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Abstract: During the training phase of the supervised learning, it is not feasible to collect all the
datasets of labelled data in an outdoor environment for the localization problem. The semi-supervised
transfer learning is consequently used to pre-train a small number of labelled data from the source
domain to generate a kernel knowledge for the target domain. The kernel knowledge is transferred
to a target domain to transfer some unlabelled data into the virtual labelled data. In this paper, we
have proposed a new outdoor localization scheme using a semi-supervised transfer learning for
LoRaWANs. In the proposed localization algorithm, a grid segmentation concept is proposed so as
to generate a number of virtual labelled data through learning by constructing the relationship of
labelled and unlabelled data. The labelled-unlabelled data relationship is repeatedly fine-tuned by
correctly adding some more virtual labelled data. Basically, the more the virtual labelled data are
added, the higher the location accuracy will be obtained. In the real implementation, three types of
signal features, RSSI, SNR, and timestamps, are used for training to improve the location accuracy.
The experimental results illustrate that the proposed scheme can improve the location accuracy and
reduce the localization error as opposed to the existing outdoor localization schemes.

Keywords: outdoor localization; semi-supervised learning; deep learning; internet of thing (IoT);
LoRaWAN

1. Introduction

The location-based service (LBS) technology is very useful in many IoT-based location-
aware applications [1–6]. The LBS has already been widely provided, such as navigation,
location-based communication, and location-based data collection.

The LoRaWANs technology [3] has the advantages of the long-distance, low-cost, and
low-power characteristics of LPWA (Low Power Wide Area) networks. A LoRaWAN-based
GPS-free localization technique is an innovative way to provide the location information
for the low-cost location-aware applications in the rural and urban outdoor environment.
LoRa [3,4] is one of the LPWA communication technologies which uses the chirp spread
spectrum modulation (CSS) to support long distance communication with low power
consumption. These characteristics also provide an alternate way to support localization in
the outdoor environment. When the LoRa packet from an end-node device is picked up by
three or more gateways, the received signal strength indicator (RSSI) and the time different
of arrival (TDOA) collected in LoRa gateways [5] can be used for localization.

Because the LoRa signals often go below the noise floor after penetrating barriers, the
received signal is more sensitive to noises, interferences, and obstacles and hence the RSSI
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resolution or sensitivity of the path-loss might not be sufficient for outdoor localization.
Therefore, RSSI, SNR, and timestamps are all considered as the input data for training so
as to improve the accuracy of localization in the proposed scheme.

It is shown that the accuracy of localization in LoRa can be improved by machine
learning technologies [7]. The machine learning technologies can be classified into su-
pervised, semi-supervised, and unsupervised learning. Supervised learning is a machine
learning task of learning a function from labelled training data consisting of a set of training
examples. Semi-supervised learning is a class of supervised learning tasks from a small
amount of labelled data with a large amount of unlabelled data [8–10]. Unsupervised
machine learning is the machine learning task of inferring a function for unlabelled data.
Since it is not feasible to collect all the datasets of labelled data in an outdoor environment,
the semi-supervised transfer learning is adopted in the proposed scheme.

The deep learning is the application of artificial neural networks to learn tasks which
contain more hidden layers. In deep learning, each level learns to transform its input data
into a slightly more abstract and composite representation. The deep learning architecture
is constructed with a greedy layer-by-layer method. The depth in deep learning is the
number of layers through which the data are transformed. The learning architecture with
many hidden layers is called as the deep neural network (DNN). The DNN [11] simulates
the hierarchical structure of the human brain, processing data from low level to high
level and gradually producing more and more semantic concepts. With multiple layers
of nonlinear processing stages, DNN can extract complex structure and build an internal
representation of big data. It is expected that the localization accuracy can be further
improved by using deep learning models [1,12] and hence the deep learning architecture is
adopted in the proposed scheme.

To improve existing localization works, we propose a novel outdoor localization
scheme using a semi-supervised transfer learning for LoRaWANs. The semi-supervised
DNN is used to derive the regression of the estimated location. The semi-supervised
transfer learning is adopted because it is not feasible to collect all the labelled samples in an
outdoor environment and the accuracy of the semi-supervised transfer learning is usually
better than that of the unsupervised learning. The LoRaWAN technology is adopted in this
paper because the LoRaWAN technology is one of the communication technologies that
is usually used in the outdoor environment for IoT devices. With the low cost and long
range characteristic of the LoRaWAN technology, a large area can be covered by very few
gateways and hence the hardware cost can be greatly reduced.

In this paper, a novel grid segmentation scheme is proposed so as to generate a number
of virtual labelled samples by figuring out the relationship between labelled and unlabelled
samples. With the labelled-unlabelled samples relationship, we may repeatedly fine-tune
our target model by adding more new virtual labelled samples so as to derive more accurate
regression and achieve high localization accuracy. In short, the goal of this paper is to
reduce the hardware cost of the outdoor localization for IoT devices and improve the
localization accuracy of the existing works based on LoRaWANs. The experimental results
illustrate that the proposed scheme effectively improves the average accuracy up to 91% in
a large experimental area, and may reduce the average localization error up to 4 m in a
small experimental area, compared with the existing outdoor localization results based on
LoRaWANs.

The rest of this paper is organized as follows: Section 2 describes the related works.
Section 3 describes the system model and defines the problem formulation. Section 4
proposed a semi-supervised transfer learning algorithm using grid segmentation. The
experiment results are presented in Section 5 and the conclusions are finally given in
Section 6.

2. Related Works

Some localization results are shown in Section 2.1 and the research motivation is
discussed in Section 2.2.
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2.1. Localization Results

This section introduces three classes of existing localization results [2–23]. The first
class is the localization results only using RSSI, SNR, or timestamps for long-range IoT
networks or LoRaWANs [2–6,13,14]. The second class is the indoor and outdoor lo-
calization using the supervised deep learning techniques [11,12,15,16,18,19]. The third
class is the localization prediction results using the semi-unsupervised transfer learning
techniques [8–10,20–23].

Firstly, some localization results are reported for long-range IoT networks or Lo-
RaWANs [2–6,13,14] by only using one or more signal parameters, such as received signal
strength indicator (RSSI), time different of arrival (TDOA), etc. Chiumento et al. [2]
proposed a localization scheme in long-range ultra narrow band IoT networks, LoRa, or
sigfox models, by using RSSI. In this work, RSSI has been used for fingerprinting local-
ization, where RSSI measurement of GPS anchor nodes have been used. Lam et al. [3,4]
proposed LoRa-based localization algorithms for the noisy outdoor environment by con-
sidering the RSSI to eliminate the Gaussian and non-Gaussian noise to select the non-noisy
nodes. Based on LoRa localization report released by Semtech [5], they declared that they
have an extensive experience for building a “time-doamin” based localization systems
by considering the direct path energy, multipath correlation, and TDOA. Fargas et al. [6]
proposed a GPS-free geolocation using LoRa technology by considering both RSSI and
TDOA. Lam et al. [13] propose RSSI-based localization algorithms to reduce the effect of
Gaussian and non-Gaussian noise in LoRa networks. Podevijn et al. [14] evaluate the
localization accuracy, update probability, and update frequency for different trajectories
(walking, cycling, and driving) and LoRa spreading factors. The median accuracy of the
raw TDoA output data is 200 m. If the road map and movement speed are taken into
account, the median accuracy is significantly improved to 75 m.

It is not easy to provide accurate localization results by using LoRa because of the
following reasons. First, since the LoRa signals often go below the noise threshold after
penetrating barriers, the localization based on received signal strength (RSS) and RSS
indicator (RSSI) is vulnerable to low signal-to-noise ratios (SNRs) [24]. Second, since the
LoRa signal is a narrowband signal, it cannot be very sharp in the time domain which
makes accurately timing the arrivals of the LoRa signals at the gateway difficult. The
timing resolution of the current LoRa devices is not sufficient for achieving accurate
localization [24]. Some more efforts should be done to have the more accurate localization
by adding other technologies. Anjum et al. [7] use regression and machine learning
(ML) models for RSSI fingerprinting-based localization in LoRa networks. In the outdoor
environments, the regression models can achieve around 77% accuracy and 46 m location
error, and the machine learning models can achieve around 81.12% accuracy and 41.5 m
location error—while, in the indoor environments, the regression models can achieve
around 83.25% accuracy and 13.5 m location error, and the machine learning models can
achieve around 87% accuracy and 11.78 m location error. The performance is expected to
improve further by using deep learning models. Consequently, a deep neural network
(DNN) is a useful technology to improve the system performance by pre-training a large
set of labelled/unlabelled training data.

Some supervised learning-based localization techniques are presented [11,12,15–19].
Zhang et al. [11] initially proposed a four-layer DNN structure pre-trained by stacked
denoising autoencoder (SDA) that is capable of learning reliable features from a large set
of noisy samples from Wi-Fi signals. Xiao et al. [15] also proposed a BLE-based indoor
localization pre-trained by a deep learning model, called a denoising autoencoder, to extract
robust fingerprint patterns from received signal strength indicator measurements. To
uniquely identify a LoRa device, Robyns et al. [16] designed a physical-layer fingerprinting,
which can investigate and extract feature from radio signals, using supervised and zero-
shot learning. Khatab et al. [17] proposed a fingerprinting method for indoor localization
by using the autoencoder-based deep learning machine. Wang et al. [18] presented a
deep residual sharing learning based system for WiFi based indoor localization with the
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channel state information (CSI). Decurninge et al. [19] proposed a CSI-based outdoor
localization with a learning approach for a 5G-type MIMO system. Purohit et al. [12] use
three different deep learning models (i.e., the Artificial Neural Network (ANN), Long Short-
Term Memory (LSTM), and the Convolutional Neural Network (CNN)) for fingerprinting
based location regression with LoRaWAN. An interpolation aided fingerprinting-based
localization system architecture and a deep autoencoder method are proposed to effectively
deal with a large number of missing samples/outliers.

The transfer learning technique is recently investigated in [8–10]. Pan et al. [8] pro-
vided a detailed survey of the transfer learning, to better understand the definitions and
differences with inductive transfer learning, transductive transfer learning, and unsu-
pervised transfer learning. Long et al. [9] proposed a domain invariant transfer kernel
learning. The domain transfer learning involves two types of datasets. One is from the
source domain by a number of labelled data, and the other one is from a target domain by
a large amount of unlabelled data. Deng et al. [10] also proposed a new inductive transfer
learning method.

It is noted that localization results using the semi-supervised transfer kernel learning
are developed in [20–23]. Zou et al. [20] initially proposed an adaptive localization in
dynamic indoor environment by using the transfer kernel learning. Qiu et al. [21] addition-
ally presented an indoor localization approach by transfer learning from tracking outdoor
motions to the indoor environment. Ghourchian et al. [22] presented a real-time indoor
localization for Wi-Fi signals using the semi-supervised learning. The WiFi-only outdoor
localization is proposed by Wang et al. [23], by holistically treating the large number of
WiFi hotspot labels gather by crowdsensing. Wang et al. [23] utilized all of the labelled and
unlabelled data for a given area using a semi-supervised manifold learning technique.

2.2. Motivation

As we know, there are only a few results investigating the outdoor localization by the
semi-supervised learning technique. Most of the existing semi-supervised learning results
are based on WiFi signals [22] or WiFi-hotspot labels gathered by crowdsensing [23].

The main problem is subdivided into two. the first problem is that the research about
semi-supervised deep neural network positioning is mostly used in indoor environments.
The second problem is that the accuracy of the outdoor positioning for LoRa is not high
according to the related literature reviews of LoRa localization [2–4]. Combining the above
issues, the research motivation is to improve the LoRa positioning accuracy in outdoor
environments. We propose an outdoor grid segmentation localization scheme that can
effectively reduce the LoRa outdoor localization error with a small number of labelled
samples. Through the DNN model, the relationship between labelled samples can be
learned, and more constraint virtual labelled samples based on constraint regression can
be generated by the semi-supervised transfer learning. Through the iterative process, the
virtual labelled samples are put into models so as to narrow the location area.

3. Preliminaries

This section describes the system model, the problem formulation, and the basic idea
in Sections 3.1–3.3, respectively.

3.1. System Model

The system architecture of LoRaWAN-based localization with the semi-supervised
learning is given in Figure 1. In the system, each LoRa end-node is equipped with the
Semtech LoRa SX1276 module for the long range modem. Only a portion of the LoRa
end-nodes are equipped with the Grove-GPS module armed with a SIM28 to acquire the
GPS location information. In addition, a multi-gateway LoRaWAN is built on the Raspberry
Pi 3, and each one is equipped with a Semtech LoRa SX1276 module.
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Figure 1. The LoRa localization system architecture using deep learning.

When an end-node uses LoRaWAN protocol to send packets to gateways, the gateways
can collect the sending time, RSSI, and SNR of the packet; at the same time, all gateways
are synchronized by using the Greenwich mean time to get the packet arrival time. Then,
the gateways forward the collected signal features via Wi-Fi and save data on Dropbox.
Finally, the network server gets labelled samples and unlabelled samples from the Dropbox.
Let X denote as a database, which includes n samples. Letting xi denote as the i-th sample,
including k data from g gateways during a period of time T to collect RSSI, SNR, and
timestamps (denoted as (ri, snri, ti)):

X = {x1, x2, . . . , xn} (1)

xi =


[(r1, snr1, t1), (r2, snr2, t2), . . . , (rg, snrg, tg)]i1
[(r1, snr1, t1), (r2, snr2, t2), . . . , (rg, snrg, tg)]i2

. . .

. . .
[(r1, snr1, t1), (r2, snr2, t2), . . . , (rg, snrg, tg)]ik

 (2)

When n samples are collected into database X, the main function is to divide the data
collected by the Dropbox into two categories, labelled samples and unlabelled samples.

In the training process, the environment is divided into large area and small area.
The following description mainly focuses on the large area as shown in Figure 2. At the
pre-training phase, each labelled samples from source domain corresponds to the true
location ls

m. The weight Ws and bias bs of the source domain’s hidden layers (feature
extractor) are frozen. The m hidden layers can be shown as follows:

ls
m = {(x1 : ys

1), . . . , (xi : ys
i ), . . . , (xm : ys

m)} (3)
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ys
m = {(ws

1, ws
2, . . . ws

m | bs
1, bs

2, . . . bs
m) ∈ Φ} (4)

The variable ys
m is defined as the label of instance xs

m, and the variable Φ is defined as
the source domain knowledge including the weight Ws and bias bs of the frozen layers.

In the multi-kernel iteration phase, the unlabelled samples will use the labelled model
knowledge Φ, and increase hidden layers to extract unlabelled features. In the first stage,
labelled samples regression is used and each labelled location probability p is calculated
to find the target domain. In the second stage, the virtual labelled samples are generated
repeatedly until the error is less than the threshold so as to find the target classifier location lt.

1

Law school RF01

Sports field

Student dormitory

2

3

4

rangeTraining node

Traget node National Taipei University

G2

G1

G3

G4

End node

Humanities school 11F06 1-

Network Server
end device table

LoRa Server

LoRa application layer

G database4
G database3

G database2G database1

packet handler

Figure 2. The outdoor environment of the large area.

3.2. Problem Formulation

The proposed algorithm is performed on a forward neural networks architec-
ture [11,15]. with the input sample X, the initial weight W, and the bias b in the hid-
den layers, and a nonlinear activation function σ.

The variable f represents as a feature vector, f ∈ (RSSIi, SNRi, Timestampi). These
signal feature values are extracted from an LoRa message sent from an end device to
gateway gi, where 1 ≤ i ≤ j, j is the number of gateways.

We follow the same definition of transfer learning from [8]. Let Ds =
{

xs
i , ys

i , θ
}

, xs
i

be the source domain with the corresponding labelled data ys
i , ys

i ∈ {1, . . . , c}, and the
variable θ is defined as the model parameter. Let Dt =

{
xt

i , θ
}

, xt
i be the target domain

with the unlabelled data under the same model parameter θ.
Based on training the labelled data in the source domain, the transfer learning can

improve the accuracy of the unlabelled data in the target domain.
In this work, the source domain and target domain tasks are assumed to be the same,

but Ds 6= Dt. Given the input xs
i and xt

i , the training process goes through the hidden
layers and nanonet layers to get the reconstruction output x̂i

s and x̂i
t.

Minimizing the distribution divergence of the source domain and target domain is
equal to minimizing the approximation error and optimizing the training accuracy of Dt,
which is shown in the following:
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arg min
Ws

i ,bs
i ,Wt

i ,bt
i

{(
n
∑

i=1

∥∥x̂i
s − x̂i

t∥∥2
)
−
(

n
∑

i=1

∥∥xs
i − xt

i

∥∥2
)}

.

subject to


X = {x1, x2, . . . , xn}, n ≥ 1
f (x : θ) 6= 0
xs 6= xt

so as to maximize A

(5)

The variables Ws
i , bs

i , Wt
i , and bt

i are defined as the weight and bias values of the source
domain and target domain respectively. A is defined as the accuracy of the unlabelled data
in the labelled source domain. θ is defined as the model parameters.

When the training begins, the input sample xi, through the initialization weight W
and bias b in the hidden layers, uses the nonlinear activation function σ to lead to the
nonlinear characteristics. The m-th hidden layer can be summarized as:

hiddenm : (x̂ : f ) = σ(Wmx + bm) (6)

3.3. Basic Idea

The basic idea contains two inspirations: improving the transfer learning location
accuracy in the outdoor environment and reducing the large amount of data collection
time. The proposed semi-supervised transfer learning uses the grid segmentation method
to solve the problem as shown in Figure 3. The RSSI, SNR, and timestamps parameters
are affected by a noisy environment. When the noisy parameters are put in the model,
the weights and activation function are used in hidden layers in deep neural networks
architecture to increase the effective feature parameters and reduce the noisy parameters
effect. The purpose is to reduce the location error caused by the noisy parameters and
increase the training accuracy. In Figure 4, the labelled samples are collected at the fixed
distance of the grid. Therefore, when an end-node is within the area, the relationship
between the end-node feature and the adjacent labelled samples can be used to find the
area where the node is located. The grid segmentation concept is utilized so as to further
generate virtual labelled samples and narrow the located area of the node. The virtual
labelled points are generated repeatedly so as to narrow the range and minimize node
positioning errors. Figure 5 demonstrates the differences between the SVM scheme and the
proposed scheme.
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Figure 5. Comparison with (a) transfer kernel learning based on SVM; (b) transfer learning with grid segmentation based
on DNN.

4. The Proposed Outdoor Localization Scheme Using Semi-Supervised Transfer
Learning with Grid Segmentation

This section presents the proposed outdoor localization scheme which uses semi-
supervised transfer learning to predict the location of the unlabelled target for LoRaWANs.
There are four phases in the proposed outdoor localization scheme, namely the source
domain kernel pre-training phase, the kernel knowledge transferring phase, the source
domain gird segmentation phase, and the grid segmentation fine-tuning phase, which are
shown in the following subsections.

4.1. Source Domain Kernel Pre-Training Phase

The source domain kernel pre-training phase is shown in Figure 6. There is a pre-
training for the source domain in DNN architecture. L1 (λ1) and L2 (λ2) are the normaliza-
tion layers which can normalize parameters. Through supervised learning, the relationship
between the parameters (rs

i , snrs
i , ts

i ) of the the source domain (Ds) and the classified results
can be learned so as to get the feature of the source domain parameters and the regression
kernel of each class. There are four steps in the source domain kernel pre-training phase.
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S1. The end-node transmits the sample xi to the gateways, then the gateways uplink the
dataset to the database of the server. xi is shown in Equation (7):

xi =


[(r1, snr1, t1), (r2, snr2, t2), . . . , (rg, snrg, tg)]i1
[(r1, snr1, t1), (r2, snr2, t2), . . . , (rg, snrg, tg)]i2

. . .

. . .
[(r1, snr1, t1), (r2, snr2, t2), . . . , (rg, snrg, tg)]ik

 (7)

S2. During the normalization layers (i.e., L1 (λ1) and L2 (λ2)), L1 focuses on extracting
the feature range of individual parameter and uses a minmaxscaler function to reduce
the error between each parameters, where xi → x̃i. The L1 normalization function is
shown as follows:

λ1 norm : x̃ =
x− xmin

xmax − xmin
(8)

Then, the labelled samples x̃i are fed into L2 (λ2). L2 focuses on extracting the feature
range of all the parameters. The batch normalization function [25] has mini-batch data
processing and considers the average means (µ) and standard deviation (σ) of all
parameters so as to normalize the feature range, where x̃i → x̂i. The L2 normalization
function is shown as follows:

λ2 norm : x̂i =
x̃i − µx̃√

σ2
x̃ + ε

(9)

(
µ(x̃), σ2

x̃

)
=

(
1
m

m

∑
i=1

x̃i,
1
m

m

∑
i=1

(x̃i − µx̃)
2

)
(10)

S3. This step puts the normalized x̂i into the DNN architecture, and uses m hidden layers
(hiddenm) and l encoder layers and l decoder layers to extract Ds feature and each
class regression kernel. The equations are shown as follows:

x̃(s,t) = λ2

(
λ1

(
Wx(s,t)

))
(11)

hiddenm :
(

x̂(s,t) : f
)
= σ

(
Wx̃(s,t) + b

)
(12)

In the pre-train model, the labelled samples xi and input data are got from the gate-
ways, including {ri, snri, ti}.

S4. After going through the supervised DNN model, the output class (x̂i, ŷs
i ) is obtained,

then the difference between the real class (xi, ys
i ) and the output class (x̂i, ŷs

i ) is calcu-
lated. The back propagation (BP) algorithm is used to update neurons in each hidden
layer with both Wi and bi, to minimize the difference between (xi, ys

i ) and (x̂i, ŷs
i ). The

equation is shown as follows:

arg min
Ws

i ,bs
i

∥∥∥ys
i − ŷs

i

∥∥∥ (13)

As shown in Figure 6, at S1, the end-node uses LoRaWANs to transmit n packets from
one location l1 to the gateways. When the gateways receive the packet, the gateways get
timestamps from GMT and uplinks timestamps to the data server database. As shown
in Figure 7, at S2, minmaxscaler function is used in L1. The batch normalization is used
in L2, which considers multiple parameters {RSSI, SNR, TS} ∈ [0, 1]. At S3, normalized
parameters are put into the DNN model to get the output ŷs

i . At S4, the fine-tune process
repeats by executing the BP algorithm to minimize the location error (ys

i , ŷs
i ).
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4.2. Kernel Knowledge Transferring Phase

The kernel knowledge transferring phase is shown in Figure 8. The knowledge is
transferred from the source domain to the target domain. The source domain uses m + 2l
hidden layers, including m fully connected layers, l encoder layers, and l decoder layers to
learn the largest area of labelled data. The softmax function is used to find the regression
of labelled feature. The weight Ws and bias bs of each layer are frozen. In the target
domain, two hidden layers are added and all layers are fine-tuned to learn small area
knowledge based on the source domain. There are two steps in the kernel knowledge
transferring phase.
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S1. In this step, the softmax function uses the logistic regression for multi-class problems.
The labelled class y is taken from the source domain, where y ∈ {1, . . . , c}. The
probabilities of each class with instance x̃s can be estimated as follows:

ln(x̂) =



p(yi = 1|x̃; f )
p(yi = 2|x̃; f )

.

.

.
p(yi = c|x̃; f )

 (14)

S2. The KL divergence (Kullback–Leibler divergence) is a non-symmetric measurement of
the divergence between two probabilities of the embedded instance, which is between
the source domain and target domain (denoted as (Φs, Φt)). The probability is denoted
as ((Ps, Pt)). The total statements can be written as (Φs, Φt) = dkl (Ps||Pt) + dkl (Pt||Ps),
where (Ps||Pt) 6= (Pt||Ps).

4.3. Source Domain Grid Segmentation phase

The source domain grid segmentation phase is shown in Figure 9. There are n labelled
points (denoted as s = {s1, s2, . . . , sn}) in the source domain. Select four points in the
corner of the square area as corner points (denoted as c = {c1, c2, . . . , c4}), then set the
four points in the middle of any two corner points as the boundary points (denoted as
b = {b1, b2, . . . , b4}), finally select the point in the middle of the boundary points as the
kernel point (demoted as k1). The corner points are the input data xs. The boundary
points and the kernel point are the output class ys. The DNN architecture is adopted as
the training model. The data go through the hidden layers so as to extract the features and
the softmax function is used to generate individual regression. There are three steps in the
source domain grid segmentation phase.
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S1. Each labelled point has a corresponding feature (denoted as f ). The labelled point, the
corner point, the boundary point, the kernel point, and their corresponding features
are denoted as (s, fs), (c, fc), (b, fb), and (k, fk), respectively. Those data are collected
from a true noisy environment.

S2. The DNN model is used to learn the boundary and kernel points from the corner
points. This model uses supervised learning to generate boundary points from two
constrained corners, | fc1 , fc2 | → m1, and | fm2 , fm3 | → k1, where x{c1,c2} is the input
data, ym1 is the output data, Ws

j is the weight in the hidden layer j, bs
j is the bias of the

hidden layer j, vj is the reconstruction input of the hidden layer j. ym1 can be derived
from the followng equation:

yb1 =

(
n

∑
i=1

W(1,n)

)
x(c1,c2)

+
n

∑
i=1

b(1,n) (15)

S3. The softmax function is used to calculate the regression probability of the output
(F′s = ym1). KL divergence is used to calculate the loss function and sgd optimizer
so as to fine-tune the weight Ws and bias bs of each hidden layer hi. Finally, to get
the minimized error function, the frozen layer is added to transfer knowledge to the
target domain..

4.4. Grid Segmentation Fine-Tuning Phase

The grid segmentation fine-tuning phase is shown in Figure 10. The grid segmentation
process repeats so as to generate a large amount of constrained virtual labelled samples.
After the grid segmentation and pre-training, the features Fs can be obtained and then
the knowledge, weight ws, and bias bs to the target domain can be transferred. The
unlabelled samples can learn the features Fs so as to get the estimated location. Convert
the surrounding boundary point and kernel point in the coarse grid to a new corner point
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c′s, then add two hidden layers to get more features from the unlabelled samples and get
the new four boundary points (denoted as b′ =

{
b′1, b′2, . . . , b′4

}
) and new kernel point k′1 to

calculate the new output features (denoted as Fs,t). The process repeats so as to fine-tune
the grid size until the location errors of the unlabelled samples are less than the threshold.

S1. Given unlabelled sample X = {x1, x2, . . . , xm}, learn the weight ws
n and bias bs

n of each
hidden layers hn from Fs so as to fine-tune the coarse location as follows:

yt
m(1) =

(
n

∑
i=1

Ws
(1,n)

)
xt
(1,m) +

n

∑
i=1

bs
(1,n) (16)

S2. The grid is divided iteratively to get the new boundary points and new kernel points
from the new corner points of the divided grid. The new corner points (denoted
as C′ =

{
c
′
1, c

′
2, .., c

′
4

}
) are the surrounding points of the original grid. Use the data

generator to generate the corresponding data. Generate the new boundary points
(denoted as b′ =

{
b
′
1, b

′
2, .., b

′
4

}
) and the new kernel point (denoted as k

′
1), and use the

softmax function and KL divergence to derive the constraint regression. The weight
Ws,t

n and bias bs,t
n of the new hidden layer is frozen and

{(
Ws,t

n , bs,t
n

)
= Fs,t

}
. Finally,

the fine-tuned location can be derived as follows:

yt
m1

=

(
n

∑
i=1

Ws,t
1,n

)
xc′ ,b′ ,k′

1,m +
n

∑
i=1

bs,t
1,n (17)
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Figure 10. The grid segmentation fine-tuning phase.

Assuming that there are m × n labels, after one iteration of fine tuning, there will
be (2m − 1) × (2n − 1) labels and virtual labels. Hence, (2m − 1) × (2n − 1) − m × n
virtual labels are added for training. After two iterations of fine-tuning, there will be
(4m− 3)× (4n− 3) labels and virtual labels. Hence, (4m− 3)× (4n− 3)−m× n virtual
labels are added for training. Similarly, after three iterations of fine-tuning, there will be
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(8m− 7)× (8n− 7) labels and virtual labels. Hence, (8m− 7)× (8n− 7)−m× n virtual
labels are added for training. According to the above results, we can derive that, after k
iterations of fine-tuning, there will be (2km− 2k − 1)× (2kn− 2k − 1) labels and virtual
labels. (2km− 2k − 1)× (2kn− 2k − 1)−m× n virtual labels are added for training. The
extra computation and training cost for adding extra virtual labels is proportional to the
number of extra virtual labels.

5. Experimental Results

This section describes the environment configuration, setting of parameters, and
experimental results. The experiments are performed in the campus of National Taipei
University (NTPU). The campus is divided into small area (about 100× 60 m2) and large
area (about 700 × 200 m2) in the outdoor environment. Figure 2 shows the outdoor
environment of the large area. The experiment uses one end-node and four gateways.
Figure 11 shows the experimental environment of the small area. There are three scenarios
in the experiments: the LL scenario (gateways and labelled points are all deployed in a
larger area, i.e., lower gateway and labelled point density), the LS scenario (gateways are
deployed in larger area and labelled points are deployed in smaller area, i.e., lower gateway
density and higher labelled point density), and the SS scenario (gateways and labelled
points are all deployed in smaller area, i.e., higher gateway and labelled point density).
The end-node includes the Arduino DS 1, Grove-GPS, 10,000 mAh mobile power bank, and
LoRa modem Semtech sx1276. The gateways include Raspberry Pi 3, LoRa modem sx1276
and use the RS232 interface. The LoRa spreading factor is set as SF9, the transmission
power is set as 16 mW, the bandwidth is set as 125 KHz, the coding rate is set as 4/5, and
the transmission time interval is set as 3 s. The GPU being used is Nvidia GTX 1050, the
version of TensorFlow is 1.5.0, the version of Python is 3.6, and the operating system is
Ubuntu 16.04 to implement a DNN architecture with 12 layers. There are 8116 data and
21 classes in the small area and there are 11,460 data and 34 classes in the large area. The
learning rate is set as 0.0001, and the epoch is set as 5000. Three algorithms (the proposed
scheme based on DNN, the original TKL scheme with SVM, and the adaptive TKL scheme
with SVM) are adopted for experiment with single parameter (RSSI) denoted as S, and
multiple parameters (RSSI, SNR, timestamps) denoted as M.

Grassland

Business School

Law School

Figure 11. The experimental environment of the small area.
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To evaluate the performance of the proposed localization scheme, the following
performance metrics are observed in the experiments.

• Localization error: the mean difference between the real location and the predicted location.
• Data accuracy: the match rate of the output target data and the input data.
• Training time: the training time required to operate the entire system with different

samples and different models.

5.1. Localization Error

The localization errors with different epochs, scenarios, and number of labelled sam-
ples are shown in Figure 12a–d. Figure 12a shows the localization errors of LL and LS
scenarios with different numbers of parameters and epochs. In LL with single parameter
(LL(S)), the localization errors of the proposed schemes based on DNN, the original TKL
scheme with SVM, and the adaptive TKL scheme with SVM are about 4.1, 19.06, and
9.47 m, respectively. In LL with multiple parameters (LL(M)), the localization errors of the
proposed scheme based on DNN, the original TKL scheme with SVM, and the adaptive
TKL scheme with SVM are about 3.6, 15.32, and 7.26 m, respectively. In LS with multiple
parameters (LS(M)) and nine labelled points, the localization errors of the proposed scheme
based on DNN, the original TKL scheme with SVM, and the adaptive TKL scheme with
SVM are about 3.08, 13.65, and 6.44 m, respectively. In LS with multiple parameters and
15 labelled points, the localization errors of the proposed scheme based on DNN, the
original TKL scheme with SVM, the adaptive TKL scheme with SVM are about 2.32, 13.65,
and 6.01 m, respectively.

Figure 12b shows the localization errors of SS scenario with a different number of
parameters and epochs. In SS with single parameter (SS(S)), the localization errors of the
proposed schemes based on DNN, the original TKL scheme with SVM, and the adaptive
TKL scheme with SVM are about 4.1, 14.28, and 8.05 m, respectively. In SS with multiple
parameters (SS(M)), the localization errors of the proposed scheme based on DNN, the
original TKL scheme with SVM, and the adaptive TKL scheme with SVM are about 1.94,
12.35, and 6.42 m, respectively.

As the epoch increases, the localization errors of the proposed scheme decreases
because more epochs of training can achieve higher accuracy of training results and hence
the localization errors decrease. The iterations of epoch do not affect the localization errors
of the two SVM based schemes because the two SVM based schemes are not based on
the deep learning architecture. The localization errors in the SS scenario with multiple
parameters are the least because, in such a scenario, the labelled points are closer to
each other and more parameters can achieve more accurate training results and thus the
localization errors decrease. The proposed scheme performs better than the two SVM based
schemes because we use the grid segmentation to fine-tune the predicting locations.

Figure 12c shows the localization errors of LL scenarios with a different number of
labelled samples (from 18 to 34 samples). In the LL scenario with single parameter (S), the
reduced localization errors (localization errors of 18 samples minus localization errors of
34 samples) of the proposed schemes based on DNN, the original TKL scheme with SVM,
and the adaptive TKL scheme with SVM are about 5.32, 1.16, and 0.17 m, respectively. In the
LL scenario with multiple parameters (M), the reduced localization errors of the proposed
scheme based on DNN, the original TKL scheme with SVM, and the adaptive TKL scheme
with SVM are about 4.42, 2.42, and 1 m, respectively. As the number of labelled samples
increases, the reduced localization errors increase (i.e., localization errors decrease) because
the labelled points are closer to each other and thus the localization errors decrease.

Figure 12d. shows the localization errors of SS scenario with a different number of
labelled samples (from 13 to 21 samples). In the SS scenario with single parameter (S),
the reduced localization errors of the proposed schemes based on DNN, the original TKL
scheme with SVM, and the adaptive TKL scheme with SVM are about 2.5, 2.93, and 0.96 m,
respectively. In the SS scenario with multiple parameters (M), the reduced localization
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errors of the proposed scheme based on DNN, the original TKL scheme with SVM, and the
adaptive TKL scheme with SVM are about 4.2, 5.31, and 0.32 m, respectively.

(a) (b)

(c) (d)

Figure 12. (a)Localization error (large area) vs. per epoch; (b) localization error (small area) vs. per epoch; (c) localization
error (large area) vs. number of labelled samples; (d) localization error (small area) vs. number of labelled samples.

The localization errors with a different number of fine-tuned iterations are shown in
Figure 13a,b. As the number of iterations increases, the localization errors of the proposed
scheme decrease because we use grid segmentation to fine-tune the predicting locations.
The number of iterations do not affect the localization errors of the two SVM based schemes
because the two SVM based schemes do not perform grid segmentation to fine-tune the
predicting locations. When the number of iterations is greater than 4, the localization errors
converge because the grid size is too small to tell the differences between different virtual
labelled points.

The CDF of localization errors in the scenarios of large area (LL and LS) and small
area (SS) are shown in Figure 13c,d, respectively. In the proposed scheme, more than 50%
of the localization errors are less than 5 m; in the two SVM-based scheme, 100% of the
localization errors are greater than 6 m. In SS scenario with multiple parameters, 80% of
the localization errors of the proposed scheme are less than 6 m.
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(a) (b)

(c) (d)

Figure 13. (a) Localization error (LL,LS) vs. number of iterations; (b) localization error (SS) vs. number of iterations; (c) CDF
vs. localization error (LL,LS); (d) CDF vs. localization error (SS).

5.2. Location Accuracy

The location accuracies with different epochs, scenarios, and number of labelled
samples are shown in Figure 14a–d. Figure 14a shows the location accuracies of LL and LS
scenarios with different numbers of parameters and epochs. In LL with a single parameter,
the localization accuracies of the proposed schemes based on DNN in 5000 iterations
of epoch, the original TKL scheme with SVM, and the adaptive TKL scheme with SVM
are about 87.14%, 12.22%, and 73.23%, respectively. In LL with multiple parameters, the
localization accuracies of the proposed schemes based on DNN in 5000 iterations of epoch,
the original TKL scheme with SVM, and the adaptive TKL scheme with SVM are about
90.78%, 25.44%, and 80.74%, respectively. In LS with multiple parameters and nine labelled
points, the localization accuracies of the proposed schemes based on DNN in 5000 iterations
of epoch, the original TKL scheme with SVM, and the adaptive TKL scheme with SVM
are about 91.08%, 26.07%, and 81.24%, respectively. In LS with multiple parameters and
15 labelled points, the localization accuracies of the proposed schemes based on DNN in
5000 iterations of epoch, the original TKL scheme with SVM, and the adaptive TKL scheme
with SVM are about 91.61%, 28.74%, and 83.31%, respectively.

Figure 14b shows the location accuracies of SS scenarios with different number of
parameters and epochs. In an SS scenario with single parameter (SS(S)), the localization
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accuracies of the proposed schemes based on DNN, the original TKL scheme with SVM, and
the adaptive TKL scheme with SVM are about 82.23%, 49.25%, and 69.85% m, respectively.
In an SS scenario with multiple parameters (SS(M)), the localization accuracies of the
proposed scheme based on DNN, the original TKL scheme with SVM, and the adaptive
TKL scheme with SVM are about 88.94%, 55.65%, and 76.85% m, respectively.

(a) (b)

(c) (d)

Figure 14. (a) Location accuracy (LL,LS) vs. per epoch; (b) location accuracy (SS) vs. per epoch; (c) location accuracy (LL,LS)
vs. number of labelled samples; (d) location accuracy (SS) vs. number of labelled samples.

As the epoch increases, the localization accuracies of the proposed scheme also in-
crease because more epochs of training can achieve higher accuracy of training results
and hence the localization accuracy increases. The iterations of epoch do not affect the
localization accuracies of the two SVM based schemes because the two SVM based schemes
are not based on the deep learning architecture. The localization accuracies in the environ-
ment of LS with multiple parameters and 15 labelled points are the best because, in such
environment, the labelled points are closer to each other and more parameters can achieve
more accurate training results and thus the localization accuracies are the highest

Figure 14c shows the location accuracies of LL scenarios with different numbers of labelled
samples (from 18 to 34 samples). In LL scenario with single parameter (S), the increased
localization accuracies (localization accuracies of 34 samples minus localization accuracies of
18 samples) of the proposed schemes based on DNN, the original TKL scheme with SVM, and
the adaptive TKL scheme with SVM are about 30.35%, 2.12%, and 7.62%, respectively. In an LL
scenario with multiple parameters (M), the increased localization accuracies of the proposed
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scheme based on DNN, the original TKL scheme with SVM, and the adaptive TKL scheme
with SVM are about 25.36%, 4.39%, and 4.62%, respectively. As the number of labelled samples
increases, the increased location accuracies also increase (i.e., location accuracies increase)
because the labelled points are closer to each other and thus the localization accuracies increase.

Figure 14d. shows the location accuracies of SS scenario with different numbers of
labelled samples (from 13 to 21 samples). In the SS scenario with single parameter (S), the
increased localization accuracies of the proposed schemes based on DNN, the original TKL
scheme with SVM, and the adaptive TKL scheme with SVM are about 16.83%, 8.76%, and
5.53%, respectively. In an SS scenario with multiple parameters (M), the increased localization
accuracies of the proposed scheme based on DNN, the original TKL scheme with SVM, and
the adaptive TKL scheme with SVM are about 18.05%, 14.44%, and 2.78%, respectively.

The location accuracies with different number of iterations are shown in Figure 15a,b.
As the number of iterations increases, the localization accuracies of the proposed scheme
increase because we use grid segmentation to fine-tune the training results. The number
of iterations do not affect the localization accuracies of the two SVM based schemes
because the two SVM based schemes do not perform grid segmentation to fine-tune the
training results. When the number of iterations is greater than 3, the location accuracies
converge because the grid size is too small to tell the differences between different virtual
labelled points.

(a) (b)

(c) (d)

Figure 15. (a) Location accuracy vs. number of iterations (LL,LS); (b) location accuracy vs. number of iterations (SS); (c) CDF
vs. location accuracy (LL,LS); (d) CDF vs. location accuracy (SS).
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The CDF of localization accuracies in the scenarios of large area (LL and LS) and small
area (SS) are shown in Figure 15c,d, respectively. In the proposed scheme, more than 60%
of the location accuracies are higher than 80%; in the two SVM-based scheme, 100% of the
location accuracies are lower than 84%. In an LL scenario with multiple parameters, more
than 75% of the localization errors of the proposed scheme are higher than 80%.

5.3. Training Time

Figure 16a,b shows the impact of training time on location accuracies in the scenarios
of large area and small area, respectively. As the training time increases, the location
accuracies of the propose scheme also increase. The training time does not affect the
localization accuracies of the two SVM based schemes because the two SVM based schemes
are not based on the deep learning architecture. The localization accuracy in the scenario
of small area converges faster than that in the scenario of large area because the sampled
data in the small area is less variant.

Figure 17a,b shows the impact of the number of labelled samples to training time
in the scenarios of large area and small area, respectively. As the number of labelled
samples increases, the training time also increases because more input data cause more
training time in the deep learning architecture. The number of labelled samples has less
effect on the training time of the two SVM based schemes because the two SVM based
schemes are based on machine learning. Overall, the proposed localization scheme takes
more time in training but can achieve higher data accuracies as opposed to the two
SVM-based schemes.

(a) (b)

Figure 16. (a) The training time (LL,LS) vs. location accuracy; (b) the training time (SS) vs. location accuracy.
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Figure 17. (a) The training time (LL,LS) vs. number of labelled samples; (b) the training time (SS) vs. number of labelled samples.

6. Conclusions

A novel grid segmentation localization scheme using a semi-supervised transfer
learning for LoRaWANs is proposed in this paper. The proposed scheme uses three signal
features, RSSI, SNR, and timestamps, for training and learns grid segmentation knowledge
from the source domain and transfer the knowledge to the target domain. A number of
virtual labelled samples are generated by figuring out the relationship of labelled and
unlabelled samples. With the labelled-unlabelled samples relationship, the target model is
repeatedly fine-tuned by adding more new virtual labelled samples. The proposed scheme
is implemented on the campus of National Taipei University. Experiment results show
that the proposed scheme can decrease the localization errors and improve the location
accuracies in an outdoor environment for LoRaWANs. The proposed localization scheme
using semi-supervised transfer learning with grid segmentation can also be implemented
in other wireless networks based on other deep learning architectures (e.g., WiFi networks
on the autoencoder architecture).
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