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Abstract: Particle size is the most important index to reflect the crushing quality of ores, and the
accuracy of particle size statistics directly affects the subsequent operation of mines. Accurate ore
image segmentation is an important prerequisite to ensure the reliability of particle size statistics.
However, given the diversity of the size and shape of ores, the influence of dust and light, the
complex texture and shadows on the ore surface, and especially the adhesion between ores, it is
difficult to segment ore images accurately, and under-segmentation can be a serious problem. The
construction of a large, labeled dataset for complex and unclear conveyor belt ore images is also
difficult. In response to these challenges, we propose a novel, multi-task learning network based on
U-Net for ore image segmentation. To solve the problem of limited available training datasets and
to improve the feature extraction ability of the model, an improved encoder based on Resnet18 is
proposed. Different from the original U-Net, our model decoder includes a boundary subnetwork
for boundary detection and a mask subnetwork for mask segmentation, and information of the two
subnetworks is fused in a boundary mask fusion block (BMFB). The experimental results showed
that the pixel accuracy, Intersection over Union (IOU) for the ore mask (IOU_M), IOU for the ore
boundary (IOU_B), and error of the average statistical ore particle size (ASE) rate of our proposed
model on the testing dataset were 92.07%, 86.95%, 52.32%, and 20.38%, respectively. Compared to
the benchmark U-Net, the improvements were 0.65%, 1.01%, 5.78%, and 12.11% (down), respectively.

Keywords: ore image segmentation; U-Net; improved encoder; multi-task learning; boundary mask
fusion block

1. Introduction

The particle size of ores is an important index to judge the completion degree of ore
crushing. Statistical information regarding ore particle size can help determine whether
there are large or special-shaped ores that will cause accidents at the mine site, such as
blockage caused by large ores and scratches on the belt surface from special-shaped ores, to
provide sufficient information for the control of ore crushing and transportation. Accurate
ore image segmentation is the first step to obtaining reliable particle size information.

However, there are many obstacles to accurately segment ore images (e.g., the size
and shape diversity of ores, the influence of dust and light, complex texture and shadows
on the ore surface, and the adhesion between ores) as shown in Figure 1. Specifically, the
adhesion between ores will cause the ore boundary to blur or even disappear, leading to
under-segmentation.
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Figure 1. An example of ore images.

The traditional ore particle size detection methods, including artificial screening
and physical settlement, have strong adaptability and are widely used. However, they
consume enormous human resources, and the detection results are easily affected by
workers’ subjective factors. In recent years, automatic detection methods of ore particle
size based on traditional image processing have been proposed, and there have been
significant breakthroughs, including watershed and its improved methods [1–4], threshold
segmentation method [5,6], and segmentation method based on specific theory [7] are the
main measures. However, these methods rely on tedious parameter tuning processes to
obtain satisfactory results and are difficult to generalize to different scenarios.

Since AlexNet [8] won the championship of the ImageNet Large-Scale Visual Recogni-
tion Challenge [9] in 2012, deep learning based on convolutional neural networks (CNNs)
has made great breakthroughs in image classification, and even achieved a higher accuracy
rate than human-level performance [10]. Benefitting from the development of image classi-
fication based on CNNs, object detection and semantic segmentation in the downstream
field have also made significant progress. For example, the two-stage Faster R-CNN [11]
has become the benchmark of object detection.

As for semantic segmentation, the best segmentation results of different scenes are
from U-Net [12], PSP-Net [13], DeepLabv3+ [14], and their variants. In ore image segmen-
tation, CNN-based techniques have also shown great advantages over traditional image
processing methods [15]. Liu et al. [16] adopted U-Net to preliminarily segment ore images
and then use Res-Unet to optimize the segmentation masks. The results showed that their
two-step ore contour detection and segmentation optimization method obtained more
accurate results compared with the one-step segmentation model.

Their work is quite similar to [17], and the drawback of their model is that more
parameters are required, as the whole framework includes two separate models, and the
final segmentation cannot be achieved in an end-to-end way. Li et al. [18] introduced
their model based on U-Net, which was lighter through reducing the channel number and
alleviated common over-segmentation and under-segmentation problems of ore image
segmentation by optimizing the loss function and using the watershed algorithm. Their
idea was referenced by [19].

Based on the understanding that belt ores have different shapes and sizes, Xiao et al. [20]
used deformable convolution [21] to replace ordinary convolution, which greatly improved
the ore image segmentation accuracy. In [22], an improved encoder-decoder network based
on U-Net with a redesigned decoder and a flexible contour awareness loss was proposed
for multi-class ore image segmentation.

The experiment showed that their proposed scheme achieved the best performance
compared with counterparts (i.e., the Ternausnet in [23] and Attention U-Net in [24]).
Ma et al. [25] proposed a new belt ore image segmentation method based on CNN and
image processing technology. The results showed that a proper image preprocess was
crucial to obtain a satisfactory prediction.

Here, we adopted a multi-task learning framework based on U-Net. Our model is a
variant of [26–28]. Unlike the models based on fully convolutional networks (FCN) [29]
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in [26,27], we adopted U-Net as our benchmark due to its power in restoring boundary
information by the encoder-decoder symmetrical structure and skip-connection, which
met our need of accurate ore boundary segmentation.

In contrast to [28] in which feature maps from the boundary decoding path at each
layer were concatenated with those from the main decoding path to improve the quality of
cell segmentation, the information of our two decoding paths, the boundary subnetwork
and the mask subnetwork, was fused in a boundary mask fusion block. To alleviate the
effect of a limited training dataset and improve the feature extraction ability of our model,
the original encoder of U-Net was replaced by an improved encoder based on Resnet18 [30]
with pre-trained parameters from ImageNet.

Our main contributions are: (1) we are the first to apply a multi-task U-Net framework
for ore image segmentation. (2) We proposed a novel boundary-aware U-Net with a bound-
ary subnetwork for boundary detection and a mask subnetwork for mask segmentation,
and the information of two subnetworks was fused in a boundary mask fusion block. (3) An
improved encoder based on Resnet18 with pre-trained parameters from ImageNet was
utilized to alleviate the data availability limitation. (4) We demonstrate that the proposed
network improved the ore image segmentation accuracy.

The rest of this article is organized as follows: Section 2 introduces the acquisition
and preprocessing methods of the ore image dataset. Section 3 describes the network
structure of the boundary-aware U-Net. Section 4 presents the quantitative and qualitative
experimental results. Finally, our conclusions are drawn in Section 5.

2. Acquisition and Preprocessing Methods of Dataset

Deep learning is known to be data-driven. The more data, the better one’s prediction
results will be. Our ore images were derived from conveyor belt video data of Ansteel
Mining. After selecting representative ore images, the professional software Labelme was
used to annotate the raw images to obtain corresponding labels. The ore images had only
two categories: ore and background. We ignored many tiny ores instead of labeling ores in
images one by one.

After obtaining binary images of the ore image labels, OpenCV was used to delete ore
labels with pixels less than 2500, as segmenting tiny ores is not important, and labeling
them is a harder and more time-consuming work than labeling normal ones. As for the
CNN, the scale is one of the features that it can learn. Figure 2 shows two selected ore
images and their annotation results.

Figure 2. Examples of ore images and their annotations.

Data preprocessing is the first and possibly the most critical step for the whole seg-
mentation process, since proper preprocessing is of great benefit to the prediction results.
Three ore image preprocessing methods were adopted in this paper. Firstly, to reduce the
time of model training and prediction, we gray-scaled the ore images to reduce the data
amount of the input images by two thirds. Secondly, considering there was excess noise on
the ore surface, it was necessary to preprocess the images using fuzzy techniques [31].

We choose a bilateral filter to process the grayscale ore images for noise reduction and
ore boundary information preservation at the same time. Lastly, contrast-limited adaptive
histogram equalization (CLAHE) was used to enhance the contrast between the ore and
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background, as well as to make the boundary of ores more distinct. The raw image and its
preprocessed results are shown in Figure 3.

Figure 3. An example of raw image and its preprocessed results: (a) the raw image; (b) the gray scale
image; (c) the bilateral filtering result; and (d) the contrast-limited adaptive histogram equalization
(CLAHE) result.

3. Boundary-Aware U-Net

The overall structure of our network is shown in Figure 4, which consists of four parts:
the encoder, boundary subnetwork decoder, mask subnetwork decoder, and boundary
mask fusion block (BMFB). The encoder’s function is to extract abstract high-level semantic
information of the input images for subsequent pixel binary classification. Ores on the
conveyor belts are in a harsh environment, with the dust on the ore surface, the adhesion
between ores, and the large number of ores in an image all forming an obstacle to ore
manual annotation; therefore, it is difficult to obtain a large training dataset. Training with
a small dataset, however, tends to result in overfitting.

Figure 4. Network structure of the boundary-aware U-Net.

Experiments [22,23] showed that models based on transfer learning can speed up the
training process, suppress overfitting, and improve the accuracy of image segmentation.
After experiment comparisons, the improved encoder based on Resnet18 was adopted in
this paper. Different from the original Resnet18 in [30], we abandoned the first 7*7 con-
volution with stride 2 and the first max-pooling, so as not to down-sample four times by
conducting only one convolution operation.

On the other hand, after the fourth layer of Resnet18, we conducted a max-pooling
operation to down-sample the image resolution and added two convolution operations
for further processing the semantic information obtained based on transfer learning and
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keeping the same 16 times down-sample rate as the original U-Net. As our input images
were grayscale, a 3*3 convolution was performed before layer1 of Resnet18 to change the
channel of feature maps from 1 to 64, while keeping the same image resolution. The detailed
differences of the three encoders from our improved encoder, the original ResNet18 and
original U-Net are shown in Table 1.

Table 1. Network structure comparison between different encoders.

Layer Name
Output Size of the 3

Encoders
[n×n]

Our Improved
Encoder Original ResNet18 Original U-Net Encoder

Layer1_0 256/64/— 3 × 3, 64, stride 1 7 × 7, 64, stride 2
3 × 3 max pool, stride 2 -

Layer1 256/64/256
[

3× 3, 64
3× 3, 64

]
× 2

[
3× 3, 64
3× 3, 64

]
× 2

3 × 3, 64
3 × 3, 64

Layer2 128/32/128
[

3× 3, 128
3× 3, 128

]
× 2

[
3× 3, 128
3× 3, 128

]
× 2

2 × 2 max pool, stride 2
3 × 3, 128
3 × 3, 128

Layer3 64/16/64
[

3× 3, 256
3× 3, 256

]
× 2

[
3× 3, 256
3× 3, 256

]
× 2

2 × 2 max pool, stride 2
3 × 3, 256
3 × 3, 256

Layer4 32/8/32
[

3× 3, 512
3× 3, 512

]
× 2

[
3× 3, 512
3× 3, 512

]
× 2

2 × 2 max pool, stride 2
3 × 3, 512
3 × 3, 512

Layer5 16/—/16
2 × 2 max pool, stride 2

3 × 3, 1024
3 × 3, 1024

fc layer
2 × 2 max pool, stride 2

3 × 3, 1024
3 × 3, 1024

The bracket represents the Residual Block in [30]. Layer1_0 represents the first op-
eration before layer1. The input size is 256 * 256, and the output size of each layer is
shown in the second column. From left to right, the size results are from the three encoders,
respectively. In addition, the three dashes mean no operation or no result. For expressions
in the form of “a × a, b”, a represents the number of kernel size and b is the number of
convolution kernel filters.

In contrast with the decoder of the original U-Net, our decoding path was divided into
the boundary subnetwork, mask subnetwork, and boundary mask fusion block (BMFB).
The boundary subnetwork was used to preliminarily detect the boundaries in ore images.
The mask subnetwork was used to preliminarily predict the mask, and the last 64 feature
maps of both subnetworks were sent to BMFB for feature fusion and the final mask prediction.
Each subnetwork before BMFB was identical to the decoder of the original U-Net.

The boundary labels were obtained from mask labels by using the Canny edge detec-
tion algorithm in OpenCV. The simplified overall network architecture and the detailed
BMFB are shown in Figure 5. Our decoder is different from [26], as their decoder was
simply divided into two subnetworks without combining their information. Our decoder
is also different from [27], whose idea was to use boundary information from the boundary
subnetwork to help the BMFB obtain a more accurate mask segmentation.
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Figure 5. Simplified network structure and the detailed boundary mask fusion block (BMFB).

Although they integrate feature maps of two subnetworks, only the mask was pre-
dicted in their BMFB, meaning that information from the mask subnetwork was not helpful
in boundary prediction. Inspired by [32,33], we considered that boundary information is as
important as mask information. Thus, in our BMFB, we had two subnetworks for predicting
the boundary and mask, respectively. Only the final mask out2 was used for testing.

Our loss function comprises four parts, including boundary subnetwork Loss1, mask
subnetwork Loss2, boundary Loss3, and mask Loss4 of BMFB. Loss1 is the same as Loss3,
whose labels are the ore boundaries. Loss2 is identical to Loss4, whose labels are the ore
masks. The reason for using Loss1 and Loss2 is to let the two subnetworks know what
their goals are before BMFB. Since the label of each loss function has only two categories,
ore (ore boundary) or background, a binary cross entropy was adopted for all of them. The
loss function is expressed as follows:

BCE = − 1
n

n

∑
i=1

(yi × log pi + (1− yi)× log(1− pi)) (1)

where yi is the true label of each pixel, with 1 for foreground or 0 for background, while pi
is the predicted probability of the pixel belonging to the foreground.

The pixel accuracy (Acc), F1 score, Intersection over Union for the ore mask (IOU_M),
precision, recall, under-segmentation, over-segmentation, and Intersection over Union for
the ore boundary (IOU_B) were chosen as our basic performance metrics on the testing
dataset. Their formulas are as follows:

Acc =
TP + TN

TP + TN + FP + FN
(2)

F1 =
2× precison× recall

precision + recall
(3)

IOU_M =
TP

TP + FP + FN
(4)

precison =
TP

TP + FP
(5)

recall =
TP

TP + FN
(6)

under_seg =
FP

TN + FP
(7)
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over_seg =
FN

TP + FN
(8)

IOU_B =
TP

TP + FP + FN
(9)

where TP represents the number of pixels with both predicted value and label value 1, TN
represents the number of pixels with both predicted value and label value 0, FP represents
the number of pixels with predicted value of 1 and label value of 0, and FN represents the
number of pixels with predicted value of 0 and label value of 1. The difference between
IOU_M and IOU_B is that the foreground of the former one is the ore mask, while the
foreground of the latter one is the ore boundary. The predicted ore boundary used for
calculating IOU_B is not the boundary out2 in Figure 5 but the result obtained from the
mask out2 using the Canny edge detection algorithm in OpenCV.

Inferencing [18], we adopt the error of the average statistical ore particle size (ASE)
as the final performance metric. After obtaining the segmented ore image, we traverse
the closed region in the image to obtain the area. Using the obtained region area S—the
number of pixels belonging to a closed region in the segmented image—we can calculate
the particle size D by Equation (10):

D = 2×
√

S
π

(10)

After finding the particle size, it is necessary to define the statistical interval. We
use one pixel to represent 1 cm. Since the particle size D of a piece of ore is typically less
than 160 cm, setting a statistical interval every 20 cm between 0 and 160 cm can meet the
statistical tasks’ needs. Finally, the total amount of ores must be counted as a statistical
interval as well.

Since the ultimate goal of ore particle size statistics is to count the cumulative size dis-
tribution, we calculated the average of all the test results, and the results of the annotation
label images were used as a reference. In each interval, we count the absolute value of the
difference between the statistical ore quantity of the predicted results and the actual labels
and divided it by the latter. The ASE was obtained by calculating the mean of each interval.
The formula of ASE is as follows:

ASE =
1

M×m

m

∑
i=1

M

∑
j=1

∣∣∣N j
pre − N j

label

∣∣∣
N j

label

(11)

where m is the number of the testing dataset and M is the total number of statistics intervals,
10 and 9 in this paper, respectively. Npre and Nlabel are the numbers of ores that belong to
interval j in the predicted images and the true labels, respectively.

4. Experiment Results
4.1. Dataset and Preprocessing

There were 86 ore images in our experiment, 76 of which were randomly selected as
the training dataset, and the rest were chosen as the testing dataset. Offline, we flipped the
training dataset images horizontally to amplify the numbers to 152. The original image
resolution was 980 * 980, and we resized both the training dataset and testing dataset to
256 * 256.

Online, we normalized the training dataset making the mean value of the input
images 0 and the standard deviation 1. In addition, in every training epoch, we used
RandomResizedCrop in PyTorch to augment the training dataset. The interval of scaling
and aspect ratio were both 0.8–1.2, and the resized size was 256 to increase the multi-
scale information of the input ore images. For the testing dataset, only the normalization
operation was conducted.
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4.2. Experiment Details

The experiment was carried out on a Windows10 operation system. The programming
language was python3.6, and the deep learning framework was PyTorch. The graphics
cards were two Nvidia GeForce GTX 1080 with 8G memory, and the CUDA version was 10.2.
Except for the pre-trained parameters from ImageNet, other parameters were initialized
by the Kaiming initialization method [10]. The optimizer selected was Adam [34]. The
learning rate was set to 0.0001. The number of training epochs was 300. The model with
the highest pixel accuracy on the training dataset was saved for prediction, and a random
seed was fixed for fair experiment comparisons and reproduction.

4.3. Result Analysis

At first, comparison experiments were conducted to verify the effectiveness of our
designed multi-task double subnetworks decoder with BMFB (dd for short) and the im-
proved encoder based on ResNet18 (res18 for short). The original U-Net was used as the
benchmark. “+dd” and “+res18” indicate that the model’s decoder is our redesigned dd
and the encoder is our improved res18, respectively.

The “+res18” also indicates that we only adopted the network structure whose initial
parameters were all from the Kaiming initialization method. In contrast “+param” indicates
that the pre-trained parameters from ImageNet were used for the layers 1 to 4 of the encoder.
The quantitative performance on the testing dataset is shown in Table 2.

Table 2. Comparison among different U-Net based models. Pixel accuracy (Acc), F1 score, Intersection over Union for the
ore mask (IOU_M), precision, recall, under-segmentation, over-segmentation, Intersection over Union for the ore boundary
(IOU_B), and error of the average statistical ore particle size (ASE). The bold number means the best result.

Acc F1 IOU_M Precision Recall Under_seg Over_seg IOU_B ASE

U-Net 91.41 92.42 85.94 92.91 92.04 9.00 7.96 46.54 32.49
U-Net+res18 91.46 92.48 86.04 92.91 92.16 9.19 7.80 47.54 30.33

U-Net+res18+param 91.81 92.88 86.74 91.94 93.90 10.84 6.09 49.44 30.43
U-Net+dd 91.67 92.63 86.33 93.55 91.83 8.23 8.16 48.86 22.13

U-Net+res18+dd 91.76 92.75 86.52 93.59 92.03 8.32 7.96 50.36 23.93
U-Net+res18+param+dd 92.07 93.00 86.95 93.46 92.64 8.50 7.36 52.32 20.38

The pixel accuracy, IOU_M, IOU_B, and ASE of different models, which are the most
representative and important performance metrics, were selected to draw Figure 6. From
the abscissa of Figure 6, as the model encoder was replaced by res18, the pixel accuracy,
IOU_M, and IOU_B were all improved. With the adoption of pre-trained parameters from
ImageNet, the three performance metrics were further improved.

The ASE of the three models without dd decreased firstly and then maintained a
steady-state, while the ASE of the three models with dd increased slightly and then
decreased to the bottom. On the other hand, compared with models with the decoder of
the original U-Net, the pixel accuracy, IOU_M, IOU_B of models with dd were improved,
and the ASE rate was decreased by a wide margin. For example, the ASE of U-Net+dd
was 22.13%, which was 10.36% lower than that of U-Net, proving the advantage of the
proposed dd designation with BMFB in segmenting adhesive ores.
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Figure 6. Comparison among different U-Net based models.

The prediction results of U-Net and U-Net+dd are shown in Figure 7, where green
boxes represent better predictions. U-Net+dd was more conducive to segmentation of
adhesive ores. The U-Net+res18+param+dd model had another 3.46% higher IOU_B and a
1.75% lower ASE rate compared with that of U-Net+dd, while exhibiting the highest pixel
accuracy rate and IOU_M; therefore, it was chosen as our final model. The pixel accuracy
rate of our model was 92.07%, the IOU_M was 86.95%, the IOU_B was 52.36%, and the
ASE rate was 20.38% on the testing dataset.

Figure 7. Predictions of U-Net and U-Net+dd: (a) the raw image; (b) the ground truth; (c) the U-Net result; and (d) the
U-Net+dd result.

Compared to the benchmark U-Net, the improvements were 0.65%, 1.01%, 5.78%, and
12.11% (down), respectively. In fact, our model performed better in segmenting adhesive
ores since it can recognize ore boundary pixels more accurately. However, ore boundary
pixels occupy a tiny proportion in the whole image compared with ore mask pixels, and
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thus only a 1.01% improvement in IOU_M was observed. On the other hand, the IOU_M
of the baseline model U-Net was quite high, which made improving it difficult.

Even our improved encoder res18 based on transfer learning only achieved 0.8% im-
provement, and our designed dd decoder had an improvement of 0.49% when adopted
independently. The improvements from our solo res18+param and solo dd to IOU_B were
2.9% and 2.32%, respectively, and the improvement reached 5.78% when combining them.
Once the ore boundary can be detected more accurately, the problem of under-segmentation
can be alleviated, which was reflected in the reduction of the ASE from 32.49% of U-Net to
20.38% of U-Net+res18+param+dd.

In the design of the encoder, we conducted comparison experiments of different
encoders (i.e., original U-Net, VGG16 [35], Resnet18 [30], our res18, and the improved
encoder based on Resnet34 (res34)). The difference between res18 and res34 was the same
as that in [30], the repeated times of the Residual block in res18 at each layer were [2,2,2,2],
compared to [3,3,4,6] in res34. The reason why no improved encoder based on Resnet50
was designed is that its channel number of the last feature map at each layer is three-times
larger than that of Resnet34 or Resnet18.

If we keep each Resnet50′s decoder symmetric with the encoder, the parameters of
the whole model will be extremely large. The models with encoders from the original
VGG16 and Resnet18 are named U-Net+VGG16 [35] and U-Net+Res18 [30], respectively.
The models using our res18 encoder and res34 encoder are named U-Net+res18 (ours) and
U-Net+res34 (ours), respectively. All four models mentioned above were initialized with
pre-trained parameters from ImageNet and dd was adopted.

Since our input is grayscale images, a 3*3 convolution was performed at the first step
to convert the channel from 1 to the number that can be directly used in the pre-trained
model: 3 for U-Net+vgg16 [35] and U-Net+Res18 [30], and 64 for U-Net+res18 (ours) and
U-Net+res34 (ours). The quantitative experiment results on the testing dataset are shown
in Table 3.

Table 3. Comparison among different encoders. The bold number means the best result.

Acc F1 IOU_M Precision Recall Under_seg Over_seg IOU_B ASE

U-Net 91.41 92.42 85.94 92.91 92.04 9.00 7.96 46.54 32.49
U-Net+VGG16 [35] 91.41 92.20 85.56 95.58 89.14 5.40 10.86 48.78 17.21
U-Net+Res18 [30] 91.14 92.07 85.33 94.12 90.20 7.46 9.79 46.18 22.37

U-Net+dd 91.67 92.63 86.33 93.55 91.83 8.23 8.16 48.60 22.13
U-Net+res18 (ours) 92.07 93.00 86.95 93.46 92.64 8.50 7.36 52.32 20.38
U-Net+res34 (ours) 92.07 93.00 86.94 93.48 92.61 8.43 7.38 52.72 23.22

As can be seen from Table 3, compared with the original U-Net, the U-Net+VGG16 [35]
and U+Net+Res18 [30] with our dd, which were already proved to be effective, did not
improve in most performance metrics on the testing dataset, especially for the pixel ac-
curacy and IOU_M. The U-Net+VGG16 [35] achieved the best effect in the precision,
under-segmentation, IOU_B, and ASE.

However, its recall rate was also the lowest, resulting in no improvement in the
IOU_M, the most comprehensive and important performance metric. On the other hand,
both the U-Net+res18 (ours) and U-Net+res34 (ours) had good improvement over the
U-Net+dd, however, the U-Net+res34 (ours) had no noticeable performance improvement
over the U-Net+res18 (ours), even with worse performance in the ASE. Therefore, res18
was selected as our encoder for extracting features.

In the design of the decoder, we conducted comparison experiments of different de-
coders (i.e., the original U-Net, deep contour-aware networks U-Net (U-Net_DCAN [26])
(without BMFB), and U-Net+dd). All encoders of the three models were the same as the orig-
inal encoder of the U-Net. The difference of decoders between U-Net_DCAN [26] and U-
Net+dd is shown in Figure 8. From the prediction results in Table 4, the U-Net_DCAN [26]
had the worst prediction result on the testing dataset.
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Figure 8. Difference of decoders with/without a boundary mask fusion block (BMFB); (a) the decoder of U-Net_DCAN [26];
and (b) the decoder of U-Net+dd.

Table 4. Comparison of different models with/without a boundary mask fusion block (BMFB). The bold number means the
best result.

Acc F1 IOU_M Precision Recall Under_seg Over_seg IOU_B ASE

U-Net 91.41 92.42 85.94 92.91 92.04 9.00 7.96 46.54 32.49
U-Net_DCAN [26] 91.04 92.14 85.46 92.28 92.11 10.16 7.8 46.30 37.17

U-Net+dd 91.67 92.63 86.33 93.55 91.83 8.23 8.16 48.60 22.13

In contrast, the U-Net+dd had the best result, which indicates that information from
the boundary subnetwork and mask subnetwork must be fused. The above conclusion can
be drawn from the fact that even the performance of the original U-Net was better than
that of U-Net_DCAN [26], showing that independently adding another decoder without
BMFM is useless for mask prediction.

We performed comparison experiments between the model with BMFB from [27],
called Boundary-aware U-Net (U-Net+res18+BA [27]), in which only the mask subnetwork
was used, and the model with our designed BMFB with boundary and mask subnetworks,
named U-Net+res18+dd. In addition, the model U-Net+res18+dd+loss3_4, which is the
same as the U-Net+res18+dd except that Loss1 and Loss2 are omitted, was compared with
our model. The last model, U-Net+res18+dd+mask, is also the same as the U-Net+res18+dd
except that all four losses are from mask labels. The simplified schematic diagram of the
four models is shown in Figure 9. The “+res18” in this section also includes the pre-trained
parameters from the ImageNet. The quantitative experiment results on the testing dataset
are shown in Table 5.
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Figure 9. Simplified schematic diagram of the four models with different BMFBs: (a) the decoder of U-Net+res18+BA [27];
(b) the decoder of U-Net+res18 +dd; (c) the decoder of U-Net+res18+dd+loss3_4; and (d) the decoder of U-
Net+res18+dd+mask.

Table 5. Model comparisons of different boundary mask fusion blocks (BMFBs). The bold number means the best result.

Acc F1 IOU_M Precision Recall Under_seg Over_seg IOU_B ASE

U-Net 91.41 92.42 85.94 92.91 92.04 9.00 7.96 46.54 32.49
U-Net+res18+BA [27] 91.57 92.68 86.41 91.89 93.58 10.91 6.41 51.60 33.35

U-Net+res18+dd 92.07 93.00 86.95 93.46 92.64 8.50 7.36 52.72 20.38
U-Net+res18+dd+loss3_4 91.61 92.58 86.23 93.05 92.21 9.08 7.70 50.35 32.29
U-Net+res18+dd+mask 91.68 92.52 86.13 94.35 90.84 7.10 9.10 48.98 26.01

The conclusion that can be drawn from Table 5 is that U-Net+res18+dd had better
results than U-Net+res18+BA [27] in most performance metrics, proving the effectiveness
of our designed BMFB with boundary and mask subnetworks. Table 5 also shows that the
U-Net+res18+dd+loss3_4 had a relatively worse performance than U-Net+res18+dd, which
demonstrates that Loss1 and Loss2 before BMFB are necessary for letting each subnetwork
know what they need to learn.

By comparing the results of U-Net+res18+dd and U-Net+res18+dd+mask, the ef-
fectiveness of the boundary information was proved, showing that adding boundary
information was more conducive to ore image segmentation. All results of the four mod-
els were better than those of the original U-Net, demonstrating the effectiveness of our
designed res18 encoder and dd decoder.

Another interesting experiment was conducted to determine how to obtain the bound-
ary labels. In [26,27], boundary labels were derived by dilating the canny edge results
obtained from the ore mask labels. The boundary labels used in our previous experiments
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were canny edge labels. The U-Net+dd+canny means that boundary labels used were the
canny edge ones, while the U-Net+dd+dilate indicates that the boundary labels were the
ones obtained by dilating the canny edge labels in OpenCV.

The annotation ore mask label, canny boundary label, and dilated boundary label
are shown in Figure 10. Table 6 shows that the U-Net+dd_canny had better results in
most performance metrics than the U-Net+dd_dilate. On the other hand, even the U-
Net+dd_dilate had better results than the original U-Net, proving the effectiveness of our
designed dd decoder in this paper.

Figure 10. Mask label and two different boundary labels: (a) the mask label; (b) the canny boundary
label; and (c) the dilated boundary label.

Table 6. Comparison among different boundary labels. The bold number means the best result.

Acc F1 IOU_M Precision Recall Under_seg Over_seg IOU_B ASE

U-Net 91.41 92.42 85.94 92.91 92.04 9.00 7.96 46.54 32.49
U-Net+dd_canny 91.67 92.63 86.33 93.55 91.83 8.23 8.16 48.60 22.13
U-Net+dd_dilate 91.53 92.52 86.11 93.46 91.70 8.50 8.30 48.59 26.59

Finally, our proposed model with the res18 encoder and dd decoder, which was
initialized with the pre-trained parameters from ImageNet, was compared with the classic
U-Net, fully convolutional networks (FCN8), and pyramid scene parsing network (PSP).
The quantitative comparison results are shown in Table 7.

Table 7. Comparison among different models. The bold number means the best result.

Acc F1 IOU_M Precision Recall Under_seg Over_seg IOU_B ASE Inference Time

U-Net 91.41 92.42 85.94 92.91 92.04 9.00 7.96 46.54 32.49 44.65ms
FCN8 90.73 91.84 84.94 91.88 91.91 10.60 8.08 37.36 46.33 22.81ms
PSP 90.48 91.61 84.54 92.39 90.90 9.97 9.09 34.18 28.16 38.33ms
Ours 92.07 93.00 86.95 93.46 92.64 8.50 7.36 52.32 20.38 105.31ms

From Table 7, compared with U-Net, FCN8, and PSP, our proposed model achieved
the best results in all performance metrics except for the inference time for one image using
the single 1080Ti GPU. From the results of the U-Net, FCN8, and PSP, in particular with
the IOU_B, with a unique symmetrical decoder that restored the resolution step by step,
and a skip connection that connected the low-level position information and the high-level
semantic information, the U-Net had an inherent advantage over FCN8 and PSP in ore
segmentation, particularly regarding the boundary position.

With another decoding path for the boundary in our proposed model, whose infor-
mation was sent to BMFB for fusion, the segmentation performance for ore (especially
for the ore boundary) was further improved showing a 1.01% increase in IOU_M and a
5.78% increase in IOU_B over the original U-Net. As one of the best semantic segmentation
methods at present, the performance of PSP in ore image segmentation was not better
than that of FCN8, possibly because it paid more attention to global information due to
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its pyramid pooling module (PPM) and it ignored many small ores and ore boundary
information, which affected the recall rate and led to a relatively low accuracy and IOU.

The prediction results of the four models are shown in Figure 11. FCN8 exhibited the
worst performance. Compared with the U-Net, our proposed model was more conducive
to segmenting adhesive ores, and has higher recall and precision. Thanks to the PPM, the
PSP has a larger receptive field and can learn multi-scale information, which can alleviate
the phenomenon of texture and shadow on the surface of large ores being predicted as the
boundary and background. However, this comes with an inaccurate ore segmentation for
the boundary and low recall rate for small ores in the image.

Figure 11. Prediction of different models: (a) the raw images; (b) the ground truth; (c) the results of FCN8; (d) the results of
PSP; (e) the results of U-Net; and (f) the results of our model.

5. Conclusions

We proposed a novel multi-task semantic segmentation network based on U-Net for
the conveyor belt ore image segmentation. To solve the problem of small training data
and improve the feature extraction ability of the model, an improved encoder based on
Resnet18, called res18, was presented. Compared with the original U-Net, the decoder of
this model, named dd, included a boundary subnetwork for boundary detection and a
mask subnetwork for mask segmentation, and the information from two subnetworks was
fused in the BMFM.
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The experimental results showed that the pixel accuracy, IOU_M, IOU_B, and ASE
rate of our proposed model on the testing dataset were 92.07%, 86.95%, 52.32%, and
20.38%, respectively. Compared to U-Net, the improvements were 0.65%, 1.01%, 5.78%,
and 12.11% (down), respectively. Specifically, our proposed model with re-designed dd
was more conducive to segmenting adhesive ores, and this ability could be applied to
medical tissue cell images and metal material microscopic images.

The drawback of our model is that it requires more parameters as it adds another
decoder for boundary detection. To improve the performance of U-Net based models on
ore image segmentation without adding additional parameters, possible work could be
done regarding the loss function in the future, such as adding more weight to the ore
boundary pixel loss. On the other hand, labeling ore images for semantic segmentation is
highly time-consuming. To achieve the goal of detecting large ores and special-shaped ores,
the object detection techniques, whose annotation work is relatively easy, can be applied at
the mine site.
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