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Abstract: In recent years, remote sensing images has become one of the most popular directions in
image processing. A small feature gap exists between satellite and natural images. Therefore, deep
learning algorithms could be applied to recognize remote sensing images. We propose an improved
Mask R-CNN model, called SCMask R-CNN, to enhance the detection effect in the high-resolution
remote sensing images which contain the dense targets and complex background. Our model can
perform object recognition and segmentation in parallel. This model uses a modified SC-conv based
on the ResNet101 backbone network to obtain more discriminative feature information and adds
a set of dilated convolutions with a specific size to improve the instance segmentation effect. We
construct WFA-1400 based on the DOTA dataset because of the shortage of remote sensing mask
datasets. We compare the improved algorithm with other state-of-the-art algorithms. The object
detection APsy and AP increased by 1-2% and 1%, respectively, objectively proving the effectiveness
and the feasibility of the improved model.
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1. Introduction

With the development of the remote sensing technology, researchers can obtain higher-
resolution remote sensing images, showing broad application prospects in civil and military
applications [1-4]. However, object detection and segmentation in high-resolution remote
sensing images have always been a puzzle because of the large field-of-view of remote
sensing images and dense targets.

The complex background of remote sensing images and dense targets bring great
challenges to object recognition and segmentation. Traditional object detection algorithms
have disadvantages, such as weak generalization ability and poor rotation invariance. The
rapid development of deep learning (DL) provides a superior solution to this problem. A
convolution neural network (CNN) has excellent effects in object detection, image gener-
ation, semantic segmentation, and super-resolution image reconstruction. As one of the
most important directions of DL, object detection principally solves basic vision problems,
such as classification and location of various targets in images. In the past 10 years, the
system of CNN is continuously improved and enriched because scholars proposed many
classical models and structures, such as region-based CNN(R-CNN), Fast R-CNN, SPP,
FPN, FCN, and YOLO [5-13]. Some of these methods have been used by later scholars.
In 2015, Girshick proposed Fast R-CNN. In the same year, Ren et al. proposed Faster
R-CNN [12], which proposes a region generation network (RPN) to replace the previous
selective search algorithm, greatly reducing the cost of candidate region generation. In
2016, Liu et al. proposed SSD, which achieves a good real-time performance without losing
more accuracy [14]. The detection effect of the CNN model applied to a remote sensing
image aircraft target has been found to be better than traditional methods [15-18]. Other
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types of remote sensing object detection techniques based on the CNN model have also
achieved good results [19-21]. Yuan et al. [18] and Wu et al. [22] achieved a rapid detec-
tion of aircraft targets based on YOLOv3 and YOLOv3-tiny, respectively. Wang et al. [14]
proposed a method of replacing the original VGG-16 with densely connected networks
as a backbone network and built a feature pyramid between densely connected modules
to replace the original multi-scale feature maps based on the SSD detection framework.
These also confirm the superiority of deep learning compared to traditional machine
learning methods.

In 2017, He et al. proposed Mask R-CNN [23]. The model is based on Faster R-CNN. In
addition, the depth of networks has a great influence on the final effect for a deep learning
network. The ResNet101 is a deep backbone network which can represent more complex
functions and learn features from different network levels from edges (lower layers) to
very complex features (deeper layers). Mask R-CNN chooses ResNet101 as its backbone
network. For the original classification and bounding-box regression branches, a mask
branch, which can simultaneously achieve object detection and instance segmentation,
is added. Zhang et al. [24] proposed a ship identification method based on scene-mask
R-CNN to suppress false alarms that appear in the non-target scene area. Zhao et al. [15]
proposed an end-to-end aircraft detection frame based on Mask R-CNN to increase the
detection performance for the small and dense distributed targets. Su et al. [20] proposed
the precise Mask R-CNN based on Mask R-CNN and precise Rol to improve the accuracy of
object detection and instance segmentation for very high-resolution (VHR) remote sensing
images. Chen et al. [25] proposed a method to calculate the drone building areas based
on Mask R-CNN and adopt the concept of transfer learning. Nie et al. [26] proposed a
method to achieve inshore ship detection based on Mask R-CNN to ignore the complicated
hand-crafted feature. Stiller et al. [27] deployed Mask R-CNN and used a pre-trained
model which had been trained with remote sensing imagery to extract large-scale building
from VHR airborne RGB images. The above methods are suitable for relatively sparse
object in monotonous background. For the various backgrounds and dense object, it is
hard to sustain the detection results.

In the present study, we use Mask R-CNN as the framework and propose an improved
network model, called SCMask R-CNN, by adding improved self-calibrated convolution
(SC-conv) and dilated convolution. We deploy the improved SC-conv to obtain abundant
feature which is beneficial to detect and segment dense object under the complex back-
grounds. Dilated convolution is helpful to segment the aircraft object in remote sensing
images. We test our model on the WFA-1400 dataset. Consequently, the performance is
considerably improved, proving that the improved model can be effectively applied to
aircraft object detection and segmentation.

The contributions of our study are as follows: according to the characteristics of
aircraft targets in remote sensing images, we add a modified SC-conv to FPN structure
to extract richer feature information [7] and a dilated convolution to the mask branch to
increase the semantic information of ROIs. The above-mentioned strategies improve the
accuracy of Mask R-CNN recognition and segmentation of aircraft targets. In addition, we
build WFA-1400 remote sensing aircraft mask dataset as the experiment resource.

2. Related Work

We divided the prior work on aircraft detection in remote sensing images into the two
main categories of traditional and deep learning methods.

2.1. Traditional Methods

Previously, researchers often used methods based on traditional machine learning
to solve aircraft object detection in remote sensing images. Traditional machine learning
algorithms are roughly divided into four steps: region extraction; feature extraction; feature
processing; and classification.
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The sliding window method is commonly used in region extraction using sliding
windows with different sizes and aspect ratios to slide across the entire image. For the
region feature extraction, some specific optimization algorithms have also been proposed.
Liu et al. proposed a feature extraction method combining sparse coding and radial
gradient transform, in the case of aircraft rotation in the image causing poor detection
results [28]. Feature processing principally includes two methods: feature fusion and
feature dimension reduction. The methods commonly used in remote sensing image
object detection are principal component analysis, Fisher discriminant analysis, and linear
discriminant analysis. Finally, the support vector machine, AdaBoost, and conditional
random field methods are commonly used in the classification step. However, traditional
machine learning methods have the following shortcomings: feature design is highly
dependent on professional knowledge; designing suitable, efficient, and robust features is
difficult; parameter adjustment is difficult; and the model is relatively solid [28].

2.2. Deep Learning Methods

Many remote sensing aircraft detection methods based on neural networks have been
proposed because of their strong feature abstraction ability and high accuracy [22,29-33].
Although these algorithms also can be divided into four steps as the traditional methods,
all steps are contained in the neural network as an entirety and not divided to many
modules. So, the neural network algorithms relieve the laborious hand-crafted feature and
data annotations.

In the case of object detection and segmentation, networks can be divided into single-
and two-stage models according to the generation stage of the candidate region. The
most prominent advantage of the single-stage model is the extremely fast detection speed,
while that of the two-stage model is its higher detection accuracy [8,12]. Mask R-CNN
can simultaneously perform an end-to-end deep learning model for object detection and
instance segmentation. It is an end-to-end deep learning model that means the additional
data annotation is needless. In addition, it is equipped with ROI Align instead of ROI
Pooling [23]. We select Mask R-CNN as fundamental framework, which is a classical
multi-task two-stage neural network.

The author of Mask R-CNN creatively combined Faster R-CNN and FCN [13], which
are applied to object detection and semantic segmentation, respectively, by adding a mask
branch. The model design structure is pellucid and ingenious. Mask R-CNN can achieve
the combination between object detection and segmentation. Instance segmentation refers
to the pixel-level classification task. Some pixels contained in the bounding box belong to
the background, the rest belonged to the foreground. Semantic segmentation is to judge if
a pixel in a scene belongs to a certain class, whereas instance segmentation can be regarded
as an extension of semantic segmentation, which further distinguishes each individual
object in a scene.

The structure of Mask R-CNN can roughly be described as follows: an image is first
passed through the RestNet101 backbone network, and feature maps {Cy, C3, Cy, C5} with
different resolutions are then extracted at different stages to form a “feature map pyramid.”
According to the bottom-to-up order, {C,, C3, C4, C5} contains high- to low-level feature
information. {P,, P3, Py, Ps, Ps } is obtained through the FPN structure which can get multi-
scale feature fusion to increase model’s scale robustness. Based on the generated anchors
through RPN, the model performs binary classification (foreground and background) and
regression to filter out some proposals. Then, they pass ROI Align to change the ROI into
fixed-size 7 x 7 or 14 x 14 px. Finally, the model input ROl into the fully connected layer
and FCN for classification, regression, and segmentation.

3. Method

In this section, we present the overall structure of the network model proposed in
Figure 1. The model feeds an input image to the ResNet101 backbone network layer-
by-layer to extract the feature maps {Cy, C3,C4, Cs}, through the FPN structure to fuse
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multi-scale information to obtain {P,, P5, Py, P5 }, and obtains self-calibrated feature maps
{M3, M3, My, M5} through the SC-conv structure. Finally, the backend of the model per-
forms classification, bounding-box regression, and instance segmentation according to the
obtained feature maps. In our model, each bounding box is segmented into aircraft and no
aircraft regions (Figure 2).
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Figure 1. Overall SCMask R-CNN model structure.

Figure 2. Detection and segmentation performance display in our proposed method.

The features are extracted by the traditional CNN to feed the classification, bounding-
box regression, and mask branch at the backend model. It is difficult to extract rich features,
due to the small aircraft targets in remote sensing images. This will result in an inaccurate
judgment. The deeper the networks grow, the more complex functions the networks can
express. Features can be learned from many different levels of abstraction, from the edge (in
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a lower level) to very complex features (in a deeper level). However, blindly increasing the
number of layers of the network will not only impose higher experiment requirements on
the hardware conditions, but also the phenomenon of gradient disappearance will become
more severe. The training loss will increase instead of reducing, leading to the degradation
of the model [34]. Our strategy avoids the method of changing the network structure with
a huge resource overhead and turns its attention to the convolution operation. In view of
the characteristics of the aircraft targets in remote sensing images, the improved SC-conv
is used to self-calibrate the feature information to supplement the missing targets” edge
information in the feature map which is obtained by the ordinary 3 x 3-sized convolution
kernel. In addition, we added three dilated convolution layers to the mask branch of
Mask R-CNN to further supplement the missing semantic information in each ROI for the
instance segmentation.

3.1. Improved SC-conv

In a normal CNN model, the 3 x 3-sized convolution kernel is commonly used
to integrate feature information [34]. SC-conv is different from the convolution with
3 x 3 kernel size [35]. Before convolution, the feature map X with a H x C x W shape
must be evenly cropped into two branches according to the number of channels. We refer
to them as X; and X, respectively, with the C/2 shape. Figure 3 depicts four sets of
convolution kernels in SC-conv denoted as {Ki}?zl. The SC-conv structure can flexibly
control the manner of feature extraction in space by cropping the feature map and setting
the convolution kernel size. The X, branch like the 3 x 3-szied convolution kernel with
the same resolution as the input is used to extract the original spatial context information,
called Y. Y; is obtained after self-calibration through the X; branch. At the end of the
SC-conv structure, Y; and Y, are concatenated together to obtain a feature map with more
discriminative feature information.
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Figure 3. The improved SC-conv structure.

The 3 x 3 kernel size can obtain only limited spatial information due to the limitation
of the convolution kernel size, thereby ignoring the information in the larger field of view.
This information loss will not have a significant effect in the recognition of natural images,
but it appears to be very important in the recognition of small targets in remote sensing
images. A small aircraft target may only occupy 32 x 32 px in a remote sensing image,
which measures approximately 4000 x 4000 px. Thus, a large loss of learnable features will
be observed for networks. We assigned more channels of feature maps to the X; branch to
weaken this problem (Figure 3). Increasing the number of channels in X; will extract richer
semantic information to supplement the missing target edge information in Y, enhance the
target features in Y7, and obtain a more discriminative feature map between the foreground
and the background. For {P,, P5, P4, P5}, the network will gradually lose low-level feature
information (e.g., outline and texture) as the number of layers increases, which is critical
for semantic segmentation. Therefore, the self-calibration intensity must be increased to
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accurately locate the aircraft targets without losing basic spatial context information. We

denote the channel ratio between X; and X as ¢, ¢ = 0.8, corresponding to {P,, P3, Py, P5 }.

For the X; branch, we first go through an average pooling operation with a size of

r X r and a stride of r to obtain the spatial information T; of a larger field of view, as shown
in (1):

T, = AvgPooling,(X1) 1)

Second, T; passes through K, convolution and up-sampling in sequence then performs
element-wise summation with X; before passing through the sigmoid function. This output
performs element-wise multiplication with T, obtained by K3 convolution with X;, as
shown in (2):

Y] = (Xq xK3)eo(Xq + Up(Th % Kz)) )

where, * and ¢ represent convolution and sigmoid function, respectively. Third, Y7 is
obtained by convolution K4, as shown in (3):

Yl = Y{ * K4 (3)

We use the improved SC-conv to extend the 3 x 3 kernel size to two spatial scales: the
first is the X, branch with the same resolution as the input X just like a 3 x 3 kernel size;
the second is the small size T; after average pooling.

In the X; branch, self-calibration does not pay attention to global information because
it inevitably contains information with a negative impact on the current spatial position.
On the contrary, the self-calibration focuses on the information around the current spatial
position through adjustable scale average pooling. It can obtain a larger field of view
to effectively capture the informative context information, fill in the missing low-level
feature information, and enhance high-level semantic information for each spatial position.
Furthermore, each spatial position can reflect the dependence between channels in a greater
extent, as shown in Equation (2).

The improved SC-conv specifically increases the self-calibration convolution intensity
in high-level feature maps to strengthen the connection between contexts. In this way, each
spatial location contains more informative information and enhances the acquisition of
low-level feature information (e.g., clearer texture) in the feature maps.

3.2. Dilated Convolution

In the original Mask R-CNN, for the mask branch, the ROIs go through four 3 x 3
convolution layers and then through a transposed convolution in sequence to obtain a
28 x 28 px mask image. Although transposed convolution is better than up-sampling,
which is commonly used, it also has a shortcoming of an enlarged image often showing a
chessboard effect and losing feature information. Not coincidentally, this deficiency will be
magnified in the segmentation for aircraft targets in high-resolution remote sensing images
because the loss of information has a huge impact on the segmentation for small aircraft
targets. In response to this problem, we added three-layer dilated convolution behind the
transposed convolution. Pooling will bring about information loss. In contrast, dilated
convolution can obtain a larger receptive field without changing the feature map size,
which effectively enriches the feature information. As its name suggests, the convolution
kernel has holes, and the dilated rate is an important hyper-parameter that distinguishes
dilated convolution from normal convolution operation.

The traditional convolution operation 3 x 3 corresponds to a 3 x 3 receptive field,
which is not different from dilated convolution with a dilated rate of 1. A dilated rate set to
2 means inserting one zero between two consecutive convolution kernel values along each
spatial dimension, which increases the original 3 x 3 receptive field to 7 x 7, making the
pixels of the next layer contain a larger field-of-view information. The added three-layer
dilated convolution has different hole rates. Figure 4 illustrates the relationship of the
receptive field size §', dilated rate R, and kernel size S as S’ = (S + 1) x R — 1. The dilated
rate increased as the number of layers increased. We set 1, 2, and 5 to correspond to 3 x 3,
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7 x 7,and 19 x 19 receptive fields, respectively, to obtain multi-scale information, reduce
the feature loss as much as possible, and achieve a more accurate segmentation for the
aircraft targets.
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Figure 4. Detailed illustration of the dilated convolution.

4. Experiment
4.1. Dataset

Unlike that for natural images, the amount of remote sensing image dataset is relatively
small. We created the WFA-1400 remote sensing mask dataset based on the dataset for
object detection in aerial images (DOTA) [36] to enable the network to learn more abundant
aircraft features. DOTA contains 15 categories (e.g., aircraft, ship, car, and stadium), in
which each image is approximately 4000 x 4000 px. Aircraft targets involve a wide variety
of types, scenes, scales, and orientations. We selected out all the images containing the
aircraft targets in the DOTA dataset and cropped them to 768 x 768 px with an overlap
of 64 px (i.e., 1/12) due to the limitation of the GPU memory. We selected the overlap
for two reasons. First, it can expand our dataset. Second, it can alleviate the boundary
effects at the edges of the input images. The specific implementation in a cropping is as
follows: first, we selected 896 x 896 (i.e., 896 = 768 + 64 + 64) px as a big cropping box in
an image from the DOTA dataset; second, in this big cropping box, we regarded the central
704 x 704 px as a standard; and finally, we randomly obtained two cropped 768 x 768 px
images based on the big cropping box from +45° orientations. The background generally
occupies most of a remote sensing image. If we violently crop images in sequence, we
will inevitably obtain many low-quality images (e.g., high background proportion and
broken objects). We rotated the cropped image at angles of 90°, 180°, and 270° to expand
the dataset capacity. In addition, inspired by Ref. [37], we combined translation, shear,
rotation, contrast enhancement, and equalization to further enhance the dataset.

As shown in Figure 5, we used LabelMe 3.16.2 to mark the image with the mask
information and generate the corresponding “.json” files. Our dataset contained various
types of airliner, warcraft, and glider. Some images had small and dense distributed aircraft
targets. Our dataset collects about 7000 aircraft targets (5 targets per image on average)
whose size varied from 32 x 32 to 500 x 500 px as show in Table 1. The WFA-1400 dataset
collected 1400 images, of which 1120 were used as the training set; 140 were used as the
validation set; and 140 were used as the testing set.

Table 1. Aircraft size distribution on WFA-1400.

Size/px 0-32 32-64 64-128 128-256 >256
training set 1216 2055 1837 530 43
validation set 125 132 244 137 10
testing set 136 305 135 88 15

WFA-1400 1477 2492 2216 755 68
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(2 i j (k) i)

Figure 5. WFA-1400 dataset display. The top row contains six images which are obtained from DOTA. The next column
contains corresponding mask image by LabelMe. It colors every aircraft target randomly. (a—f) Original Image; (g-1) Mask.

4.2. Implementation Details

We performed experiments under the Windows 10 operating system using a machine
equipped with NVIDIA GeForce GTX-1660Ti GPU (6 GB memory) as the hardware plat-
form. We used Keras as the DL framework for coding and experiments and performed a
configuration in the Python 3.6.4 and Keras 2.13.1 compiling environment. Furthermore,
we utilized the per-trained ResNet101 model for the initialization. The initial learning
rate of the model training was 0.001. The optimization method was stochastic gradient
descent (SGD). The momentum was 0.9. The epoch was 50 with 1120 steps per epoch.
Hence, the model will go through 56,000 steps. When the epoch reached 20, the learning
rate decreased to 10% of the initial learning rate. A smaller learning rate can make the
search step of the SGD smaller and avoid the loss function that tends to diverge. Most of
the aircraft targets in remote sensing images are relatively small; thus, we allocated five
sizes of anchors {162,322,642, 1282,2562} in the RPN structure. The aspect ratio of the
anchor was set to {1:2,1:1,2:1}. We performed all experiments and results under the
same training strategy and parameter settings.

4.3. Result and Analysis

We used ResNet101 as the backbone network to extract features and the standard
metrics to evaluate our results, including AP (average precision), AP5p, and mloU (mean
intersection over union), and ensure the result validity. They are wide-used and author-
itative indicator to judge a deep network model’s performance in object detection and
instance segmentation. APsq is the IoU threshold set from 0.50 to 0.95 with a step of 0.05.
Table 2 presents the experiment results.

Table 2. Detection and segmentation performance of different method.

Method AP/% APs5¢/% mloU/% Training Time/h
Mask R-CNN 50.2 94.4 72.3 50.2
Mask R-CNN+055C 499 95.6 71.7 525
Mask R-CNN+065C 50.5 95.9 72.1 52.8
Mask R-CNN+07SC 51.2 96.5 72.7 53
SCMask R-CNN 51.7 96.8 72.8 53.3
Mask R-CNN+09SC 514 96.8 72.7 54

The value of ¢ is set from 0.5 to 0.9 with a step of 0.1. We called the comparison model
with ¢ = 0.8 as Mask R-CNN+055C. When the value of ¢ increases between 0.5-0.9, the
result gradually rises. Compared with Mask R-CNN+075C, SCMask R-CNN has a slight
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improvement. The results of SCMask R-CNN are almost the same as Mask R-CNN+09SC,
which show that the result is saturated when ¢ = 0.9.

4.3.1. Mask R-CNN vs. SCMask R-CNN

We used the testing set to acquire the model performance. Table 2 presents the test
results. The AP, AP5(, and mloU of SCMask R-CNN reached 51.7, 96.8, and 72.8%, respec-
tively, which were 1.5, 2.4, and 0.5% higher than Mask R-CNN. The APsj improvement
was more significant. In Figure 6, we selected different scenes with different background
complexities (e.g., runway, desert, airport, and residential area) and different types of
aircrafts (e.g., glider, airliner, and warcraft). The colored boxes and masks represent the
results of the aircraft object detection and instance segmentation. In contrast, the white
boxes represent the missing detection of Mask R-CNN. In addition, the values of AP on
SCMask R-CNN are 84.4%, 88.7%, 96.2%, 98.6%, and 100%, respectively, according to the
increasing order of airplane size in Table 1. However, the values of AP on Mask R-CNN
are 78.5%, 85.9%, 95.7%, 97.0%, and 97.8%, respectively.

(a2)

o) ) ) 1)

2 b A= A
(b2) (c2) (d2) (€2)

Figure 6. Detection performance comparison. The top row results are based on our method and the bottom row results are
based on Mask R-CNN. (al-e1) SCMask R-CNN; (a2—e2) Mask R-CNN

The five sets of images in Figure 6 depict that both methods perform well on medium-
sized objects with obvious aircraft structure features (e.g., airfoil shape and engine). In
Figure 6¢1,c2, Mask R-CNN has a missing detection at the edge of the image. The learnable
pixel information is reduced when small objects are at the edge of the image. The weak
ability of the feature extraction network will cause missing detection. Therefore, the
improved SC-conv structure can obtain a more discriminative feature map by obtaining a
larger field-of-view feature information (Figure 6d1-e2).

In Figure 6al,a2, the detection results of Mask R-CNN show four missing detections
compared to SCMask R-CNN. The aircraft targets in the image were gliders, as shown in
Figure 6b1,b2. The glider was pulled up by other aircrafts when it took off. The distinction
between a glider and other types of aircraft is that it has no engine and has a smaller size.
In addition, its airfoil width is relatively narrow (i.e., nearly a rectangle). The airfoils of
the other types of aircraft are wide and can be approximated as a trapezoid or a triang]le.
The glider empennage and airfoil are relatively small, causing features to possibly be
lost in high-level semantic information. The small size and the simple structure of the
glider will blur its texture features and increase the background interference. Mask R-CNN
lost most of the aircraft structural features while extracting the features for these missing
detection objects. SCMask R-CNN added an improved SC-conv structure after the FPN
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to obtain the self-calibration feature map, which enhanced the underlying contour and
texture information and the high-level semantic information of the aircraft.

In Figure 6al,a2, SCMask R-CNN and Mask R-CNN missed an aircraft in the lower
left corner. Its shape is similar to other planes. However, the plane is on the corner and
above the truck, with complex ground patterns. These details increase the background
noise and suppress the Confidence which means that the network does not frame it. The
number of planes with such background details is infrequent, making the network sensitive
to this background noise.

In Figure 6d1,d2, Mask R-CNN missed an aircraft at the edge of the image. Half of the
aircraft was on a light background, while the other half was on a dark background in its
bounding box. The texture information was not obvious, causing the spatial and semantic
information in the feature pyramid to find it difficult to suppress the background noise.
This will consequently result to missing detection. In our method, self-calibration was
used for “feature enhancement” (i.e., enhanced the network stability in processing complex
backgrounds).

4.3.2. SCMask R-CNN vs. Mask R-CNN+055C

The SC-conv divided the number of channels of the input X in mean. Mask R-
CNN+05SC Table 2 shows that the AP, AP5;, and mloU of Mask R-CNN+05SC are 49.9, 95.6,
and 71.7%, respectively. Mask R-CNN+05SC showed a better object detection performance
over Mask R-CNN. According to [35], APs dropped from 18.3 to 17.8% when SC-conv
was used to segment small objects. SC-conv was harmful to the instance segmentation
for small objects. Table 2 illustrates a Mask R-CNN mloU that is 0.6% higher than that
of Mask R-CNN+05SC and 0.5% lower than SCMask R-CNN. The WFA-1400 testing set
had some small aircraft targets, leading to a poor instance segmentation performance in
the Mask R-CNN+055C model. A comparison of the results of Mask R-CNN+055C and
SCMask R-CNN showed that the improved SC-conv obtained more discriminative feature
maps than SC-conv for the aircraft targets in the remote sensing images. The improved
SC-conv had room to fill up the shortcomings of SC-conv in instance segmentation, was
slightly better than the Mask R-CNN results, and further improved the object detection
performance based on Mask R-CNN+055C. The improved SC-conv had a stronger feature
extraction capability for aircraft targets.

4.3.3. Loss and Training Time

Training our own model took an average of 3800 s and 3—4 s of each epoch and
iteration, respectively. When training the original Mask R-CNN model, training the model
of each epoch took 3600 s. The time it took for each iteration was almost the same as that of
the proposed model. The training time comparison between SCMask R-CNN and Mask
R-CNN illustrated that we controlled the increased time of training the model within an
acceptable range and obtained better detection results than the original model. Our model
reached a trade-off between time consumption and accuracy.

Mask R-CNN is a multi-task model. The loss value is composed of the classification
loss, bounding-box loss from the RPN structure, classification loss, bounding-box loss, and
mask loss from the backend of the model.

Figure 7 depicts the loss curves of the two models. The loss value was relatively large
in the first training step; thus, the normal graph cannot show the difference between the
training conditions of the two models. We zoomed in the part of 48,000-55,500 steps in the
graph marked by the green box. The enlarged part illustrates that our model can converge
better than the original model. The loss value eventually dropped to 0.141 and 0.154 for
our model and the original model, respectively. The proposed model showed a higher
convergence level for aircraft targets in remote sensing images.
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Figure 7. Loss curve. It describes the relationship between the loss and the number of iterations. The
training processes of Mask R-CNN and SCMask R-CNN corresponds to the red and the blue curve
respectively. We have enlarged the curve in the green box. At the end of training, the blue is lower
than the red curve overall, i.e., the loss in our method is smaller.

The experiment showed no satisfactory classification performance for warcraft (e.g.,
shaped like Chengdu J-20) in the methods (i.e., Mask R-CNN, Mask R-CNN+05SC, and
SCMask R-CNN). The reason for which was the lack of remote sensing warcraft samples
due to military restrictions. Combining the discussion in Section 3 and Figure 6, the
classification performance is strongly related to the aircraft structure. In addition, the
aircraft targets, from which Mask R-CNN and SCMask R-CNN detected errors (Figure 6),
had some of the following characteristics: the overlap among the aircraft targets was
large; the orientation was different; the pixel similarity between the aircraft targets and the
background was high; and the aircraft structure features (e.g., aircraft head and empennage)
were obscure.

5. Conclusions

As an important strategic resource and a mean of transportation, aircraft has a practical
value that cannot be ignored in the study of remote sensing images. This study proposed an
improved Mask R-CNN model for aircraft detection and segmentation in remote sensing
images. We built the WFA-1400 remote sensing aircraft mask dataset and incorporated
the modified SC-conv and the dilated convolution into the basic Mask R-CNN model
to further enrich high-level feature information and promote the aircraft target detection
performance. Our model successfully obtained an improvement of about 2% in the accuracy
compared to the basic network. We only paid an acceptable price in time and achieved
a significant improvement in aircraft target detection and instance segmentation. Our
study has practical significance for the research on remote sensing images. Note that we
only performed experiments on the WFA-1400 dataset due to the lack of mature and open
remote sensing aircraft mask datasets, which resulted in certain limitations.
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