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Abstract: This paper presents a novel multiple strong tracking adaptive square-root cubature Kalman
filter (MSTASCKF) based on the frame of the Sage–Husa filter, employing the multi-fading factor
which could automatically adjust the Q value according to the rapidly changing noise in the flight
process. This filter can estimate the system noise in real-time during the filtering process and adjust
the system noise variance matrix Q so that the filtering accuracy is not significantly reduced with the
noise. At the same time, the residual error in the filtering process is used as a measure of the filtering
effect, and a multiple fading factor is introduced to adjust the posterior error variance matrix in the
filtering process, so that the residual error is always orthogonal and the stability of the filtering is
maintained. Finally, a vibration test is designed which simulates the random noise of the short-range
guided weapon in flight through the shaking table and adds the noise to the present simulation
trajectory for semi-physical simulation. The simulation results show that the proposed filter can
significantly reduce the attitude estimation error caused by random vibration.

Keywords: robust filtering algorithm; MIMU; in-motion alignment

1. Introduction

With the development of Micro-Electro-Mechanical System (MEMS) technology, the
MEMS inertial measurement unit (MIMU) is gaining attention due to its integrability and
miniaturization in several fields such as guided weaponry, unmanned automatic vehicles
(UAVs), and robots [1–6]. As a dead-reckoning method, the initial alignment accuracy has
a vital impact to the final inertial navigation results, while there are only tens of seconds
for a tactical weapon. Thus, achieving rapid, accurate, and robust initial alignment is
essential to the application of the MIMU. As for the MIMU, it cannot detect the Earth’s
rotation properly with high gyro noise, so alignment methods for the high-accuracy Inertial
Navigation System (INS) are not suitable for it. A widely used method to achieve initial
alignment for the MIMU is to use an extra sensor to provide additional information as a
reference for initial alignment during the flight process. The in-flight alignment has been
investigated as one of the key technologies for guided weapons and UAV applications in
MIMUs in the past 10 years.

The numerous methods to solve in-flight alignment for the MIMU could be mainly
divided into two categories, namely the optimization-based approach and the Kalman
filter approach. The first one usually turns the problem of alignment into a Whaba’s
problem. To solve the problem, several algorithms have been developed, such as the
q-method, Quaternion ESTimator (QUEST), and Recursive QUEST (REQUEST) [7,8]. These
methods calculate the optimal quaternion by constructing the optimal observation vectors
through different filtering methods [9–13]. The latter method is to obtain the misalignment
angle between the navigation frame to the computing frame of the INS by constructing
an appropriate model for filtering. Owing to the nonlinearity of the misalignment model
and the large noise caused by environment, the nonlinear filtering methods occupy a
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great proportion of the in-motion alignment methods to achieve stability, accuracy, and
robustness.

In order to handle with the strong nonlinear system, several filtering methods based
on the Kalman filter have been proposed, such as the extended Kalman filter (EKF) [14,15],
unscented Kalman filter (UKF) [16–18], Gauss–Hermite quadrature filter (GHQF) [19,20],
sparse grid quadrature filter (SGQF) [21–23], and cubature Kalman filter (CKF) [24,25].
The EKF approximates the nonlinear model to a linear model through Taylor expansion to
deal with nonlinear problems. The advantage of this is that the filter structure is simple
and the Kalman filter framework can be directly applied. Fang proposed an innovative
adaptive extended Kalman filter method for the aerial alignment of airborne position and
azimuth measurement systems [14]. This method improves the real-time performance of
the algorithm and reduces the interference from GPS measurement noise. However, EKF
can only achieve first-order accuracy and cannot handle strong nonlinear problems. In
order to solve this problem, UKF is proposed. UKF assumes that the nonlinear system is
a Gaussian probability density function (PDF) distribution and creates a series of sigma
points based on the unscented transform rule to approximate the distribution of the
system. It can achieve the second-order Taylor expansion polynomial. Saman Mukhtar
Siddiqui applied the initialization process of the Central Difference Unscented Kalman
filter (CDUKF) to the square-root unscented Kalman filter and verified the advantages of
CDUKF in calculation time and accuracy in the on-board experiment to solve the alignment
problem of misalignment angles within 30◦ [26]. Wang Dingjie proposed an adaptive
unscented Kalman filter for a small UAV MEMS navigation system. With an initial error
angle of 30◦, the posture is completed in 75 s, which is more accurate than EKF and
traditional UKF [27]. However, there is also a problem: For systems with a dimension
higher than 3, the weight of the sigma points could be negative, and the filter process will
be unstable. As a matter of fact, this problem is caused by the Unscented Transformation
(UT) rule. To avoid the negativity of the sigma points, GHQF, SGQF, and CKF have been
proposed using different integrated rules rather than the UT rule, which not only solves the
mentioned problem but also maintains the accuracy of the second-order Taylor expansion.
The GHQF utlizes the Gauss–Hermite quadrature (GHQ) rule to conduct the filter process
with the quadrature sampling points that it can be accurate to the arbitrary order Taylor
expansion polynomial [23]. However, the drawback of the GHQ rule is that it needs a large
number of the sampling points due to the application of the direct tensor product. Thus,
the GHQF would also have problems in application in high-dimensional systems. CKF
with the cubature rule guarantees the positive weight, and its number of sampling points
is 2n. It could also achieve a higher accuracy while applying the high-degree cubature rule
with less computational burden [24]. Compared with CKF, the square-root CKF (SCKF) has
more advantage not only in convergence speed but also in calculation efficiency [25]. To
achieve a better performance of robustness during the in-flight process, we added several
methods, such as Sage–Husa noise statistic and fading factors, to the frame of SCKF.

The rest of this paper is organized as follows. An Optimisation-Based initial Alignment
(OBA) method based on the Rodrigues parameter for random misalignment angle is
introduced in Section 2, where the state model and the measurement equation are used
in the simulation. Then, the specific formulation of MSTASCKF is presented in Section 3.
In Section 4, a semi-physical simulation is carried out to evaluate the performance of the
proposed algorithm under the vibration condition. The alignment results are compared
with the conventional SCKF. Finally, the conclusions are drawn in Section 5.

2. Alignment Model for Random Misalignment Angle

In this section, a dynamic alignment model in the form of a random misalignment
angle [28] is introduced.

The coordinate systems are defined as follows:
Body frame (b-frame): The origin of the coordinate system is at the center of mass of

the carrier, the Y axis is the longitudinal axis of the carrier, the X axis points to the right
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of the carrier and is perpendicular to the Y axis, and the Z axis and X and Y axes form a
right-handed coordinate system.

Navigation frame (n-frame): The origin of the coordinate system is at the center of
mass of the carrier, the X axis points to the geographic north direction, the Y axis points to
the geographic east direction, and the Z axis points to the up direction.

Inertial navigation frame (in-frame): An inertial coordinate system, which coincides
with the initial navigation frame.

Inertial body frame (ib-frame): The inertial coordinate system, which coincides with
the body frame at the initial time.

The attitude matrix can be decomposed into three parts based on the chain rule as
follows:

Cn
b (t) = Cn

in(t)C
in
ib Cib

b (t) (1)

where Cn
in(t) Cib

b (t) denotes the time-varying transformation matrix from the in-frame to
the n-frame and the transformation matrix from the b-frame to the ib-frame, respectively.
Cin

ib is a constant transformation matrix from the ib-frame to the in-frame.
From Equation (1), we can see that the attitude matrix Cn

b (t) can be divided into
three parts:

Cn
in(t) represents the time-varying attitude due to the rotation of the n-frame caused

by the earth rotation rate and the vehicle’s transport rate related to earth, which can be
calculated with the change of latitude and the longitude.

Cib
b (t) describes the time-varying attitude due to the rotation of the vehicle from the

b-frame to the ib-frame, which can be computed with the angular rate measured by the
gyro. It is easy to derive the recursive form:

Cib
b (tk) = Cib

b (tk−1)C
b(tk−1)
b(tk)

, Cib
b (0) = I (2)

The Cb(tk−1)
b(tk)

represents the rotation of the b-frame from time tk−1 to time tk. It is
appropriate to assume the rotation is tiny while the sampling rate of INS is high.

Cb(tk−1)
b(tk)

= [I− (−ωb(tk))×] (3)

As for the last part, Cin
ib can be derived by solving the attitude determination problem

using the relationship between vectors:

Vin = Cin
ib Vib (4)

where the Vin and Vib are the integration of the specific force in the in-frame and the
ib-frame, respectively. We assume the specific force detected by accelerometer at time tk in
the ib-frame is given by following expression:

V̂ib(tk) = Vib(tk) + δVib(tk) (5)

where the δVib(tk) is the integration error of V̂ib(tk).
Equation (4) could be rewritten as:

Vin(tk) = Cin
ib (V̂

ib(tk)− δVib(tk)) (6)

The attitude matrix Cin
ib can be written in the form of the Rodrigues vector [29] as:

Cin
ib = [I + (l×)]−1[I − (l×)] (7)

where the l× is the skew-symmetric matrix of the Rodrigues vector.
Substituting Equation (7) to Equation (6) leads to:

V̂ib(tk)−Vin(tk) = (V̂ib(tk) + Vin(tk))× l + l × δVib(tk) + wtk (8)
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where the wtk is the inertial sensor error.
Defining the sum and difference as follows:

Dtk = V̂ib(tk)−Vin(tk), Stk = V̂ib(tk) + Vin(tk) (9)

We could obtain:
Dtk = Stk × l + l × δVib(tk) + wtk (10)

Equation (10) is the measurement equation of our filtering model. Once the optimal
estimation of the Rodrigues vector l is obtained, we can derive Cin

ib from Equation (7).
Considering the bias and the random noise of the gyro and the accelerometer, the

output of gyro and accelerometer can be derived as:

ω̂b = ωb + εb + wb
g (11)

f̂ b = f b +∇b + wb
a (12)

Referring to the error model of INS under n-frame, the error equation of the attitude
and velocity can be obtained:

.
ϕ

ib
= −Ĉib

b (ε
b + wb

g), ϕib(0) = 0 (13)

δ
.

V
ib
= − f̂ ib × ϕib + Ĉib

b (∇
b + wb

a), δ
.

V
ib
(0) = 0 (14)

The gradient of the Rodrigues vector is zero, since the attitude matrix Cin
ib is a constant

matrix. .
l = 0 (15)

The gyroscope drifts εb and the accelerometer bias ∇b are irrelevant with time, so we
can derive:

εb = 0
∇b = 0

(16)

The state vector was selected as follows:

X =
[

l ϕib δVib εb ∇b ]T (17)

3. Mstasckf Method

In this section, we demonstrate the algorithm design ideas and the overall process of
the algorithm. The algorithm was based on the frame of square-root Kalman filter and the
Sage–Husa noise estimator. The aim to our work was to add a criterion to the Sage–Husa
noise estimator to ensure the calculated system error variance remains positive, which
could make the filter stable. Besides that, a multiple fading factor was implemented to
make the residual orthogonal, which could accelerate system convergence and improve
the accuracy.

3.1. Sage–Husa Noise Estimator

The Sage–Husa filtering method was originally proposed by P.A Sage and G.W Husa
in 1969 [30]. The core idea of the algorithm is to construct a real-time filtered noise
statistic based on maximum a posteriori information (MAP) to count the system noise and
measurement noise in the filtering process.

For a nonlinear system as shown in (18):{
xk = f (xk−1) + wk−1

zk = h(xk) + vk
(18)

where the wk−1 and vk are the system noise and measurement noise, respectively. f (*) and
h(*) denote the nonlinear state model and measurement model, respectively.
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Definite the system’s posterior error variance matrix at the initial moment as:

P0 = E
[
(x0 − x0)(x0 − x0)

T
]

(19)

where the x0 is the mean value of the initial state vector x0. At time tk, assuming the
system noise qk, the measurement noise rk, the system noise covariance matrix Qk, and the
measurement noise covariance matrix Rk are unknown. The state quantity set and quantity
measurement set from the initial time to k time are, respectively, Xk = [x0, x1, · · · , xk],
Zk = [z1, z2, · · · , zk].

It can be seen from the Bayes formula that the probability of estimating the state vector
at time tk, the system noise, the measurement noise, and its noise variance matrix from the
measurement sequence from the initial time to time tk can be expressed as:

p(Xk, qk, Qk, rk, Rk|Zk) = J
= p(Zk|Xk, qk, Qk, rk, Rk)p(Xk|qk, Qk, rk, Rk)× p(Zk)

(20)

where p(Zk) has nothing to do with noise estimation. Then, (20) can be reduced to the
problem of solving the maximum value of probability density as follows:

p(Zk|Xk, qk, Qk, rk, Rk)× p(Xk|qk, Qk, rk, Rk)× p(qk, rk, Qk, Rk) (21)

Considering that Cov(qk, rk) = 0 and each measurement can be regarded as independent.

q̂k =
1
k

k

∑
j=1

[
x̂j|k − f j−1

(
xj−1

)]
(22)

Q̂k =
1
k

k

∑
j=1

[
x̂jk − f j−1

(
xj−1

)
− qk

]
×
[

x̂jk − f j−1
(

xj−1
)
− qk

]T
(23)

r̂k =
1
k

k

∑
j=1

[
zj − h

(
xj
)]

(24)

R̂k =
1
k

k

∑
j=1

{[
zj − h

(
x̂j|j−1

)
− rk

]
×
[
zj − h

(
x̂j
)
− rk

]T} (25)

When the noise changes with time, the filter estimates and measurements at the more
recent time can better reflect the current noise situation. Therefore, it is necessary to adjust
the weights of the filter estimates and measurements at different times in the noise statistics
process to obtain more accurate noise statistics.

Define the weighting coefficient set {λi}, λi = λi−1b, dk = 1−b
1−bk , i = 0, 1, 2, . . . , k, b

as a constant value between 0 to 1. Hence, we can derive a discrete noise estimator for
time-varying noise as:

q̂k = (1− dk)q̂k−1 + dk(x̂k −Φklk−1Xk−1) (26)

r̂k = (1− dk)r̂k−1 + dk
(
zk −HkX̂k/k−1

)
(27)

R̂k = (1− dk)R̂k−1 + dk

(
vkvT

k − HkPk|k−1HT
k

)
(28)

Q̂k = (1− dk)Q̂k−1 + dk

(
KkvkvT

k KT
k + Pk −Φk/k−1Pk−1ΦT

k/k−1

)
(29)

where Φklk−1 is the one-step prediction matrix from time k − 1 to time k and Hk is the mea-
surement model of the system. vk = zk − HkX̂k|k−1 − rk is the residual of the measurement
updating process.
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3.2. SCKF with Sage–Husa Noise Estimator

There is a problem when applying the Sage–Husa noise estimator to the SCKF frame.
Under the framework of square-root volume Kalman filtering, it is necessary to use the
Cholesky decomposition form of the system noise variance matrix and the measurement
noise variance matrix to perform filtering iterations during the filtering process [24], which
requires us to always obtain positive definite in the noise estimator. Otherwise, the filter
will be unstable.

Define the second part of (29) and (28) as:

Jq = KkvkvT
k KT

k + Pk −Φk/k−1Pk−1ΦT
k/k−1 (30)

Jr = vkvT
k − HkPk|k−1HT

k (31)

When the initial system noise covariance is positive, the sign of Q̂k is only related to
the sign of Jq, and the same situation occurs for R̂k. To ensure the stability of the filter, we
used the equation as follows to compute Q̂k and R̂k in the condition Jq < 0 or Jr < 0.

Q̂k = (1− dk)Q̂k−1 + dk

(
KkvkvT

k KT
k + Pk

)
(32)

R̂k = (1− dk)R̂k−1 + dkvkvT
k (33)

Unfortunately, when the covariance matrix is computed with (32) or (33), the result is
no longer unbiased. Thus, to make up to the accuracy loss caused by the bias, a multiple
fading factor was introduced.

3.3. Multiple Fading Factor Calculation

The multiple fading factors method is based on the orthogonality principle of the
residual. The computation process of multiple fading factors under SCKF could be summa-
rized as follows, and readers can refer to the methodology described by the authors of [31]
for more analysis and additional derivations.

Definite the multiple fading factor sequence as:

γk = diag[γk
1, γk

2, . . . , γk
n] (34)

where n is the dimension of the state vector.

γi
k =

{
γ0i

k , γ0i
k > 1

1, γ0i
k ≤ 1

i = 1, · · · , n (35)

γ0i
k =

tr[Nk]
n
∑

i=1
αi Min

k

(36)

Nk = Vk −
[

P(l)
xz,k|k−1

]T
[(

P(l)
k|k−1

)−1
]T

Qk−1

[(
P(l)

k|k−1

)−1
][

P(l)
xzk|k−1

]
− Rk (37)

Mk =
(

P(l)
k|k−1 −Qk−1

)[(
P(l)

k|k−1

)−1
][

P(l)
xz,k|k−1

][
P(l)

xz,k|k−1

]T
[(

P(l)
k|k−1

)−1
]T

(38)

3.4. MSTASCKF Update

Step 1: Initialization
Sk−1 = chol(Pk−1) (39)

where Sk−1 is the lower triangle matrix of the result of the Cholesky decomposition.
Step 2: Prediction
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In the prediction step, MSTASCKF computes the mean xk|k−1 and S(l)
k|k−1, the square-

root form of the associated covariance without the correction of the multiple fading factors,
using the cubature rule, in which each cubature point has the same weight.

Obtain the cubature points:

Xi,k−1|k−1 = Sk−1ξi + xk−1 (40)

Propagate the cubature points through the state model:

X∗i,k|k−1 = f
(

Xi,k−1|k−1

)
(41)

Estimate the predicted state:

xk|k−1 =
m

∑
i=1

ωiX∗i,k|k−1 (42)

X∗k|k−1 =
(√

ωi

(
Xi,k|k−1 − xk|k−1

))m

i=1
(43)

In the proposed algorithm, the weights of the cubature points are equal, which is
ωi =

1
n .

Square-root factor of the predicted error covariance:

S(l)
k|k−1 = qr

(
X∗k|k−1 SQk−1

)
(44)

where SQk−1 is the square-root of the system noise Qk−1 at time k − 1 and qr() is the QR
decomposition function to obtain the square-root factor of the matrix.

Step 3: Calculating the multiple fading factor
Obtain the cubature points:

X(l)
i,k|k−1 = S(l)

k|k−1ξi + xk|k−1 (45)

Propagate the cubature points through measurement model:

Z∗(l)i,k|k−1 = h
(

X(l)
i,k|k−1

)
(46)

Obtain the predicted measurement:

z(l)k|k−1 =
m

∑
i=1

ωiZ
∗(l)
i,k|k−1 (47)

Z∗(l)k|k−1 =
(√

ωi

(
Z(l)

i,k|k−1 − z(l)k|k−1

))m

i=1
(48)

S(l)
zz,k|k−1 = qr

(
Z∗(l)k|k−1 SRk

)
(49)

Pxz,k|k−1 = χ
(l)
k|k−1Z∗(l)k|k−1

T (50)

Obtain the multiple fading factor with (35)–(38) and adjust Sk|k−1 with multiple fading
factors:

Sk|k−1 −
√

γkS(l)
k|k−1 (51)

The l in the upper right corner of the symbol indicates that this quantity has not been
corrected by multiple fading factors.

Step 4: Measurement updating
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Create cubature points:

Xi,k|k−1 = Sk|k−1ξi + xk|k−1 (52)

Propagate the cubature points through measurement model:

Z∗i,k|k−1 = h
(

Xi,k|k−1

)
(53)

zk|k−1 =
m

∑
i=1

ωiZ∗i,k|k−1 (54)

Z∗k|k−1 =
(√

ωi

(
Zi,k|k−1 − zk|k−1

))m

i=1
(55)

Szz,k|k−1 = qr
(

Z∗k|k−1 SRk

)
(56)

χk|k−1 =
(√

ωi

(
Xi,k|k−1 − xk|k−1

))m

i=1
(57)

Pxz,k|k−1 = χk|k−1Z∗k|k−1
T (58)

Obtain the Kalman gain:

Wk = Pxz,k|k−1/Szz,k|k−1/Szz,k|k−1
T (59)

Update the state estimation:

xk = xk|k−1 + Wk

(
zk − zk|k−1

)
(60)

Obtain the square-root of noise covariance estimation:

Sk = qr
(

χk|k−1 −WkZ∗k|k−1 WkSRk

)
(61)

Step 5: Estimation of the noise covariance
Obtain Jq and Jr.
Compute the system noise covariance and the measurement noise covariance based

on the sign of Jq and Jr using (28), (29) or (32), and (33).

4. Semi-Physical Simulation Results and Discussion

In order to assess the performance of the MSTASCKF during the in-flight alignment
for GPS/MIMU under vibration, a semi-physical simulation is described in this section. A
trajectory maintaining the IMU data and GPS data of typical short-range guided weapon
was created, and an experiment to simulate the flight vibration was carried out to obtain
simulated vibration noise data. Then, the vibration noise was added to the IMU data
to simulate the vibration in-flight. The performance of MSTASCKF was compared with
the traditional SCKF, which validated the efficiency of the two strategies added in the
MSTASCKF.

4.1. Vibration Experiment

Guided weapons generally experience storage, transportation, and flight environ-
ments after their production cycle. During flight, the high-speed turbulent flow field
formed around the projectile due to high-speed flight induces complex vibration, overload,
high temperatures, and other environments [32]. The vibration environment has a greater
impact on the structure of the projectile and may even cause deformation of the projectile
or shedding of solder joints on the circuit board. The vibration of guided weapons during
flight can be divided into two categories: 0–2000 HZ, low-frequency noise excited by
vibration mainly transmitted by mechanical structures, and 10–10,000 HZ noise excited
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by frequency range. Among them, vibration excitation noise has an obvious effect on the
mass-spring structure, and excitation noise mainly has an obvious effect on the plate and
shell structure. Therefore, the main focus of this paper was the impact characteristics of
the frequency range 0–2000 HZ by vibration excitation noise on the output of the inertial
navigation system.

In order to obtain the output data of MIMU under the vibration environment, the
following random vibration test was designed. The power spectrum density and frequency
range of the vibration are as shown in the Figure 1. The experimental platform is shown in
Figure 2, which is composed of a MIMU (MTI-1 from the XSENS company), a vibration
table, and the tooling for the vibration table. The specification of the MIMU is listed in
Table 1.

Figure 1. The power spectrum density and frequency range of the vibration experiment.

Figure 2. The experimental platform.
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Table 1. Specifications of MTI-1.

Parameters Accelerometer Gyroscope

Dynamic range ±16 g ±2000◦/s
Update rate 100 Hz 100 Hz

Bias 3 mg 0.15◦/s
Bias stability 0.03 mg 10◦/h

Random walk 120 µg/
√

Hz 0.07◦/s/
√

Hz

Since the MTI-1 MIMU cannot be sensitive to the Earth’s rotation angular rate, its gyro
output under static conditions can be regarded as zero bias and random noise. Vibration
noise can be obtained by subtracting the average value of the data at rest when the vibration
table is turned on. Thus, the process of the experiment was arranged as in Figure 3 to
obtain both the static output and the vibration output of the three axes. The processed
vibration noise data in the experiment are shown in Figure 4.

Figure 3. The vibration experiment process.

Figure 4. The vibration noise data of the vibration experiment of each axis.

4.2. Simulation Condition

Generally, the flight time of short-range guided weapons is within 60 s, and the flight
distance is within 20 km. According to the trajectory characteristics of short-range guided
weapons, the trajectory attitude and speed used in the semi-physical simulation are shown
in the Table 2. The attitude and the velocity of the trajectory are shown in Figure 5.
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Figure 5. The real-time trajectory of the simulation. (a) The real-time attitude of the simulated trajectory. (b) The real-time
velocity of the simulated trajectory in the direction of east, north, and up, respectively.

The trajectory was set for 30 s, and the initial attitude angle was set as ψ = 60◦,
θ = 45◦, γ = 0◦, representing the yaw, pitch, and roll, respectively. The yaw change was
positive from north to east and negative from west to north, the pitch change was positive
from the horizontal section of the projectile upward and negative from the downward
direction, the hour hand was positive and the counterclockwise was negative, and the
projectile speed was the projectile speed at the end of the current time period.

Table 2. The specific value of the attitude and velocity used in the trajectory.

Time Yaw Change Pitch Change Roll Change Speed

1–3 s 5◦ 0◦ 0 200 m/s
4–17 s −30◦ −45◦ 0 135 m/s

18–30 s 25◦ −45◦ 0 50 m/s

In the simulation, the three-axis gyro data were all added with a 100◦/h bias. The
speed error of the GPS was 0.1 m/s. Thus, the initial state covariance was set as follows.{

P0 = P0 ⊗ I3

P0 = diag
([

Pl , P
ϕib , P

δVib , Pε, P∇
]) (62)

where Plj
= (1)2, P

ϕ
ib
j
= (1e− 4′)2, P

δV
jb
j
= (0.1 m/s)2, Pε j =

(
100

◦
/h
)2, P∇j = (3 mg)2,

R = diag
([

0.1 0.1 0.1
]2).

4.3. Simulation Results under Vibration Noise

The in-flight alignment progresses were calculated using MSTASCKF and traditional
SCKF, respectively. The attitude error is shown in Figure 6. The specific value of the
estimated attitude error and its RMS of the proposed method and SCKF is shown in
Table 3.
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Figure 6. The attitude error comparison between MSTASCKF and SCKF.

The figure shows that the MSTASCKF has an advantage in convergence speed in
the alignment process. The estimation of yaw, pitch, and roll converged within 15 s and
finally reached the accuracy of 0.08◦, 0.05◦, and 0.25◦, respectively. The SCKF had a
worse performance, which can be easily observed as it converged slower and only met the
accuracy of −2.85◦, 0.95◦, 1.65◦ for the yaw, pitch, and roll under the vibration noise.

To further compare the stability of the MSTASCKF and SCKF, the RMS of the attitude
is shown in the Figure 7.

Figure 7. The RMS of the attitude error of MSTASCKF and SCKF.

We can see that the proposed method had a better RMS performance than the SCKF.
The RMS values of the three attitudes of MSTASCKF and SCKF at the end of the alignment
process were

[
1.13◦ 0.14◦ 5.35◦

]
and

[
2.5◦ 0.99◦ 6.12◦

]
, respectively. The RMS
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of the yaw and roll was much larger than the pitch. This was caused by the estimation
scheme, since the MSTASCKF and SCKF had the same trend. The first estimation of roll
and pitch had such a large deviation that the subsequent RMS value was affected.

In fact, the main metrics of alignment performance was the final accuracy at the end
of the alignment process rather than the accuracy during the process.

Table 3. The attitude error and RMSE comparison between MSTASCKF and SCKF.

MSTASCKF SCKF
Attitude Error RMS Attitude Error RMS

Yaw 0.08◦ 1.13◦ −2.85◦ 2.5◦

Pitch 0.05◦ 0.14◦ 0.96◦ 0.99◦

Roll 0.25◦ 5.35◦ 1.66◦ 6.12◦

The attitude error is shown in the Table 4 when the alignment time was limited to
10 s and 20 s. These data could also show that the MSTASCKF had an advantage in the
convergence speed and the estimation stability.

Table 4. Thea attitude error comparison between MSTASCKF and SCKF when the alignment time
was 10 s and 20 s.

Attitude Error
MSTASCKF SCKF

Time 10 s 20 s 10 s 20 s
Yaw 0.29◦ 0.15◦ −1.60◦ −2.73◦

Pitch −0.02◦ −0.08◦ 0.82◦ 1.25◦

Roll 0.32◦ 0.19◦ 2.89◦ 2.05◦

4.4. Discussion

In this section, a semi-physical simulation for in-flight alignment under vibration
noise was carried out to evaluate the performance of the proposed algorithm. Compared
with conventional SCKF, it is apparent that the proposed method had a better performance
not only in the convergence speed in the beginning of the process but also in the accuracy
and steady state. For the proposed filter, the results are as follows.

We proposed a robust SCKF algorithm, which could significantly increase the in-flight
alignment accuracy under the vibration noise.

Compared with conventional SCKF filter, the estimation performance was better. The
attitude error was smaller and the RMS was also smaller. The convergence time of the
proposed method was no longer than 10 s. Thus, the proposed method can meet the
rapidity and accuracy requirements of in-flight alignment.

5. Conclusions

The rapid and accurate in-flight alignment has a vital impact on the performance
of the guided weapon applied MIMU. To improve the in-flight alignment performance
of MIMU/GPS system under flight vibration, this paper proposed a MSTASCKF filter
based on the Sage–Husa noise estimator and multiple fading factors. The filter solved
the instability problem of SCKF caused by the Sage–Husa estimator and improved the
accuracy. The main work of this paper was as follows.

An experimental vibration environmental test was conducted to maintain the simu-
lated vibration noise data during the flight and a semi-physical simulation was carried
out to evaluate the performance of the proposed algorithm. The filtering method had an
advantage in the convergence speed, accuracy, and stability compared to SCKF.
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