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Abstract: In this paper, an integrated thermoelectric (TE) and photovoltaic (PV) hybrid energy
harvesting system (HEHS) is proposed for self-powered internet of thing (IoT)-enabled wireless
sensor networks (WSNs). The proposed system can run at a minimum of 0.8 V input voltage under
indoor light illumination of at least 50 lux and a minimum temperature difference, ∆T = 5 ◦C. At the
lowest illumination and temperature difference, the device can deliver 0.14 W of power. At the
highest illumination of 200 lux and ∆T = 13 ◦C, the device can deliver 2.13 W. The developed HEHS
can charge a 0.47 F, 5.5 V supercapacitor (SC) up to 4.12 V at the combined input voltage of 3.2 V
within 17 s. In the absence of any energy sources, the designed device can back up the complete
system for 92 s. The sensors can successfully send 39 data string to the webserver within this
time at a two-second data transmission interval. A message queuing telemetry transport (MQTT)
based IoT framework with a customised smartphone application ‘MQTT dashboard’ is developed
and integrated with an ESP32 Wi-Fi module to transmit, store, and monitor the sensors data over
time. This research, therefore, opens up new prospects for self-powered autonomous IoT sensor
systems under fluctuating environments and energy harvesting regimes, however, utilising available
atmospheric light and thermal energy.

Keywords: energy harvesting (EH); hybrid energy harvesting (HEH); solar photovoltaic; thermoelec-
tric; internet of things (IoT); wireless sensor networks (WSNs); low power electronic devices

1. Introduction

The electronic devices and networks annex (EDNA) reports that by 2022, there will
be around 50 billion devices connected to the internet [1]. Some estimates even claim this
number could exceed 100 billion [2]. The wave of IoT is emerging very fast and becoming
part of the mainstream electronic industry. Thus, people and society tend to adopt smart
devices. These devices are equipped with a wireless terminal and effective sensors con-
nected in a network that can gather data, features, statistics, and all sorts of information
from the surrounding environment. Internet connections in embedded systems, controllers,
transport systems, wearable devices, commercial security systems, and other objects are
envisioned. IoT-based devices need an uninterrupted power supply to ensure the operation
of their activities [3]. Therefore, providing the necessary power to maintain all the devices
operational for their projected lifetimes is challenging. The corresponding energy demand
for IoT devices is very considerable due to their limited energy sources, replacement barri-
ers, ecological obstacles, environmental risk, etc. [4,5]. Future projections for WSNs to allow
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the IoT indicates a doubling between 2018 and 2023, which will result in a substantially
higher energy demand [6]. Till now, the most significant energy sources for IoT sensors are
batteries. An estimate shows that more than 23 billion batteries will be needed to power
up the IoT devices in 2025 [1], but the rising demand for the batteries needed to power
up the IoT appliances is harmful because batteries contain harmful chemicals including
lead, cadmium, zinc, lithium, and mercury. Using a battery is also challenging in remote
areas because of limited charging facilities and accessibility for replacement. Therefore,
energy harvesting (EH) from ambient energy sources, such as light, heat, radio frequency
(RF), vibration, etc., is inevitable [7–10]. This would be an efficient solution to overcome the
limitations and mitigate the energy demand for uninterrupted functioning by powering
up the billions of IoT devices. In this context, numerous EH systems have been developed
for outdoor and indoor applications. However, ambient resources provide low power
and are dependent on time-varying environmental parameters, which is insufficient to
power up IoT sensors sequentially. Based on the power generation capacity, a single energy
source is often insufficient to power up all the sensor nodes; therefore, additional energy
sources may be introduced as a secondary power supply. The world’s first multiple or
hybrid power system comprising PV and diesel power was started up on 16 December
1978, in the Papago Indian Village (Schuchuli, AZ, USA) [11]. Nowadays, hybrid EH
systems are increasingly gaining recognition among researchers and industry. Tadesse et al.
proposed an electromagnetic energy source (ES) paired with a piezoelectric ES. The fab-
ricated prototype produced 0.25 W using the electromagnetic mechanism and 0.25 mW
using the piezoelectric mechanism, at 35 g acceleration and 20 Hz frequency [12]. Guilar
et al. proposed an energy-saving photodiode array, which can generate 225 µW/mm2

at 20,000 lux [13]. Two energy sources—RF energy and TEG— with 78% efficiency were
fabricated by Lhermet et al. [14]. The harvested energy can run 30 integrated chips (ICs)
and consumes 5 nW power. Based on the priority, only one source can provide the required
power at a time. The main drawback of this proposed system is that it cannot generate
power simultaneously. The authors in [15] recommended a PV-TEG dependent HEH
system for the indoor ambient environment. Average power of 621 mW is extracted in the
integrated HEHS device at an irradiance of 1010 lux, nearly three times as much energy
is obtained in single-source EH. Authors in [16] proposed a modular design that pulls in
its power from each linked harvesting device. Using a lithium-ion (Li-ion) or nickel-metal
hydride (NiMH) battery extends the system’s dependability. With the inclusion of three
energy sources, PV, piezoelectric (PZT), and RF, the authors in [17] proposed a multi EH
device that can provide up to 2.5 V and total power of 6.4 mW. A platform combining three
distinct EH sources from PV, TEG, and PZT with the input voltage range of 20 mV–5 V is
proposed in [18]. A time-based power monitoring system is used to track the harvesters’
power, and a peak efficiency of 96% is achieved whereas, the inductor sharing for the PV
boost performance is 78%, TEG boost is 86%, and PZT is 83%. In [19], an MPPT EH device
with an expandable control for charging and discharging a lithium polymer (LiPo) battery
is proposed for PV and vibration energy. The device shows an overall efficiency of 75–85%
for 24-h experiments in a WSN. A battery-free energy harvester based on thermal and
the vibration energy is designed in [20] for aircraft health monitoring. The use of a low
bias current of only 10 nA per branch ensures low power consumption. Dini et al. [21]
designed an autonomous, self-starting, battery-less energy harvester for wearable devices
and WSN combining PZT, PV, and TEG transducers. The total current consumption is
47.9 nA per source during all the energy sources are enabled. The test shows the peak
single-source efficiency is 89.6%. G. Chowdary et al. [22] presented a HEH device with
available power levels of 25 nW–100 µW. The 180 nm chip has an output voltage of 1.5 V
with the highest efficiency of 87%. Table 1 summarises a comparison of different hybrid
energy harvesting systems.
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Table 1. Comparison of different hybrid energy harvesting systems.

Ref. Year Energy
Sources Input Power MPPT Storage

[15] 2011 PV, TEG 392 µW Yes SC

[16] 2011 PV, Wind - Yes Li-ion

[17] 2011 PV, PZT, RF 7.3 mW No None

[18] 2012 PV, TEG, PZT - Yes None

[19] 2014 PV, PZT PV-60 mW,
PZT-3 mW Yes SC, LiPo

[20] 2015 TEG, PZT - No None

[21] 2015 PV, TEG,
PZT, RF

PV-55 µW,
TEG-101 µW,
PZT-59 µW

Yes None

[22] 2016 PV, PZT, RF 20 µW Yes None

In this study, an ambient source-based hybrid energy harvester (HEH) is developed
to power the IoT-enabled WSNs continuously. A small solar PV cell and thermoelectric
generator (TEG) are used to develop the HEH device. Among the two sources, light sources
are abundant in the environment. The PV cell can work well in an indoor or outdoor
location. Thus, it will work as the primary source of the proposed system, and the TEG
will work as the secondary ES. An ESP32 Wi-Fi module connects the complete system with
the internet to monitor the sensor data. For energy backup, an SC is used. The proposed
HEHS can overcome the limitations of a single-source energy harvester. It will mitigate the
IoT sector’s energy demand, extend the sensor life span and the integrated system.

The rest of this paper is organised as follows: The EH methodology for WSNs is intro-
duced in Section 2, which is divided into three parts: ambient energy sources in Section 2.1,
solar energy harvesting system in Section 2.2, and thermal energy harvesting system in
Section 2.3. After introducing the EH sources, Section 3 presents the proposed HEHS.
Section 4 describes the experimental setup and methodology, including the simulation
model, hardware components and the complete prototype. In Section 5, the simulated
and experimental results are presented and discussed. Finally, conclusions are drawn
in Section 6.

2. EH System for WSNs

Recently, WSNs have gained a lot of interest owing to their ubiquitous existence and
extensive application in the IoT era. However, a significant bottleneck in WSN technology
is the minimal energy associated with WSNs. The design and production of robust and
high-performance EH systems for WSN environments are being studied to address this
significant constraint. In this section, a brief taxonomy of two different energy sources
are discussed.

2.1. Ambient Energy Sources

Outdoor environments have different features and functionality than indoor environ-
ments. An abundance of artificial energy sources in indoors are workplaces, banks, clinics,
restaurants, and warehouses, etc., [4]. The typical indoor energy sources are presented
in Table 2. The most common indoor energy sources are classified into four categories:
ambient (A), irregular (I), continuous (C), predictable (P) and partially predictable (PP).
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Table 2. Characteristics of indoor energy sources.

Energy Sources Features Availability Observations

Light A, C, I, P Indoor/Outdoor
Direct/reflected

sunlight, illumination
from artificial light

Thermal A, C, I, P Indoor

Ambient thermal
grading between the
machine, the human

body

Wind A, C, P Indoor/Outdoor
Air circulations from
an electric fan or air

conditioner

Vibration A, I, P Indoor/Outdoor Human motion,
machine vibration

Radio Frequency (RF) A, I, PP Indoor Wi-Fi or mobile
network

Table 3 shows the power densities of various indoor energy sources and the technolo-
gies per unit length. Under indoor illumination, artificial lighting sources seem pretty
dim. In the indoor environment, with the high irradiance, a solar cells power density is
0.1 mW/cm2, relative to 100 mW/cm2 in outdoor normal monitoring conditions. All ar-
tificial energy sources total capacity is smaller than outdoor energy sources by a margin
of 10 µW-100 mW. To work in the indoor environment, WSNs need to increase their en-
ergy sources over their lifetime. Most of the experiments with vibration or piezoelectric
energy, electromagnetic or RF energy, demonstrated the limitations in instantaneous power
generation compared to solar and thermal energy. However, currently research is shift-
ing gradually towards piezoelectric and RF energy to overcome the challenges in power
generations. On the other hand, the published literature shows that solar and thermal
energy sources share identical power densities among all low-power indoor/outdoor en-
ergy sources. Therefore, based on the availability and ease of installation, the authors have
chosen to utilise solar and thermal energy sources to design the proposed HEH device.
The proposed system can increase the performance of the WSNs in an indoor/outdoor
climate. WSNs will use thermal energy to remain driven while solar energy is not available.
Another key goal of the proposed HEHS is to harvest simultaneous energy when both
energy sources are available [1,23].

Table 3. The extracted power produced from the familiar ambient sources [24,25].

Energy Source Harvesting Device Power Density Harvested Power

Indoor Light
Solar PV Panel

0.1 mW/cm2 10 µW/cm2

Outdoor Light 100 mW/cm2 10 mW/cm2

Human Thermal Thermoelectric
Generator

20 mW/cm2 30 µW/cm2

Industrial Thermal 100 mW/cm2 1–10 mW/cm2

Human Vibration Piezoelectric Device
Electrostatic

0.5 m at 1 Hz
1 m/s2 at 50 Hz 4 µW/cm2

Industrial Vibration Piezoelectric
Electromagnetic

1 m at 5 Hz
10 m/s2 at 1 kHz 100 µW/cm2

RF: GSM 900 MHz Antenna
Router

0.3 µW/cm2 0.1 µW/cm2

RF: Wi-Fi 0.015 µW/cm2 0.001 µW/cm2
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2.2. Solar Energy Harvesting System

International Renewable Energy Agency (IRENA) reported that solar energy is one of
the most common GreenTech energy sources in 2018 [26]. Naturally, light energy sources
are ample, cheap and produce the maximum power density of 10 mW/cm2 to 100 mW/cm2

on a sunny day. That renders solar PV energy a promising energy source to grow IoT
sensor applications [4,25,27–29]. Various mathematical models have been discovered to
illustrate how solar cells work [30–33]. This paper considers the single diode electrical
circuit model to be the analogous photovoltaic type, as shown in Figure 1.
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Figure 1. The equivalent electrical circuit of a single diode solar PV cell [30,34].

As light strikes a p-n junction layer, charges are formed, then transmitted through the
system to generate electricity. Let, Isc is the short circuit current, Io is the saturation current,
a is the ideality factor of the diode, Ns is the number of cells is series-connected, T is the PN
junction temperature, K = 1.38× 10−23 J/K is the Boltzman constant, q = 1.6× 10−19 C is
the electron charge, RS is the series resistance, and Rsh is the shunt resistance. The output
current of the solar cell, IPV can be expressed as:

IPV = ISC − Io

[
exp

(
VPV + RS IPV

NsKT
q a

)
− 1

]
−
(

VPV + RS IPV
Rsh

)
(1)

Let, the thermal voltage of the PV cell is, Vt =
KT
q , and VRS = RS IPV , Equation (1) can

be rewritten as:

IPV = ISC − Io

[
exp
(

VPV + VRS

NsVt

)
− 1
]
−
(

VPV + RS IPV
Rsh

)
(2)

The power of the solar PV module can be determined as:

PPV = VPV × IPV

= VPV ×
[

ISC − Io

{
exp
(VPV+VRS

NsVt

)
− 1
}]

= VPV ISC −VPV Io

[
exp
(

VPV
NsVt

)
− 1
]

= VPV ISC −VPV Io

[
exp
(

VPV
NsVt

)]
; Since, exp

(
VPV
NsVt

)
� 1

(3)

The voltage drop across the series resistance, VRS = RS IPV can be neglected since the
value of VRS is even smaller than the PV output voltage. The light illumination is G, and the
cross-sectional area is A. Thus, the PV cell efficiency can be calculated by Equation (4):

η =
PPV

G× A
× 100% (4)
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2.3. Thermal Energy Harvesting System

In 1821, Thomas Johann Seebeck discovered an electric current could exist between two
wires separated by a small distance. In honor of the inventor, this effect is formally known
as the ‘Seebeck effect’ [24,35]. A Seebeck effect module or thermoelectric generator (TEG) is
used in the thermal EH system, transforming the thermal energy into electric energy [35–37].
The thermal energy produced from the heat source at a certain high temperature TH (hot
side temperature). TH is channelled through the enclosed TEG through a thin film of
thermal and electrically conductive silver grease between them to the heat sink. The excess
heat stored in the heat sink is then emitted to the local ambient air at a lower TC (cold
side temperature) temperature. An analogous electrical circuit model of the TEG is given
in Figure 2.
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Figure 2. (a) Equivalent electrical circuit of TEG; (b) simplified circuit of TEG [15].

Figure 2a shows the temperature gradient, ∆T (∆T = TH − TC) is higher than the
temperature difference, ∆TTEG. The thermal contacts resistance for the hot side (RCON_H)
and cold side (RCON_C), as well as the thermal grease resistances for hot side (Rg_H) and
cold side (Rg_C), exist in the thermal energy harvester (TEH); therefore, the temperature
difference is externally imposed across the junction point of TEG. The thermal resistance,
RTEG of the TEG module, is made to be as maximum as possible to reduce this negative
effect, and the rest of the TEH resistance is maintained as low as possible. By considering
these design factors, the TEH, with a 30 mm× 30 mm× 3.8 mm physical size, is selected to
channel the bulk of the thermal heat through TEG to maximize TEH. To determine the TEG’s
efficiency in powering, the IoT enabled sensor applications, study and characterization
work was carried out on the assembled TEH. Seebeck’s effect indicates that the open-circuit
voltage, VOC, of the TEG enclosed in the TEH, composed of ‘n’ number of thermocouples
connected electrically in series and thermally in parallel. Therefore, VOC can be formulated
in Equation (5):

VOC = S× ∆T= n× α(TH − TC) (5)

where α = Seebeck’s coefficient of a thermocouple and S = Seebeck’s coefficient of a TEG.
Figure 2a can be simplified as Figure 2b. According to the applied temperature difference,
∆T, an electrical current, ITEG, flows to RL load resistance. Let RS_TEG is the internal
resistance of the TEG, then the electrical current through the TEG can be determined as:

ITEG =
VOC −VTEG

RS_TEG
=

[n× α(TH − TC)]−VTEG
RS_TEG

(6)

Now, the harvested power from the TEG, PTEG can be expressed by the equation below:

PTEG = VTEG × ITEG= VTEG ×
[
[n× α(TH − TC)]−VTEG

RS_TEG

]
(7)
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3. Proposed Hybrid Energy Harvesting System (HEHS)

HEHS contains two or more energy sources that may potentially include solar PV,
thermal, wind, piezoelectric-vibration, geothermal, hydropower, biomass, natural gas,
oil, coal, or nuclear energy [38–43]. The idea of HEHS has recently been explored in the
literature as a possible micro-power supply solution to reduce the size of the energy supply
and prolong the working life of the IoT enabled sensor applications. Researchers also
introduced a variety of HEHS to integrate numerous small-scale EH sources [44]. For these
approaches, each energy harvesting source needs a unique power control circuit to change
the power flow from the energy source to its output load or the sensor [45]. The concern
is that multiple of the expanded energy sources must raise the number of converters
used. Thus, the proposed HEHS needs only one single-power electronic converter with a
single low-power control circuit to simultaneously condition solar and thermal energies’
combined performance. By eliminating the usage of separate power storage units for
various energy sources, the number of components used in the HEH device is decreased,
and the shape, cost and power losses of the system are minimized. However, the proposed
approach may have an impedance mismatch between interconnected energy sources.
The equivalent electrical circuit of the proposed HEHS is shown in Figure 3.
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To block the inverted current flow, the solar PV modules output voltage, VPV is
connected to the load, VRL via a Schottky diode, DPV. Similarly, the TEG modules output
voltage, VTEG is directly connected to the load, VRL via another Schottky diode, DTEG.
The technical specifications of the two energy sources show that the output voltages are not
too low. If the proposed hybrid systems energy sources are connected in series, then the
total voltage will be increased. Thus, the energy sources are configured with a parallel
connection that enhances more current flow. From Figure 3, the load voltage and the load
current for the energy sources can be represented as:

VRL = VPV + DPV = VTEG + DTEG (8)

IRL = IPV + ITEG (9)

where VPV = load voltage, DPV = diode voltage, IPV = load current of the solar PV module,
respectively. VTEG = load voltage, DTEG = diode voltage, ITEG = load current of the TEG,
respectively. VRL and IRL are the hybrid load voltage and current, respectively. The diodes,
DPV and DTEG consume 0.2 V, each as the forward voltage drop. The solar PV power from
Equation (3) and TEG power from Equation (7) is combined. Then, the diodes power
losses are subtracted. Hence, the hybrid electrical power, PHEH throughout the HEH can be
expressed as:
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PHEH = PPV + PTEG

= VPV ISC −VPV Io

[
exp
(

VPV
NsVt

)]
+ VTEG ×

[
[n×α(TH−TC)]−VTEG

RSTEG

]
= VRL ISC −VRL Io

[
exp
(

VRL
NsVt

)]
+ VRL ×

[
[n×α(TH−TC)]−VRL

RS_TEG

] (10)

4. Experimental Setup and Methodology

Both simulation and hardware trial are effectively performed to verify the proposed
HEHS. MATLAB/SIMULINK 2020b platform is used for the simulation. Figure 4 shows
the proposed SIMULINK model with functional blocks of HEHS. The proposed model
includes the energy sources, filter circuit, boost converter with maximum power point
tracking (MPPT) technique [46–48]. The MPPT unit controls the pulse width modulation
(PWM) and operates the energy sources near the maximum power point (MPP).
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Solar and thermal energy sources are nonlinear; thus, energy storage can perform as a
supplementary power source at a steady level. In this work, a 0.47 F, 5.5 V SC is used on the
grounds of supremacy over the conventional battery, with more than half a million charging
cycles, 10–20 years of service life, high power capacity, etc. [6,25]. A buck-boost converter
circuit is used to deliver 3.3 V and 5.0 V to the IoT connected sensors. The ESP32 Wi-Fi
module operates at 3.3 V, and the sensors need 5.0 V to work. Figure 5 shows the functional
block diagram schematic of the proposed HEH prototype. A solar PV module and TEG
are connected parallelly to the hybrid energy harvester module ADP5091. The parallel
connection ensures the maximum power transfer from the energy sources to the energy
storage and the load. Since the occupied energy sources have few voltage ratings that are
not very low, they are not connected in series. The series connection will cause to increase
in input voltage. As the system is for a low power energy harvesting system, the input
voltage should be kept at a limit.
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Prototype Design

In this research, the integrated amorphous silicon solar cells from Panasonic So-
lar Amorton Co., Ltd., Tokyo, Japan is used. Figure 6a shows the AM-1454 solar PV
module. Table 4 tabulates the technical characteristics of the module which shows the
glass type module with four cells connected in series. The dimension of the module is
41.6 × 26.3 × 1.1 mm (width × length × thickness) with 3.0 g weight. The electrical prop-
erties are also mentioned under fluorescent light having a luminous intensity of 200 lux
and temperature of 25 ◦C. Figure 6b shows the TEG module of model number GM250-
71-14-16, from European Thermodynamics Ltd. (Leicestershire, UK) [49]. The schematic
structure of the TEG module is illustrated in Figure 6c. A heating source is located on top
of the module, then heated to the p-n junction. The bottom side of the module is covered
with a cold surface and a heat sink. Besides the strict feature of low-carbon emission,
compact structure, reliable performance, maintenance-free and noise-free operation of
this TEG module, the technical specifications are presented in Table 5. This module can
generate a maximum of 5.3 V with a maximum temperature of 250 ◦C and start functioning
at 25 ◦C. Three sensors, namely a moisture sensor (SEN0193), temperature and humidity
sensors (SHTC3), are used to design the wireless sensor network. SHTC3 uses proprietary
digital-signal-collecting-technique and humidity sensor technologies to ensure its efficiency
and stability. The sensor’s output is digitally calibrated, and the sensing components are
attached to a single-chip 8-bit device. The sensor in this model is temperature-compensated
and measured in an effective calibration chamber. The calibration-coefficient is stored in
the one-time programming (OTP) memory software form, and when the sensor is sensed,
the coefficient of memory is used. Small size and low consumption and long transmission
distance (20 m) make the SHTC3 suitable for all kinds of harsh applications. Single row
lined with four sticks, rendering the connection very easy. Figure 6d shows the SHTC3
sensor, which has four leg pins, including power supply (VDD) pin, signal pin, null pin
and ground (GND) pin. A capacitive moisture sensor having the model number SEN0193
is used. This sensor tests soil moisture levels by way of capacitive sensing rather than
resistive sensing. It is constructed of a material that is immune to rust, granting it an excep-
tional service period. An on-board voltage regulator is included in this module, giving it a
working voltage range of 3.3 V~5.5 V. Figure 6e shows the capacitive soil sensor of version
1.2 (v1.2). An intelligent integrated low-power energy management unit, ADP5091 from
Analog Devices (Norwood, MA, USA), is used to transform hybrid DC power from solar
PV and TEG modules. This energy harvesting module charges the supercapacitor and
distributes the harnessed energy to the sensor nodes as required [50].
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Table 4. Specification of solar PV module AM-1454.

Model
No. Substrate

Fluorescent Light at 200 lux Dimension
W × L × T

(mm)

Weight
(g)Voc

(V)
Isc

(µA)
Vope
(V)

Iope
(µA)

No. of
Cells

AM-1454 Glass 2.5 35.2 1.5 33.3 4 41.6 × 26.3
× 1.1 3.0

Table 5. Specifications of GM250-71-14-16 TEG module.

Parameter Value

Hot surface temperature 250 ◦C

Cold surface temperature 30 ◦C

Open circuit voltage 5.85 V

Maximum voltage 5.3 V

Maximum current 1.1 A

Output power 2.98 W

Dimension 30 × 30 × 3.8 (mm)
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Figure 7 shows the typical application circuit of the ADP5091 module that enables
effective conversion of the harvested minimal power from a range of 6 µW to 600 mW with
sub microwatt operational losses. The control unit starts to operate from 380 mV input
voltage with the internal cold starting circuit. After the cold start, the regulator runs at an
input voltage level from 0.08 V to 3.3 V. An external resistor divider or VID pin may be used
to set a control output of an extra 150 mA. The MPPT regulation maintains the input voltage
ripple within a defined range to ensure a reliable dc-to-dc boost conversion. Dynamic
sensing mode and no sensing mode, all programming control points of the input voltage,
enable the most energy to be extracted from the harvester. The programmable minimum
operational threshold allows shutdown to be boosted under low input conditions. The Low
Light Density (LLD) pin of the ADP5091 is the Minimum Operating Power (MINOP)
comparator output as a low light indicator for a microprocessor. The optional primary cell
battery can be attached and operated by an integrated power path control block, configured
to transfer the power supply from the energy harvester, the rechargeable battery, and the
primary cell battery. The ADP5091 is available in a 24-lead Lead Frame Chip Scale Package
(LFCSP) and is classified at −40 ◦C to +125 ◦C temperature range.
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In the prototype, an electric double-layer capacitor (EDLC), part number DDL474S0HF1ERR,
0.47 F, 5.5 V, supercapacitor (SC), is used. A high-speed 8-Bit bidirectional voltage-level
shifter module is used to match the varying logic level. Such as 5 V from sensor out-
put/Input port and peripheral modules of 3.3 V. The voltage level translation rate is 2 Mbps
(open-drain driving), 60 Mbps (push-pull driving @VCCA = 3.3V), VCCA voltage is 1.2 V–
3.6 V, VCCB voltage is 1.65 V–5.5 V and VCCA < VCCB. A voltage divider circuit is used to
reduce the output voltage, 5 V of the moisture level sensor, to 3.3 V as the input of the ESP32
module. ESP32, a hybrid Wi-Fi and Bluetooth module from Espressif Systems (Shanghai)
Co. Ltd., Shanghai, China, made this study more attractive to implement the wireless
sensor network [51]. This modules power usage is remarkably low relative to conventional
technologies. The module can operate well in industrial conditions, with temperatures
ranging from −40 ◦C to + 125 ◦C. ESP32 provides flexibility and durability with minimum
PCB specifications. This chip can operate as a complete stand-alone machine or as a slave
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computer to a host microcontroller unit (MCU), reducing the main application processors
overhead. ESP32′s SPI/SDIO or I2C/UART interfaces can communicate with other devices
and provide Wi-Fi and Bluetooth capabilities. The complete HEHS prototype with all the
components is shown in Figure 8.
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Figure 8. The complete prototype of TE-PV HEH device.

The experimental set up with the connection between all the components is shown
in Figure 9. Here, the energy sources in (1) and (2), energy harvester module in (3), SC in
(4), sensors in (5) and (6), Wi-Fi module in (7), IoT data communication in (8) are shown,
respectively. A 2460 source meter (KEITHLEY, Cleveland, Ohio, USA) shown in (9) is
used to measure the input voltage, current and power. The EDUX1002G digital storage
oscilloscope (Keysight, Santa Rosa, CA, USA) shown in (10) is used to measure and observe
the output signals. A Keysight 34465A 6 1

2 digit multimeter shown in (11) is used to
measure the charging voltage. A digital multimeter shown in (12) is used to measure the
supercapacitor output voltage.
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Figure 9. Experimental test bench: (1) AM-1454 solar PV module; (2) GM250-71-14-16 TEG module; (3) ADP5091 EH
module; (4) Supercapacitor (0.47 F, 5.5 V); (5) SEN0193 V1.2 capacitive soil moisture sensor; (6) SHTC3 temperature and
humidity sensor; (7) ESP32 Wi-Fi module; (8) IoT connection through serial monitor; (9) input voltage; (10) Oscilloscope
view of input voltage; (11) charging voltage; (12) SC voltage.
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5. Results and Discussion

A complete prototype of an ambient source-based HEH device is developed to operate
a few IoT-enabled sensors. The prototype is tested in the laboratory, and it showed the
desired result. Before the hardware implementation, the HEHS is designed and tested
in SIMULINK 2020b. Figure 10a shows the simulated output curve of the HEH circuit.
The generated voltage raises to 4.5 V maximum at 0.4 s time. Whereas, in the beginning,
the hybrid systems output power was 1.2 W and later, it provides constant power of around
0.5 W. Figure 10b shows the boost converter output voltage. Before delivering a constant
3.3 V to the SC, the charging voltage is fluctuating until 0.2 s. From 0.2 s, the converter
provides a constant 3.3 V charging voltage. Figure 10c shows the SC voltage, current and
state of charge (SOC%) characteristics. SOC of the SC reaches 100% within 0.6 s; the desired
output voltage level is 3.3 V, which can accomplish within 0.1 s. Later, SC provides a
constant 3.3 V continuously until the energy sources are available. The simulation shows
that the SC takes only 0.6 s time to full charge. In this study, only energy sources and
energy harvester part are simulated and tested.
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In the prototype, both solar cell and TEG are connected to the Vin (J11 pin) of the
ADP5091 HEH module. Vin is internally connected to the cold start charge pump and the
maximum power point tracking (MPPT) pin. The MPPT pin’s output is connected to the
boost controller, and the boosted voltage delivered to the BAT (J7 pin) of the HEH device.
The BAT pin is directly connected to the supercapacitor (SC). The minimum and maximum
input voltage of the ADP5091 is 0.8 V and 3.3 V, respectively. From the experiment, it is
shown that the SC starts to charge when the energy sources generate only 0.8 V. In the
investigation, the different input voltage level of 0.8 V to 3.2 V is tested. Figure 11a
shows the PV cell generated voltage at different light intensity. In indoor environment, at
minimum 50 lux of a LED lamp the PV cell can generate 0.63 V and at maximum 200 lux
the PV cell can generate 2.5 V. Figure 11b shows the TEG voltage at different temperature.
At minimum ∆T = 5 ◦C the TEG can generate 0.3 V and at ∆T = 13 ◦C the TEG generates
0.7 V. The value of ∆T is determining by, ∆T = TH-27 ◦C, where the cold side temperature
of TEG is similar as the standard room temperature 27 ◦C. Figure 11c shows the combined
voltages from the TEG and PV.

At the value of ∆T = 13 ◦C the TEG generates 0.7 V and at the maximum light intensity
of 200 lux the PV module generates 2.5 V. In this combination the proposed system produces
maximum 3.2 V. The complete charging state of the SC at a maximum of 3.2 V is shown in
Figure 12a. It is found that whatever the charging time is, the discharging time is almost the
same. Figure 12b shows the SC discharging voltage levels, starting from the full charged
level 3.81 V to discharge level 2.28 V per 5 s interval. The average discharging time is
recorded 92 s. Hence, the sensors and the IoT function can operate for 92 s uninterruptedly
without any energy sources.
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voltage versus time.

Figure 13a shows the SC charging voltage at different voltage level available from the
energy sources. Since solar power and thermal power are depends on light irradiance and
thermal gradient, respectively. Thus, the generated power from both the energy sources are
changes linearly based on the fluctuating irradiance and heat difference, respectively. In the
indoor environment, both sources generate low power. The combined voltages available
from solar and TEG has been taken and divided into different voltage level as 0.8 V, 1 V,
1.5 V, 2 V, 2.5 V, 3 V and 3.2 V. The voltage range 0.8 V–3.2 V is selected, based on the
operating voltage limits of the ADP5091. The generated power is stored in the SC through
the ADP5091 energy harvester. The SC delivers the required power to the IoT connected
sensors. It is observed that the proposed system takes the less charging time of only 17 s at
the maximum input voltage of 3.2 V. A maximum of 185 s is needed to charge the SC at
the minimum voltage level of 0.8 V. For measurement purposes, 3.8 V has been chosen as
the maximum charging voltage level of the SC. In the proposed device, in different input
voltages as 1 V, 1.5 V, 2 V, 2.5 V and 3 V, it takes 118 s, 62 s, 42 s, 27 s and 18 s, respectively.
Thus, the low input voltage takes a higher time to be charged from the experiment, and the
high input voltage consumed less charging time. Figure 13b shows the maximum charging
time versus discharging time per specific input voltage. The sensors send data to the IoT
server until the SC voltage level is 2.28 V. Below the charge level of 2.28 V, the SHTC3
sensor failed to connect to the server. The used SC takes 230 s time to discharge from
3.81 V to 1 V. It is observed that, at only 1.97 V~2.0 V, the moisture sensor started to operate
with data transmission. Still, the SHTC3 sensor started to operate; however, the power is
still insufficient to transmit the data. At the voltage of 2.28 V, SHTC3 transmit data to the
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internet server through the ESP32 Wi-Fi module. Thus, during the discharge, the SC can
power up the SHTC3 and SEN0193 sensors until 92 s (operates at 2.28 V minimum) and
120 s (operates at 1.97 V minimum), respectively.
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Figure 13. (a) charging voltages and the respective times in different input voltages; (b) SC charging
and discharging voltage versus time.

The temperature and humidity sensor SHTC3 consume 3.77 V, 0.005 mA and 18.85 µW
(0.00001885 W) power to run the sensor. The moisture sensor needs 3.76 V, 5.4 mA and
20,304 µW (0.020304 W). The sensors standby mode and data transmission mode total
20322.85 µW (0.20011885 W), (20.32 mW) power consumption is recorded. The experiment
found that data transmission per two-second interval, the SC back up the complete system
for 92 s. In this time, sensors can transmit 39 successful data strings to the webserver.
Faster or slower sensor data sampling rate can consume more or save power, respectively.
Thus, based on the available power or the state of charge of the device, it is also possible to
save SC power by regulating the data transfer interval, slower or faster the data sampling
rate. Proper resource optimisation depending on the data transfer rate, the sleep/wake-up
period of the sensors, can save the power that can be implemented in a future paper.

The developed IoT framework is functioning perfectly, and different steps are shown
in Figure 14a–c. Figure 14a shows the prototype device is interfaced to the smartphone
through IoT. If the device finds an available Wi-Fi network, it will be connected to the
nearest network; otherwise, it will activate the Bluetooth mode and be connected to
the smartphone. Figure 14b shows the live MQTT dashboard updating the sensor data
continuously. Figure 14c demonstrates the prototype is linked with the server, and the
captured data are displayed on the laptop serial monitor.
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6. Conclusions

A complete IoT-enabled HEHS has been developed for self-powered WSNs. The pro-
posed design is fully functional in both indoor and outdoor environments. Theoretical stud-
ies and the experiments are performed to verify the features of the integrated thermal and
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solar energy harvesting methods. The prototype HEH device has successfully integrated a
low-power HEH power management unit into the hardware prototype. The performance
and the sensing, monitoring and data transmission rate are analyzed. The power manage-
ment circuit with an MPPT-based fixed reference voltage system takes a maximum of 17 s
time to fully charge the SC. The SC backup the complete device for 92 s without any energy
sources. During this backup time, the sensors transmit 39 data string to the webserver at
a two-second interval. The HEH prototype can produce a minimum of 0.14 W at 0.8 V,
and 2.13 W at 3.2 V combined input voltage. The device can operate in a low-intensity
indoor light illumination of at least 50 lux (0.63 V), a low-temperature difference of TEG at
∆T = 5 ◦C (0.3 V) and high illumination of light at 200 lux (2.5 V) and ∆T = 13 ◦C (0.7 V),
respectively. This integrated HEHS is more effective than the traditional single energy
harvesting system. Therefore, the developed HEHS has the huge potential to be used for
comprehensive environment profiling, smart home applications, remote areas for long
term data collection, horticulture applications, etc.
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