of natural disasters such as landslides and heavy snowfall.
Zhou et al. [15] removed the noise from raw aerial images and extracted disaster character-
istics using the interframe difference technique; they implemented a convolutional neural
network to analyze the type of disaster. In some regions, disasters such as earthquakes are
inclined to occur due to geographical factors. To locate the victim in a short time is crucial;
Sulistijono et al. [16] acquired aerial images, and locating the victims was made possible by
using a dedicated ground station server and proposed victim detection framework based
on convolution neural networks. A simulation of real calamities was developed to test
the framework.

Floods are a calamitous and remarkable disaster. Floods impact greatly on human
lives, economically and financially affecting nations. With the help of a neural network,
it is possible to predict floods and save the masses from the disaster. By implementing a
convolutional neural network and Modified Particle Swarm Optimization (MPSO), Pad-
mawar et al. [17] developed a deep learning approach to foresee the flood circumstances
and identify the individuals beforehand.

Chen et al. [18] proposed unmanned aerial vehicle image-based forest fire detection
images of forest fires, stabilized the histogram and applied filters to smoothen the images
before testing via convolutional neural network. Smoke detection was carried out using the
local binary pattern (LBP) and support vector machine (SVM). Comparison of processed
and raw images was made to test the effectiveness of the proposed strategy.
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Forest fires drastically affect human lives and economic situations, and locating the
victims in a short time is complex task. Convolutional neural networks make it possible to
help firefighters to locate the location of victims by detecting density of smoke from images
acquired from the unmanned aerial vehicle. CNN-based simple feature extraction with
a AlexNet single deconvolution (SFEwAN-SD)-based proposed approach helps develop
a real time fire monitoring system (Gonzalez et al. [19]). Samudre et al. [20] successfully
improved response time, reduced power consumption, and optimized performance by
using pipelining among network layers of a CNN, executed on a field-programmable
gate array. As the spatial resolution of satellite images was too low, these images could
not be used for wildfire detection; Lee et al. [21] modified deep convolutional networks
for high spatial resolution images, VGG-13 and Google Net, utilizing UAVs, a disaster
forecasting system, web-based visualization system, alert system, and disaster response
scenario database and achieved highly accurate results for early wildfire detection. It is a
hectic job for a disaster management organization to assess the damage caused by natural
disasters. Using images obtained from social media during and after the occurrence of
four major natural disasters, Nguyen et al. [22] proposed a method by adapting CNN
features based on event-specific and cross-events. Direkoglu et al. [23] proposed a method
to produce motion information images computing optical flow vectors and employed a
CNN; the proposed method efficiently differentiated normal and abnormal behaviors of
people during a natural disaster. UMN and PETS2009 datasets were used to performed
experiments. Yuan et al. [24] proposed a wave-shaped neural network (W-Net) to label
the density of smoke in images, which is difficult task, so virtual dataset was created.
Convolutional encoder decoder architectures were assembled to maximize the input for
information extraction from smoke density images and W-Net was proposed. The accuracy
of the proposed system is improved by feeding previous encoding outputs to the decoding
layers and combining them. Several data mining application were implemented using
contents of social media; user generated content helps in disastrous events to gain vast
amount of information. The CNN model is used to extract flood images from raw images
and color filters are used to refine the desired detection. In the work of Layek et al. [25],
the proposed system’s efficiency and accuracy were tested on several datasets and it
outperformed other methods to give the highest results. The proposed multilayered
convolutional neural network in this research is used to detect and classify the natural
disasters, as explained in the methodology section. Moreover, a comparison of the some of
the state-of-the-art methods is shown in Table 1.

Table 1. Comparison of state-of-the-art techniques.

Reference Methodology Name Outcomes Weakness

[26]
Signal processing, image
processing and
statistical technique

More accurate prediction of
natural disasters

Limited statistical parameters
for prediction

[27] Particle swarm optimization Predict magnitude of earthquake Work only for prediction on
seismic dataset

[28] Neural network Predict magnitude of earthquake Limited parameters used
for prediction

[29] Text mining, regular log
mining technique

Detect earthquake with speed and
accuracy on seismological data

Depends on public feedback to
detect earthquake

[30] Decision tree Utilize some parameters to access the
model for flood damage area detection

Parametric limitation for the detection
of flood damaging regions

[31]
Artificial neural network, genetic
algorithm and wavelet
transfer technique

Sum-up good results as compared to
the already existing techniques in the
southeast Asia

Work for monsoon floods in June and
September for specific regions in India
for time series data

[32] Support vector machine,
naïve Bayes

Classify the natural disasters on
various parameters

Limited for only early stages of
natural disasters
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Table 1. Cont.

Reference Methodology Name Outcomes Weakness

[33] Machine learning technique Predict the land slidding with the
accuracy rate of 75 to 95

More guidlines for model selection for
predition large scale landslide

[34] Neural network and back
propagation Prediction occur on past dataset Dyanamic prediction is very much

crucial for this system

[35] Clustering for multivariable
time series

Proposed a dynamic clustering approch
for time series analysis and
self-optimize organizing
mapping technique

Dynamic time series data required for
clustering process

[36] Data mining technique A real time desktop-based GUI system
is designed to predict local storm

Use parallel computing process that
takes various amounts of time to
predict storm

[37] Text mining technique
Develop a public platform to inform
early tsunami prediction
and information

Public feedback is compulsory for
prediction process

[38] Random forest, long
short-term model

Evaluate the flood severity in terms of
sensitivity, specificity and accuracy as
71.4%, 85.9%, 81.13%, respectively

Particle swarm optimization and other
deep learning techniques can be used
as a future work

[39] A learning-based wildfire model Proposed method can predict the short
term spread of wildfire

Real time rate of wildfire spread is
required for initial stage

[40] Machine learning technique The gradient boosting tree and CLIPER
model used for cyclone prediction

Model is still weak to produce velocity
sensitivities

[41] Machine learning technique with
numerical weather prediction

The prediction method is used for
China that shows significant
improvement as compared to the
traditional methods

Still lack symmetric parameters for
numerical computations

[42] Artificial neural network

A fully connected neural network for
segmentation which is used for
multivariable pattern recognition at
different levels

It works on multivariable parameters
rather than the pixel by
pixel parameters

3. Methodology

This section defines the overall method for natural disaster intensity analysis and
classification based on multispectral images using a multilayered deep convolutional neural
network. Moreover, this method consists of two blocks of a convolutional neural network.
The first block detects a natural disaster occurring and the second one defines the intensity
type of the natural disaster. Additionally, the first block consists of three miniconvolutional
blocks with four layers each, including an image input and fully connected layers. On
the other hand, the second block also consists of three miniconvolutional blocks with two
layers each and includes an image input layer and fully connected layer. The overall flow
of methodology is shown in Figure 1 and explained below.

3.1. Block-I Convolutional Neural Network (B-I CNN)

According to block-I of the convolutional neural network, only a detection process
occurred in this phase. However, this block also consists of three small batches having
four layers each. Moreover, an image input layer and fully connected layers are present.
Additionally, some parameters are also defined with learning rate 0.001 and epoch size
40. On the other hand, the convolutional layers use a filter size of 3 × 3, stride 1 and
eight filters that increase in number from 16 to 32 for the second and third minibatches of
convolutional neural networks, as shown in Table 2 and Figure 2.
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Figure 1. Proposed architecture of multilayered deep convolutional neural network.

Table 2. Block-I Convolutional Neural Network (B-I CNN).

Block-I Convolutional Neural Network (B-I CNN) with Learning Rate = 0.001 and Epochs = 40

Layer Name and Batches Parameters

Image Input Layer Height: 100, Width: 120, Channel: 3

Batch I:

Convolution Layer
Batch Normalization Layer
Relu Layer
Max Pooling Layer

Filter size: 3 × 3, No. of filters = 8, stride = 1

Batch II:

Convolution Layer
Batch Normalization Layer
Relu Layer
Max Pooling Layer

Filter size: 3 × 3, No. of filters = 16, stride = 1

Batch III:

Convolution Layer
Batch Normalization Layer
Relu Layer
Max Pooling Layer

Filter size: 3 × 3, No. of filters = 32, stride = 1

Fully Connected Layer 4 Classes

3.2. Block-II Convolutional Neural Network (B-II CNN)

The block-II convolutional neural network takes the output from the first block and
finds the types of natural disaster with intensity. Moreover, this block also consists of three
minibatches having three layers each with two extra layers such as image input and fully
connected layers. Additionally, the same parameters as block-I have been defined for this
block also. The description of parameters is given in Table 3 and Figure 2.

Table 3. Block-II convolutional neural network (B-II CNN).

Block-II Convolutional Neural Network (B-II CNN) with Learning Rate = 0.001 and Epochs = 30

Layer Name and Batches Parameters

Image Input Layer Height: 100, Width: 120, Channel: 3

Batch I:
Convolution Layer
Batch Normalization Layer
Max Pooling Layer

Filter size: 3 × 3, No. of filters = 8, stride = 1

Batch II:
Convolution Layer
Batch Normalization Layer
Max Pooling Layer

Filter size: 3 × 3, No. of filters = 16, stride = 1

Batch III:
Convolution Layer
Batch Normalization Layer
Max Pooling Layer

Filter size: 3 × 3, No. of filters = 32, stride = 1

Fully Connected Layer 4 Classes
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Figure 2. Architecture of proposed multilayered deep convolutional neural network.

4. Results and Discussion

The proposed multilayered deep convolutional neural network was simulated on the
computer system with Core i7, Central Processing Unit (CPU) 2.8 Ghz with 16 GB RAM in
MATLAB 2018a and different types of results were calculated.

4.1. Dataset and Preprocessing

In our research, the dataset used was collected from PyImage Search readers, who
used Google Images to collect the total number (4428) of images in different classes. The
dataset was separated into four classes: cyclone, earthquake, flood and wildfire, with
928, 1350, 1073 and 1077 images, respectively, as shown in Figure 3. The dataset was
preprocessed to remove the noise by using an adaptive histogram equalizer. The whole
dataset was divided into three groups: training, testing and validation. In total, 60% of the
dataset was used for training, 23% for testing and 17% for validation. These percentages of
the dataset were used to inform the machine on the percentage values of the dataset to be
used for testing, training and validation purposes. The validation set was used to count
the number of epochs for the whole training process. The details of the dataset are shown
in Table 4.

Table 4. Grouping of natural disasters dataset.

Disaster Type Total Training Test Validation

Cyclone 928 500 300 128

Earthquake 1350 600 300 450

Flood 1073 600 300 173

Wildfire 1077 600 300 177

Total 4428 2300 1200 928
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Figure 3. Different classes of natural disasters from dataset.

4.2. Evaluation Criterion

To evaluate the performance of the proposed multilayered deep convolutional neural
network, uses a train–test validation schema. To train the whole model, the training dataset
was used, while for the fine-tuning of model the validation set was used. The performance
of the whole framework was calculated on the basis of the test dataset. For the evaluation
of the proposed model on the given dataset of classification for positive and negative
values, four types of data were accrued: true positive (TP), the number of correctly positive
classified images; true negative (TN) the number of correctly negative classified images;
false positive (FP), the number of incorrectly positive classified images; and false negative
(FN), the number of images that are incorrectly classified as negative images. The confusion
matrices for these values are shown in Figures 4 and 5. To calculate the performance of the
model, the specificity (SP), sensitivity (SE), accuracy rate (RR), precision (PRE) statistical
values were adopted as a criteria. The F1 score was used when a conflict occurred between
accuracy and sensitivity to evaluate the performance. The equations are given below.

Sensitivity (SE) =
TP

TP + FN
(1)

The sensitivity (SE) in Equation (1) is the true positive measurement, the ratio of
correctly identified values.

Speci f icity (SP) =
TN

TP + FP
(2)

Equation (2) shows the value of specificity (SP), the ratio of negatives which are
correctly classified.

Accuracy Rate (AR) =
TP + TN

TP + TN + FP + FN
(3)
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Equation (3) gives the value of accuracy rate (AR), which is equal to the actual mea-
surement of specified values.

Precision (PRE) =
TP

TP + FP
(4)

The precision (PRE) in Equation (4) explains the proportion of closeness in measure-
ment values.

F1 − Score (F1) =
2(SE × PRE)

SE + PRE
(5)

The F1–Score (F1) in Equation (5) is the proportion of recall and precision which
actually measure the model accuracy for the dataset.

Figure 4. 4-Class matrix of natural disasters classification by using the proposed method on the testing dataset.

The graph in Figure 6 shows the training and validation accuracy rate, which is 99.92%,
and also shows the validation and training loss. Moreover, a complete training process is
represented in Figure 6. The smooth line shows the training process and the dotted line
shows the validation process for natural disasters dataset. Table 5 shows the calculated
results in the shape of average statistical values: SE, 97.54%; SP, 98.22%; AR, 99.92%; PRE,
97.79%; and F1, 97.97% for the proposed model. The obtained results are comparable with
the state-of-the-art techniques and solved the complex queries related to analysis of the
natural disasters.

Table 5. Statistical value calculations of proposed model for the whole dataset.

Sr. Disaster Type SE (%) SP (%) AR (%) PRE (%) F1 (%)

1 Cyclone 97.15 98.08 100.00 97.32 97.36

2 Earthquake 95.18 97.11 99.70 96.34 98.88

3 Flood 99.17 99.13 100.00 99.05 99.23

4 Wildfire 98.67 98.56 100.00 98.45 96.44

Average 97.54 98.22 99.92 97.79 97.97
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Figure 5. Confusion matrix of 4-class of natural disaster classification by using the proposed method on the training dataset.

Figure 6. Graphical representation of training and validation accuracy and loss on various iterations.

The overall comparison of results with the state-of-the-art methods is shown in Table 6.
The proposed model shows better accuracy as compared to the recently developed tech-
niques. The reason for this is that the proposed technique works in two parts: one for
natural disaster occurrence detection and the second one for natural disaster classifications.
The overall proposed model works on an image dataset to detect and classify the natural
disasters. As the model is evaluated on a simple central processing unit (CPU)-based
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system, it only detects disaster types and then classifies them into cyclone, earthquake,
flood and wildfire classes. However, if this model is run on a graphic processing unit
(GPU)-based system in the future with real time sensors and monitoring power, then the
proposed model will be used as a real time natural disaster detection model and provide
some upcoming predictions for future disasters. The main purpose of this model is to detect
and classify the type of disaster with a high accuracy rate. To prevent natural disasters in
the future, said model can be used to predict future disasters and take some action against
heavy loss of human ecological systems and property.

Table 6. State-of-the-art comparison of the proposed multilayered deep convolutional neural network.

Cited Technique Used Accuracy-Rate (%) Year

[43] CNN 84.00 2015

[44] Feed-Forward neural network 92.00 2016

[45] Support Vector Machine 87.00 2016

[46] CNN 90.00 2016

[47] Glaucoma-Deep (CNN, DBN d, Softmax) 99.0 2017

[48] RestNet-50 96.02 2018

[7] WSDD-Net 99.20 2019

[49] OCT Probability map using CNN 95.7 2019

[50] Attention Guided Convolutional Neural Network 95.3 2019

[51] ML-DCNN 99.39 2020

[52] ML-DCNNet 99.14 2020

Proposed Multilayered Deep Convolutional Neural Network 99.92 2021

5. Conclusions

Many researchers have attempted to use different deep learning methods for detection
of natural disasters. However, the detection of natural disasters by using deep learning
techniques still faces various issues due to noise and serious class imbalance problems.
To address these problems, we proposed a multilayered deep convolutional neural net-
work for detection and intensity classification of natural disasters. The proposed method
works in two blocks—one for detection of natural disaster occurrence and the second
block is used to remove imbalanced class issues. The results were calculated as average
statistical values: sensitivity, 97.54%; specificity, 98.22%; accuracy rate, 99.92%; precision,
97.79%; and F1-score, 97.97% for the proposed model. The proposed model achieved the
highest accuracy as compared to other state-of-the-art methods due to its multilayered
structure. The proposed model performs significantly better for natural disaster detection
and classification, but in the future the model can be used for various natural disaster
detection processes.
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