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Abstract: Impedance pneumography has been suggested as an ambulatory technique for the moni-
toring of respiratory diseases. However, its ambulatory nature makes the recordings more prone to
noise sources. It is important that such noisy segments are identified and removed, since they could
have a huge impact on the performance of data-driven decision support tools. In this study, we inves-
tigated the added value of machine learning algorithms to separate clean from noisy bio-impedance
signals. We compared three approaches: a heuristic algorithm, a feature-based classification model
(SVM) and a convolutional neural network (CNN). The dataset consists of 47 chronic obstructive
pulmonary disease patients who performed an inspiratory threshold loading protocol. During this
protocol, their respiration was recorded with a bio-impedance device and a spirometer, which served
as a gold standard. Four annotators scored the signals for the presence of artefacts, based on the
reference signal. We have shown that the accuracy of both machine learning approaches (SVM:
87.77 ± 2.64% and CNN: 87.20 ± 2.78%) is significantly higher, compared to the heuristic approach
(84.69 ± 2.32%). Moreover, no significant differences could be observed between the two machine
learning approaches. The feature-based and neural network model obtained a respective AUC of
92.77± 2.95% and 92.51± 1.74%. These findings show that a data-driven approach could be beneficial
for the task of artefact detection in respiratory thoracic bio-impedance signals.

Keywords: respiration; quality; signal analysis; machine learning; bio-impedance

1. Introduction

Chronic respiratory diseases (CRD) are among the leading causes of morbidity and
mortality worldwide. Among all types of CRDs, chronic obstructive pulmonary disease
(COPD) ranks the highest worldwide [1]. It is a type of obstructive lung disease charac-
terized by long-term breathing problems and poor airflow. The main symptoms include
intermittent coughing and shortness of breath. These symptoms may be mild at first,
but can become more constant up to a point where it becomes difficult to breathe.

The standard respiratory function test for case detection of COPD is spirometry [2].
This is a maximum breathing test, which is used to objectively determine the ventilatory
capacity of the lungs. It is highly reproducible, practical and safe, but requires trained per-
sonnel. The latter makes it impossible to be conducted outside of the clinical environment.
Additionally, since the subjects are asked to breathe through a mouthpiece or wear a face
mask, the normal breathing pattern of the subjects could be altered [3]. More comfortable
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methods, such as bio-impedance (BioZ), inductance plethysmography or electromyography
could solve this issue. These techniques are minimally- or non-invasive, but currently have
limited validation in clinical applications.

Impedance pneumography has been suggested as a convenient and comfortable
ambulatory technique for healthcare monitoring of respiratory diseases in normal and
restrictive breathing [4]. It is a non-invasive technique that measures changes in the
electrical impedance of a person’s thorax by injecting a high-frequency low-amplitude
sinusoidal current herein. The passage of current through the tissue results in a voltage
difference which can be measured. These impedance variations are mainly a result of gas
volume changes in relation to fluid volume displacement while breathing. The conductance
path is similarly affected by inspiration and expiration movements [5,6]. Compared to
spirometry, this technique does not interfere with the breathing pattern of the patient and
allows a longer analysis period. Several studies reported a strong linear relation with
respiratory volume when measured in the thorax [7]. Since it can be recorded with a
wearable device, it could be used for preventive screening and patient follow-up [8].

Despite the obvious advantages, BioZ also presents some disadvantages. For instance,
due to the ambulatory nature of the technique, the recordings are prone to different kinds
of noise sources. These result in the presence of artefacts which prevent extracting reliable
biomarkers or features. Some of these artefacts, such as baseline wander, are easy to
remove, but motion artefacts, for example, remain a challenge [9]. Since signal quality has
a huge impact on the performance of data-driven decision support tools, it is important
that segments of poor quality are identified and removed [10].

Previous studies have focused mainly on removing the cardiac component of BioZ
signals [7,11,12] or removing motion artefacts using adaptive filtering approaches [13,14].
However, very little research has been conducted to detect and remove segments that
are contaminated beyond repair. Some studies that did investigate this topic proposed
hand-crafted characteristic features and heuristics [15,16]. These algorithms have shown
promising results, but also present some shortcomings. For example, in [15], they solely
focused on motion artefacts and assumed the simultaneous recording of a single lead
accelerometer. However, in a lot of applications, the latter modality is not recorded which
limits the usability of this algorithm. In [16], a heuristic approach was proposed which was
based on the ECG artefact detection algorithm developed in [17]. In a recent paper, we have
shown that this approach could be improved by using a machine learning algorithm [18].
Therefore, we assumed that machine learning techniques could also provide an added
value for the separation of clean and noisy BioZ signals.

We compared three approaches: the heuristic approach of Charlton et al. [16] and
two machine learning approaches. The first machine learning approach is a feature-based
classification model. Here, characteristic features that represent quality aspects of the signal
are hand-crafted. These are then fed into a classification model, which separates them into
classes of different quality. The advantage of this approach is that the obtained results
are interpretable. However, the downside of this approach is that the performance of the
classifier is limited by the effectiveness of the features to capture relevant changes due to
noise and artefacts.

The second machine learning approach uses a convolutional neural network (CNN).
This technique learns characteristic features directly from the raw data and uses these to
classify the signals. The difficulty is to select an adequate network architecture so that the
model is able to learn accurate representations of the data.

To the best of our knowledge, this is the first study that uses a machine learning
approach for the classification of thoracic BioZ signals.

The outline of this study is as follows. In Section 2 the dataset and the proposed
methodologies are described. The results are shown in Section 3 and discussed in Section 4.
The conclusions are drawn in Section 5.
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2. Materials and Methods
2.1. Subjects

Forty-seven COPD patients were recruited at Ziekenhuis Oost-Limburg (Genk, Bel-
gium), during their consultation or rehabilitation session (Table 1). All patients provided
written consent before they participated in the study. The study followed the World Medical
Association’s Declaration of Helsinki on Ethical Principles for Medical Research Involving
Humans Subjects and was approved by the local institutional medical ethics committee
from Ziekenhuis Oost-Limburg (Reference number: 18/0047U).

Table 1. Demographics of the chronic obstructive pulmonary disease (COPD) patients. FEV1: forced
expiratory volume in one second. FVC: forced vital capacity. The data are presented as mean ±
standard deviation.

Age (years) 64.6 ± 6.5
BMI (kg/m2) 26.2 ± 4.9
Male 36
Female 11
FEV1 (% predicted) 55.6 ± 18.8
FVC (% predicted) 91.8 ± 27.4
FEV1/FVC (%) 48.7 ± 13.8

2.2. Data Acquisition

The dataset that we used in this study has been published before, hence, for a complete
description, we refer the reader to the original study [19]. In order to understand the current
study, we explain the main characteristics of the data below.

Each patient was equipped with a wearable, as well as with a standard wired ac-
quisition system to record their respiration. The latter was used as gold standard and
allowed the wearable signals to be labeled for quality. We summarized the details of both
devices below.

The wearable device (ROBIN, Stichting imec the Netherlands, Eindhoven,
the Netherlands) uses bioimpedance (BioZ) to measure respiration. It has a sampling
frequency of 16 Hz. Eight stress test AG/AgCl electrodes (Kendall H92SG, Covidien Inc.,
Walpole, MA, USA) were placed on different locations on the thorax (Figure 1) and were
used to create two tetra-polar electrode configurations. The electrodes were placed sym-
metrically at both sides of the thorax. In this tetra-polar configuration, two leads are used
for injecting the excitation current (I) and the other two measure the generated voltage (V).
The injection current amplitude was 110 µA at a frequency of 80 kHz. This setup ensures
a good signal-to-noise ratio and a linear correlation of the BioZ signal with the volume
changes [19].

Figure 1. Representation of the tetra-polar electrode configurations. Only the right side is shown
because the configurations were symmetric from the midsternal line.

We used the Biopac wired acquisition system as gold standard. This system measures
respiratory airflow with an airflow transducer (pneumotach transducer TSD107B, Biopac
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Systems, Inc., Goleta, CA, USA). The signals were digitized with a sampling frequency of
10 kHz. The subjects were instructed to breathe through a disposable mouth piece, with
a bacterial filter (AFT36, Biopac Systems, Inc.), which was attached to the pneumotach
device, and they were wearing a nose clip to prevent nasal breathing.

2.3. Respiratory Protocol

Each subject performed an inspiratory threshold loading protocol, during which their
respiration was recorded. This kind of protocol initiates changes in breathing mechanics,
similarly to an airway obstruction. For example, it is known to affect the breathing pattern
and diaphragm fatigue [20]. The same protocol was previously used in [4,21] to validate
the BioZ device in a clinical setting.

The protocol consisted of two minutes of quiet tidal breathing (QB), followed by
imposing five inspiratory threshold loads to the subjects while breathing. The threshold
values were defined as increasing percentage values from the maximal static inspiratory
pressure (MIP) [22]. MIP is defined as the maximal pressure that a person can generate
during inspiration and it reflects respiratory muscle strength. Hence, before the start of the
protocol, the subjects performed a maximal volitional test to derive the MIP. An inspiratory
muscle trainer device (POWERbreathe KH2, POWERbreathe International Ltd., Southam,
UK) was used for the MIP derivation and to impose the threshold loads.

The five load values corresponded to a progressively increasing percentage of each
subject’s MIP. The following threshold values were utilized: 12%, 24%, 36%, 48% and 60%
of the subject’s MIP. The subjects were instructed to breathe 30 times per load and each load
was followed by a two-minute resting period to return to baseline. The load protocol is
shown in Figure 2. If a subject failed to complete one of the thresholds, then that recording
is excluded for further analysis.

The subjects remained seated in an upright position during the entire protocol and
wore a nose clip.

Figure 2. The inspiratory threshold loading protocol. After two minutes of load-less quiet breathing
(QB), the load values, expressed as percentages of the maximal static inspiratory pressure (MIP),
are progressively increased. Each loading task is followed by two minutes of rest.

2.4. Pre-Processing

Prior to signal labeling, we implemented two pre-processing steps: filtering and
segmentation. Firstly, we filtered all signals, both wearable and gold standard, with a
high-pass zero-phase Butterworth filter with a cut-off frequency of 0.05 Hz (3 breaths/min).
This ensures the removal of baseline oscillations, but prevents the loss of physiological
information. Hereafter, we low-pass filtered both signals with a zero-phase Butterworth
filter with a cut-off frequency of 0.70 Hz (42 breaths/min). This removes high frequency
content that is not related to breathing, such as ECG.

Secondly, we removed the first three seconds and the last second of each recording,
because visual inspection showed distortions due to the on/off setting of the device within
these time spans. Afterwards, since not every recording was equally long, 2 min for
the resting phase vs. 30 breaths for the loading phase, we divided each recording into
non-overlapping one-minute segments. This allowed to extract features from equally
long segments.
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Note that each recording is measured with four electrode configurations, as ex-
plained in Section 2.2. Due to the fact that electrode movement could be configuration
specific, we regarded these configurations as different recordings, albeit with the same
gold standard.

In total, we extracted 1896 one-minute BioZ segments, sampled at 16 Hz, whereof
the most obvious noise sources (i.e., baseline wander and powerline interference) were
removed. An example of the output of the pre-processing steps is shown in Figure 3 with
both a raw and a filtered respiratory signal.
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Figure 3. An example of the result of the pre-processing steps. The blue line indicates a raw signal of
one-minute and the red line indicates the filtered version. The baseline wander and high frequency
noise are mostly removed.

2.5. Labeling

Each recording was labeled by four independent annotators with experience in
biomedical signal analysis. To visualize, comment and label each signal as easily as
possible, we developed a graphical user interface (GUI) in Matlab (Figure A1).

The GUI contains some useful functionalities to resolve expected technical challenges.
For example, on several occasions the BioZ signal was delayed or advanced, compared
to the airflow signal. This was especially the case during high loads [4]. In order to
improve the alignment of the two signals, the tool allows to manually shift the signal
with a maximum of 2 s in both directions. Additionally, an accurate comparison might be
hampered by the difference in polarity of the BioZ signal and the airflow signal. This can
also be adapted in the GUI by inverting the BioZ signal.

These tools allowed a proper alignment of the two signals, which aided in correctly
annotating the BioZ signals. However, note that adaptations done to the signals might differ
per annotator. These were not stored and therefore also not compared. Thus, it might be
that the annotators made their annotation based on a slightly different visual representation
of the two signals. Nevertheless, due to the quasi-periodic nature of the respiration signal,
these slightly different annotation set-ups do not affect the final labeling results.

We categorized the signals into five classes. If the gold standard is of bad quality,
due to the subject not breathing through the reference device, motion artefacts or signal
saturation, then the signal is categorized in class (5), “Bad reference quality”. We described
the other classes in Table 2.

Since the goal of this study was to examine whether machine learning algorithms
could be used to separate clean (1) from noisy (−1) thoracic BioZ signals, we binarized the
first four classes per rater. Classes 1 and 2 were considered clean and classes 3 and 4 were



Sensors 2021, 21, 2613 6 of 17

considered noisy. Hereafter, majority voting among raters was performed to create a single
label per signal.

Due to the bad quality of the reference signals in class 5, we decided not to use these
for further analysis, regardless of the actual BioZ quality.

Table 2. Overview of the different class labels. Note that these rules were created for one-minute segments.

Classes Examples

(1) Excellent signal quality
• all breaths can be identified
• the same number of prominent peaks as the

gold standard
• the amplitude differences between BioZ

and gold standard peaks are relatively the
same
– a difference of 20% is allowed

(2) Good signal quality
• all breaths can be identified
• the same number of prominent peaks as the

gold standard
• the amplitude differences between BioZ

and gold standard peaks can differ more
than 20%

(3) Average signal quality
• at most 10 s of the signal is allowed to be

corrupted
– missing beats
– additional bumps in the signal 25%

higher than the expected amplitude

(4) Bad signal quality
• more than 10 s of the signal is corrupted

2.6. Classification

Three approaches were compared, namely a heuristic approach [16] and two machine
learning approaches: a feature-based SVM model and a CNN. The approaches are described
in the following paragraphs.

2.7. Heuristic

The first stage is the detection of breaths. Individual breaths are detected in the BioZ
signal using the same modified version of the Count-orig method [23] as was proposed
in [16].

During the second stage, the physiological plausibility of the breaths’ durations was
assessed. Three criteria were used:

1. Only moderate variation in the durations of the detected breaths was permitted. The
normalized standard deviation of the breath durations had to be <0.25.

2. To prevent errors due to outlying breath durations, the proportion of the breath
durations that were >1.5, or <0.5, times the median breath duration had to be <15%.
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3. >60% of the segment duration had to be occupied by valid breaths.

Any segment that did not satisfy these three criteria was classified as noisy.
In the third stage, the similarity of the breath morphologies was assessed. Firstly,

the mean interval between consecutive breaths was calculated. Secondly, the signal was
segmented into individual breaths with a window size equal to the mean breath interval
and centered around its peak. Consecutively, each segment was normalized by their
Euclidean norm. Thirdly, a representative breath template was created by computing the
mean of all the individual breaths. The similarity of the breath morphologies was then
quantified by computing the mean correlation coefficient between all the individual breaths
and the template. The latter had to be >0.75 for the signal segment to be considered clean.
More details about this algorithm can be found in [16].

Note that the original algorithm was developed for 32 s windows and that the criteria
and thresholds were not adapted for this study.

2.7.1. SVM

Firstly, we computed features from the entire 60 s segment. These provide a general
view of the signal, but could have difficulties capturing local variations. Hence, secondly,
we divided the signal into non-overlapping 15 s segments and computed the same features.
The mean and standard deviation of 4 consecutive features were used to characterize each
60-s segment. We used these as separate features.

Two data representation methods were used to highlight the differences between
the classes: (1) the auto correlation function (ACF) and (2) the power spectral density
(PSD) estimation.

1. ACF
The ACF can be used to inspect the (quasi-)periodic components within a time series.
For a series of breaths during normal breathing, the amplitudes of the first and second
peak in the ACF represent phase shifts equal to one and two breaths, respectively.
Figure 4 shows an unbiased ACF of a clean and contaminated BioZ signal during
normal breathing. A semi-sinusoidal signal, such as the respiratory signal, should
reach ACF values close to one when the lag is equal to a multiplication of the breathing
period. Under this assumption, the first and second peak of the ACF should represent
a lag of, respectively, one and two breaths. The amplitude at the first peak (Ap1) can
be regarded as an expression of the regularity of the respiratory signal [24]. A low
Ap1 generally indicates a low regularity and thus, a higher likelihood that an artefact
is present. In this case, the amplitude at the second peak (Ap2) will also be low. Thus,
closeness of both Ap1 and Ap2 to one reflects breathing regularity. Additionally, the
ratio of Ap1 and Ap2 is a measure of symmetry, such that an Ap1/Ap2 close to one
reflects a repetitive signal.

2. PSD
In the case of respiratory signals, most spectral energy is concentrated around the
breathing frequency. The more regular the breathing pattern, the more energy is
contained around this peak. Hence, we could use the bandwidth of the signal as a
feature for signal quality. This is defined by the frequencies where the gain drops
below 70.71% (−3 dB) relative to the main peak.
In this study, we calculated the PSD of the BioZ signal with the Welch periodogram
and a Hamming window of 15 s with 50% overlap. In the case of the smaller segments,
we used the entire segment without overlap.
We defined four features hereof: the frequency of the lower ( flow) and upper( fhigh)
bounds, the bandwidth and the normalized power contained in the bandwidth. The
normalization was done with respect to the power between 0.05 Hz and 0.70 Hz
(3 to 42 breaths/minute). Ultimately, this normalization results in a value between
zero and one. The closer this value is to one, the more regular the respiration signal
is. Therefore, a low value is an indication of an irregular breathing pattern (i.e.,
broadband respiratory signal) or the presence of artefacts.
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Figure 4. (a,c) A clean and noisy BioZ signal during normal breathing. (b,d) The resulting auto
correlation functions (ACFs). It can be observed that the amplitude of the first and second peak for
the clean signal is higher, compared to the noisy signal.

We used the resultant 21 features, 7 from the entire one-minute segments and 14
from the smaller segments (i.e., 7 means and 7 standard deviations), to train an SVM
model to classify the data as clean (1) or noisy (−1). The features derived from the smaller
segments are further referred to as the grained features. We used an RBF kernel and
the hyperparameters were automatically tuned using Bayesian optimization and 5-fold
cross-validation on the training set.

Initially, we trained the SVM model only with the features derived from the entire one-
minute segment. Then, we retrained the model with the grained features. The hypothesis
is that these features are better at capturing variations within the recording due to non-
stationarities and thus should result in a better classification performance.

We trained each model 10 times with a cross-subject approach with 70% of the subjects
in the training set and the remaining 30% in the test set. For generalization purposes, this
division was done 10 times at random.

In order to identify the most relevant feature set from all features, we used the
minimum redundancy, maximum relevance (MRMR) feature selection algorithm [25]. This
algorithm minimizes the redundancy of a feature set, while maximizing the relevance
to the response variable, in this case the corresponding class. First, it selects the feature
with the largest relevance, i.e., the feature with the largest mutual information with the
response variable. Then, it adds the feature with the largest mutual information quotient,
which is computed by dividing the relevance by the redundancy. This step is repeated until
the relevance of the remaining features is zero. As a result, it ranks the features based on
mutual importance. More details about this algorithm can be found in [25].

For each training fold, we ranked all features. We then used the highest ranked
features to train an SVM model and compared their respective performances. A graphical
overview of the different steps per fold is given in Figure 5.



Sensors 2021, 21, 2613 9 of 17

7 one minute features 14 grained features

MRMR

SVM SVM SVM

Figure 5. Workflow per fold of the feature-based approach. First we derive the one-minute and grained
features. These are used to train separate SVM models. Then, we use the minimum redundancy,
maximum relevance (MRMR) algorithm to rank all features and retrain the SVM model with the
highest ranked features.

2.7.2. CNN

CNNs are a class of deep neural networks, frequently used in image analysis. They
use convolution operations instead of general matrix multiplications as in multi-layer
perceptrons. The main advantage of this type of network is the ability to learn the features
automatically from the data. This decreases the need for prior knowledge and human
effort in feature design. CNNs have been successfully used to detect artefacts in ECG, EEG
and other (biomedical) signals [26–28].

The proposed architecture of the 1-dimensional CNN is shown in Table 3. We trained
the CNN on input signals of 1 min, which contain 960 samples. Each input signal is first
normalized by subtracting its mean and dividing by its standard deviation. Hereafter, it is
passed through two blocks of convolutional layers. Each layer of the first block consists
of 10 filters and operates on 32 samples along the temporal axis. This equals a window of
2 s which, if expressed in breathing frequency, is 30 breaths per minute. Since an average
adult at rest has a respiratory rate between 8 and 14 breaths per minute, this window
ensures the inclusion of at least 1/3 of one breathing cycle per input sequence for the first
convolutional layer. The result of the convolution is passed through a rectified linear unit
(ReLU) activation function. The hyperparameters of the layers of the second convolutional
block are equal to the first block, but here, only 5 filters were used instead. This was
done to create a feature map with five features, similarly to the SVM approach. We also
investigated the performance of other architectures, such as only including the last block
and only 1 layer per block, but since the best performance was obtained with the described
approach, we only included these results.

A CNN usually consists of alternating convolutional and pooling layers. However,
Springenberg et al. have shown that pooling layers can simply be replaced by convolutional
layers with increased stride, the amount of samples by which the filter shifts, without
a loss in performance [29]. Hence, in order to keep the network as simple as possible,
we used strided convolutions to downsample the signal. The stack of convolutional layers
results in a temporal axis that is downsampled to 60 time samples and 5 features per time
sample (60 × 5). Hereafter, we added a global average pooling layer. This layer generates a
single feature vector by taking the average of all feature maps over the temporal axis. The
main advantage of the global average pooling is the robustness to temporal translations
of the input [30]. Another advantage is that there are no parameters to optimize for this
computation, thus overfitting is avoided at this layer. The resulting vector is fed directly
into a fully-connected 2-node output layer. This final layer uses a softmax function to
convert the output vector to a vector of categorical probabilities.
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Table 3. Overview of the network architecture, e.g., Conv (32) × 10 indicates a convolutional layer of
10 filters of size 32.

Layer Info Output Size

Input: (960, 1)

1 Conv (32) × 10, stride = 2 (480, 10)
2 ReLU (480, 10)
3 Conv (32) × 10, stride = 2 (240, 10)
4 ReLU (240, 10)
5 Conv (32) × 10, stride = 2 (120, 5)
6 ReLU (120, 5)
7 Conv (32) × 10, stride = 2 (60, 5)
8 ReLU (60, 5)
9 Global avg pooling (1, 5)
10 SoftMax (1, 2)

Total number of parameters: 5962

We used the Adam version of stochastic gradient descent for 50 epochs and a batch
size of 100 [31]. The categorical cross-entropy is used as loss function. During training,
the loss of a separate validation set is tracked and the weights with the best validation loss
are retained. These weights are then used to evaluate the model on the test set.

2.8. Performance Evaluation

We trained each model 10 times with a cross-subject approach with 70% of the subjects
in the training set and the remaining 30% in the test set. For generalization purposes, this
division was done 10 times at random. To get a correct comparison, we used the same
splits for all approaches.

We used four common performance metrics to evaluate and compare the classification
performance: the accuracy (Acc), the proportion of signals that are correctly classified,
the sensitivity (Se), which measures the proportion of clean signals that are correctly
identified as clean, the specificity (Sp), which measures the proportion of noisy signals that
are correctly identified as noisy and the area under the curve (AUC), which provides an
aggregate measure of performance across all possible classification thresholds. The latter
could only be computed for the machine learning approaches.

We measured the statistical differences (p < 0.05) with a Student’s t-test or Wilcoxon
rank sum test, depending on the normality of the data. The latter was measured with
a Lilliefors test.

3. Results

The goal of this study was to investigate the added value of machine learning algo-
rithms, compared to a heuristic algorithm, for the separation clean from noisy thoracic
BioZ signals. Hence, classes 1 and 2 were categorized as clean and classes 3 and 4 as noisy.
Hereafter, majority voting among raters was performed to create a single label per signal.

The annotators fully agreed (4 vs. 0 annotators) on 79.01% of the signals, the majority
(3 vs. 1) agreed on an additional 14.93% and no agreement (2 vs. 2) was obtained for
6.07% (Table 4). This resulted in a Fleiss Kappa of 0.75, which excludes the hypothesis of
random annotation and confirms a strong agreement between the raters. We used only the
segments where at least three out of four raters agreed, which resulted in a total of 1471
one-minute segments.

The heuristic approach was used to classify all samples in the 10 test sets. It obtained
an Acc of 84.69 ± 2.32%, an Se of 91.45 ± 2.25% and an Sp of 65.86 ± 5.48%.
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Table 4. Overview of the dataset. The rows represent the level of agreement. Agreement: all
annotators agreed; Majority: three out of four annotators agreed; Disagreement: the annotators
disagreed. The columns indicate the class to which the signals are assigned.

Clean (1) Noisy (−1) Bad Reference Quality (5) All

Agreement 1007 234 257 1498
Majority 111 119 53 283

Disagreement 115

Total 1118 353 310 1896

Initially, we trained the SVM model using only the features derived from the entire
one-minute segments. This can be considered the simplest approach, since no extra
segmentation of the recording is needed. This resulted in an Acc of 83.72 ± 2.99% and an
AUC of 84.26 ± 5.12% (Table 5). When we compared this approach with the results when
only the grained features were considered (Acc: 88.76 ± 2.25, AUC: 92.63 ± 1.59), we could
observe some significant differences. The Acc, Sp and AUC all significantly improved
(p < 0.05), while no significant changes could be observed for the Se.

The best combination of features was investigated using the MRMR algorithm. For
each training fold, we ranked all features. We then used the selected feature sets to train an
SVM model and compared their respective performances. Given the simple nature of the
respiratory signal, we only included up to five features. This was done in order to avoid
overfitting. We depicted the average performance of each model in Table 5. Note that the
feature combination could change each training run.

The AUC tends to increase when more features are included. However, the only
significant increases were obtained when we compared the inclusion of one and two
features with five features. Moreover, no significant changes in AUC could be noted
after the inclusion of three features. The Se values did not increase significantly for any
inclusion of more features. This means that the gain in performance was obtained by a
better detection of noisy segments. Despite the apparent increase in the average Sp, the Sp
of the combination of five features (69.95 ± 7.31%) was only significantly higher compared
to the Sp when trained with only one feature (57.90 ± 11.64%). No significant difference
could be obtained with the inclusion of two or more features. Due to the overall better
performance of the model with five features, we opted to use it to compare with the CNN.

Table 5. Overview of the performances of the SVM models on the test folds. The results are shown as
mean ± standard deviation. One, Two,..., Five indicate the performance of the SVM model with the
inclusion of the highest, second highest,..., fifth highest ranked features. The overall highest AUC is
obtained when the model is trained with the five highest ranked features.

Per Minute Grained One Two Three Four Five

Acc 83.72 ± 2.99 88.76 ± 2.25 83.91 ± 3.84 85.08 ± 3.87 86.29 ± 2.50 86.00 ± 2.23 87.77 ± 2.64
Se 90.76 ± 5.88 93.52 ± 3.54 93.41 ± 5.89 92.90 ± 4.17 93.53 ± 4.30 92.87 ± 3.72 94.09 ± 3.82
Sp 63.73 ± 10.35 75.30 ± 4.45 57.90 ± 11.64 62.99 ± 8.33 65.41 ± 10.18 67.06 ± 9.41 69.95 ± 7.31
AUC 84.26 ± 5.12 92.63 ± 1.59 87.98 ± 5.63 87.33 ± 5.16 90.64 ± 3.57 90.53 ± 3.53 92.77 ± 2.95

The most relevant feature, as defined by the MRMR algorithm, is the amplitude of
the first peak of the ACF of the entire segment. This was selected 9/10 times. The feature
that is most complementary to the latter is the lower bound of the bandwidth of the entire
signal. This was selected 6/9 times. Hereafter, the standard deviation of the amplitude
of the first peak of the ACF of the smaller segments was selected 4/6 times. The last two
features in the most used feature combination were the average Ap1/Ap2 and the standard
deviation of the bandwidth of the smaller segments.

The feature space of the most complimentary three features is depicted in Figure 6.
It can be observed that the Ap1 of clean signals tends to be higher compared to their noisy
counterparts, indicating a more regular signal. Moreover, more variation is present in the
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noisy signals, since the standard deviation of the Ap1 for the smaller segments is higher
for noisy signals. The lower bound of the −3 dB bandwidth is often low for noisy signals.
This could indicate the presence of low frequency components with large amplitudes.

Figure 6. Feature space of the most frequently selected combination of three features: The amplitude
of the first peak of the ACF of the entire segment (Ap1), the lower boundary of the bandwidth of the
entire segment (LowBand) and the standard deviation of the Ap1 for the smaller segments (StdAp1).
‘+’ indicates clean signals and ’o’ indicates noisy signals.

The selected approach obtained an Acc of 88.32 ± 2.61% on the test sets. Compared to
the Acc of the classification model with the grained features, this is not significantly different.
Moreover, although the Se (94.69 ± 3.59%) appears higher and the Sp (70.43 ± 6.48%)
appears lower, we could not observe any significant changes. The AUC is 93.87 ± 2.12%,
which is not also statistically different from the AUC when the grained features are used.

The CNN model obtained an Acc of 87.20 ± 2.78, an Se of 93.25 ± 3.24 and an Sp of
70.40 ± 8.16. The AUC was 92.51 ± 1.74. No significant performance differences existed
between the two machine learning approaches for any of the performance metrics. How-
ever, their accuracies were significantly better than the heuristic approach. No significant
difference were observed for the Se or Sp. The performance metrics of the three approaches
are depicted in Figure 7.
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Figure 7. Comparison of the performance metrics of the three approaches: heuristic (green), SVM (red)
and CNN (blue). The only significant difference (p < 0.05) was obtained between the Acc of the
heuristic and the both machine learning approaches.
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Figure 8 shows the average ROC curves of the feature-based method with five features
and the CNN model. It can be observed that the ROC curves of the SVM model are less
aligned, compared to the curves of the CNN models. However, the mean curves are
very similar.
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Figure 8. Comparison of the ROC curves of the 10 folds from the SVM (a) and CNN (b) approaches.
The average ROC curves of the SVM (blue line) and CNN (red line) approaches is depicted in (c).
Their respective AUCs are 92.77 ± 2.95% and 92.51 ± 1.74%.

4. Discussion

The goal of this study was to investigate the added value of machine learning algo-
rithms, compared to a heuristic algorithm, for the separation clean from noisy thoracic
BioZ signals. In this study, we compared a heuristic, a feature-based and a neural net-
work approach.

4.1. Performance Comparison

We have shown that the accuracy of both machine learning approaches is significantly
higher, compared to the heuristic approach. Moreover, no significant differences could be
observed between the two machine learning approaches.

On average, the proposed CNN-based method performs similarly to the feature-based
method. The main advantage of the CNN approach is that there is no need to select any
features manually. Moreover, since the CNN is an integrated approach, both the features
as well as the classifier, are optimized simultaneously. On the other hand, feature-based
approaches might be more robust towards different input data, e.g., sampling frequency or
window size.

In the case of large datasets, it is preferable to exclude too much data, compared
to too little data, if this ensures that the data that is classified as clean is actually clean.
Hence, a high Sp value is desired. However in this study, we noted that, the Sp remained
significantly lower than the Se for all approaches. The highest Sp values over all approaches
were obtained when all grained features were included to train the feature-based model.
This supports the initial assumption that features derived from the entire segment cannot
accurately capture local variations or non-stationarities due to artefacts. Additionally, the
imbalanced data distribution might present another challenge for the machine learning
algorithms. The dataset that we used contains 76.00% clean signals. This prompts the
classification model to assign more weight to the clean segments, which results in a higher
number of false positives and thus a lower Sp.

4.2. Feature Investigation

The most relevant feature, as defined by the MRMR algorithm, is the Ap1, the am-
plitude of the first peak of the ACF of the entire segment. This feature was previously
proposed by Moe-Nilssen et al. for the estimation of gait regularity [24]. They indicated
two reasons for a low Ap1: low regularity between steps and a systematic asymmetry
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between left and right steps. For obvious reasons, the latter does not apply on the current
problem. In this study, a difference in Ap1 could be observed between signals of different
quality. The Ap1 of noisy signals was, in general, lower, compared to that of clean signals.
This indicates that the presence of artefacts results in a less regular signal, which can be
measured with the Ap1.

The feature selection experiment has shown that only one feature is sufficient to
obtain a high sensitivity and a specificity of above 50%. Moreover, the results show that
the detection of noisy segments can be improved by adding more features to the model,
while at the same time the sensitivity remains unaltered. This indicates that expanding the
dimension of the feature space is particularly beneficial for the detection of noisy segments.

4.3. Future Work

In this study, we focused on 1-dimensional signals. However, CNNs were originally
developed for higher dimensional inputs. Therefore, it could be hypothesized that the
performance of the CNN could be improved by providing a higher dimensional input.
Recently, Zhang et al. obtained some promising results when using the time–frequency
spectrum as input for a CNN for ECG artefact detection [26]. A similar pipeline could
be implemented for the given problem. Since we wanted to investigate the prediction
capabilities of the CNN with the raw data as input, we did not investigate this approach
here. However, we do intend to investigate this in future research.

Similarly, we would like to investigate the added value of other models such as
contextual or bidirectional long-short term memory recurrent neural networks. However,
a larger dataset might be necessary to fully exploit these techniques.

In this study, we used majority voting to assign the class labels. However, we did not
take the minority votes into account when evaluating the models. Using fuzzy logic might
help to compensate for this inherent uncertainty. In [32], weighted performance metrics
were proposed to evaluate classification models. In future work the effect of the minority
votes might be investigated using these metrics.

4.4. Limitations

The current research population is limited to COPD patients. In future research we
should expand the population towards patients suffering from other CVDs or, more broadly,
all patients that require respiratory follow-up.

During the respiratory protocol, subjects were asked to perform 30 breaths per load,
which might result in an increased breathing regularity compared to less controlled con-
ditions. Hence, due to the possible lack of irregular breathing patterns, it is still an open
question whether the models are able to make a distinction between noisy and irregular
breathing signals. Future research could tackle this by including more irregular, but clean,
respiratory signals, for instance during speaking, eating and drinking.

A related limitation is that the dataset in this study is recorded during rest. Hence, we
could state that a whole spectrum of possible artefacts due to motion was not included.
In future research, we need to validate the proposed methodologies on a dataset that is
recorded during daily life activities.

5. Conclusions

In this study, we investigated the added value of machine learning algorithms to
separate clean from noisy respiratory BioZ signals. To the best of our knowledge, this is
the first study that uses machine learning techniques for this purpose. We compared a
heuristic and two machine learning approaches: a feature-based classification model and
a CNN.

We have shown that the accuracy of both machine learning approaches is significantly
higher, compared to the heuristic approach. Moreover, no significant differences could
be observed between the two machine learning approaches. This shows that a data-
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driven approach could be beneficial for the task of artefact detection in respiratory thoracic
BioZ signals.
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