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Abstract: The paper addresses the problem of using machine learning in practical robot applications,
like dynamic path planning with obstacle avoidance, so as to achieve the performance level of
machine learning model scorers in terms of speed and reliability, and the safety and accuracy level of
possibly slower, exact algorithmic solutions to the same problems. To this end, the existing simplex
architecture for safety assurance in critical systems is extended by an adaptation mechanism, in
which one of the redundant controllers (called a high-performance controller) is represented by a
trained machine learning model. This model is retrained using field data to reduce its failure rate
and redeployed continuously. The proposed adaptive simplex architecture (ASA) is evaluated on the
basis of a robot path planning application with dynamic obstacle avoidance in the context of two
human-robot collaboration scenarios in manufacturing. The evaluation results indicate that ASA
enables a response by the robot in real time when it encounters an obstacle. The solution predicted
by the model is economic in terms of path length and smoother than analogous algorithmic solutions.
ASA ensures safety by providing an acceptance test, which checks whether the predicted path crosses
the obstacle; in which case a suboptimal, yet safe, solution is used.

Keywords: simplex architecture; path planning; machine learning; real time; obstacle avoidance

1. Introduction

Robot applications involve motion planning problems, for many of which there exist
machine learning (ML) model-based approaches (e.g., collision-free path and trajectory
planning, assembly, bin picking and placing, etc.). Although ML is typically used when a
computational algorithm does not exist or would be impractical (e.g., due to complexity of
error proneness), ML-based solutions to problems that allow computational algorithms
provide advantages in terms of performance thanks to the time-efficiency of machine learn-
ing model scorers (i.e., algorithms that process trained ML models to produce predictions
for given inputs).

Motivation. Collaborative robot applications can especially benefit from employing
fast ML models for motion planning with dynamic collision avoidance (e.g., with body
parts and other moving objects). Yet, safety concerns currently prevent the use of ML-based
motion planning models in practical collaborative robot applications [1]. As opposed to
deterministic computational algorithms, ML models cannot ensure solution correctness
in all conceivable situations, especially for cases that are outside the scope of the training
data [1,2]. To illustrate this, we consider the motivating example of dynamic obstacle
avoidance, which requires (re)planning robot motion paths in a potentially unbounded
search space to avoid collisions with (moving) obstacles. Depending on the shape and
dynamics of the obstacles, optimal computational solutions to this problem may perform
poorly in terms of execution time, whereas ML models cannot ensure correctness and
optimality for every possible input case.

Problem. Against this background, this paper addresses the question of how to use
ML solutions in practical robot applications so as to achieve the performance level of the
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ML solution in terms of speed and reliability, and the safety level and accuracy of the
algorithmic solution at all times. This basic formulation of the problem is similar to that of
the simplex architecture (SA) [3] illustrated in Figure 1. In the original SA, a system (i.e.,
plant) can be controlled by a high-assurance (HA) and a high-performance (HP) controller
or control subsystem. The HP has a higher performance at the cost of higher complexity
and, thus, lower reliability. The HA is a simpler and more reliable control subsystem, which
is certified together with the decision logic. The SA initially uses the HP and checks if its
output is safe by asserting that it is within a so-called recovery region, in which the system
operates safely. If that is not the case, the decision logic permanently switches to the output
of the HA. The HP is reactivated when the system is restarted or after a service upgrade.
The main advantage of using the SA in safety critical systems is that one only needs to
certify the HA and the decision logic, while being able to use an optimal, yet less reliable,
HP most of the time during operation. The key element of the SA is the decision logic used
to determine whether the HP’s output is within the recovery region.
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Contribution. The original simplex architecture is extended by a dynamic adaptation
mechanism, which allows it to leverage the potential of ML models without compromising
safety. The proposed adaptive simple architecture (ASA) improves on the original SA
architecture by (i) extracting an acceptance test (AT) from the decision logic, which tests the
output of the HP and passes the test verdict to the decision logic, (ii) using a trained ML
model as the HP control subsystem or program, (iii) using operational data to continuously
improve the ML model during operation, (iv) updating the ML model used as the HP
continuously, and (v) dynamically switching between the HP and SA at runtime, depending
on the AT verdict. To evaluate the ASA, a neural network model for path planning is used
as the HP planner and a simple, reliable, and fast path planning algorithm as the HA
planner. The ML model is trained on a machine learning platform using an optimal, yet
slow, path planning algorithm. In operation, the ML model is improved by adding the
input cases for which it fails to the training set. The HP is updated at the runtime whenever
an improved ML model becomes available. The ASA thus ensures that the path planning
module performs (1) as reliably as the computational path planning algorithm used as the
HA, (2) as fast as the ML model scorer used as part of the HP, and (3) nearly as optimally
in terms of accuracy as the optimal path planning algorithm used to train the ML model.
Thanks to the second property, the ASA is suitable for motion planning scenarios in which
frequent replanning is required (e.g., for dynamic obstacle avoidance).

Evaluation. The ASA is evaluated on the basis of a dynamic obstacle avoidance
application for a generic six degrees of freedom (6-DOF) manipulator and a moving
obstacle. To this end, a smooth path planning algorithm based on minimizing the length of
a Lamé curve (i.e., super ellipse) around an obstacle is introduced and used to train a ML
model, which is used as the HP planner in the ASA. The HA planner is represented by a
fast and safe heuristic used to optimize the Lamé curve parameters. The proposed ASA
and dynamic obstacle avoidance algorithm are implemented on top of an open source, web-
based 6-DOF robot simulator [4], which is available online [5]. As part of the evaluation,
two human–robot collaboration (HRC) scenarios from the manufacturing domain are
considered as potential use cases of the proposed ASA. In these scenarios, the emphasis is
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put on increasing the flexibility of HRC in manufacturing without compromising safety.
The performances of the proposed path planning method are compared to those of four
other state-of-the-art methods. The proposed approach is validated experimentally using a
Universal Robot 5 6-DOF robot in the Industry 4.0 Pilot Factory of the Vienna University of
Technology, Vienna, Austria.

The paper is structured as follows: Section 2 discusses different approaches that are
related to the methods introduced in this paper. Section 3 introduces the adaptive simplex
architecture in more detail. Section 4 introduces an application of the proposed ASA to
path planning with dynamic obstacle avoidance for a 6-DOF robot. Section 5 presents an
evaluation of the approach. Section 6 discusses the results obtained during the evaluation,
as well as the limitations of the proposed approach. Section 7 concludes the paper by
highlighting the novel and useful aspects of the proposed approach.

2. Related Work
2.1. Simplex Architectures in Robotics

Different versions of the SA have been used in robotic applications for autonomous
vehicle [6–8] and drone flight path planning [9]. Where, in reference [9], the original SA is
used, the other approaches use ML models as the HP planners. In references [6] and [7],
convolutional neural networks are trained using images of a vehicle circuit track and
deployed as the HP planner. The HP planner, however, is not updated at the runtime. In
reference [9], a motion planning algorithm from the Open Motion Planning Library is used
as the HP planner for a surveillance drone. In references [8] and [9], reinforcement learning-
based HP planners are used for autonomous vehicle path planning. In reference [8],
the so-called neural simplex architecture (NSA) is introduced, which is similar to the
proposed ASA. The NSA uses a deep neural network and reinforcement learning with
rewards and penalties to train a ML model that is used as the HP planner in a rover
navigation application with static obstacle avoidance. The NSA switches from HP to SA
upon encountering an unrecoverable HP output, during which the ML model is retrained
using an initial training set to which the data collected during the operation are added. The
additional data contain both successful and unsuccessful cases. After retraining, a new ML
model is deployed as the HP planner, and the control is switched back from the HA to HP.

ASA differs from NSA [8] in several significant ways. ASA uses a deterministic path
planning algorithm (rather than a stochastic random walk heuristic) to generate training
data for the supervised training of a feedforward neural network (or any other suitable
ML method). This leads to simpler models, which require fewer training samples (i.e.,
~10,000 samples in the case of ASA rather than ~one million samples in the case of NSA).
In ASA, the ML model is retrained only using the cases that fail the acceptance test, thus
further reducing the size of the training set. Regardless of the performance of the HP
planner and the state of retraining, the ASA continuously switches back and forth between
the HP and HA, because each output of the HP is subjected to a fast AT. Hence, the
performance of the ASA in terms of speed is maximized, provided that ML model scoring
is faster than the HA (which is the case in curve-based path planning).

In reference [1], the authors note that deep learning methods can produce unsafe
predictions for inputs that were not covered by the training process. To tackle this issue,
these authors proposed an autoencoder-based anomaly detection method that supervises
the input and output of the model and reverts to a safe prior behavior (e.g., limiting the
speed such that the robot can stop within the known free space) when a new, potentially
hazardous situation is detected. Reference [1] differs from the proposed ASA approach in
that it uses machine learning models both for high-performance, self-improving navigation
and for switching to a safe behavior. By contrast, ASA uses a reliable deterministic (rather
than probabilistic) acceptance test and a simple and reliable algorithmic alternative for the
high-assurance controller (i.e., path planner). This allows the ASA to use machine learning
in safety critical applications, which are subjected to safety certifications.
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2.2. Machine Learning Approaches to Motion Planning with Obstacle Avoidance

Machine learning approaches have been proposed for mobile robot navigation with
collision avoidance. Convolutional neural networks (CNN) [10] and reinforcement learn-
ing [11] are used for indoor obstacle avoidance. The CNN takes, as input, raw images
and produces control commands, whereas, with deep reinforcement learning, there is
no need for manually designed features and prior demonstrations to train the model.
In reference [12], training data are generated using a simulation environment that takes
into consideration physical interactions to implement deep reinforcement learning for
mobile robot navigation. Reinforcement learning is also used in references [13] and [14] for
navigation in complex dynamic environments.

In the case of robot arms (i.e., serial manipulators), the current approaches to obstacle
avoidance use various combinatorial search strategies to find suitable robot poses along a
trajectory, e.g., evolutionary algorithms [15,16], different versions of the Rapidly Exploring
Random Tree method [17–20], etc. The common aspects in these approaches are that
they take into consideration the potential collisions of all the joints of the robot with the
obstacle(s), and, in so doing, they require repeated computations of inverse kinematics for
a high number of robot poses resulting from the different combinatorial search strategies
being used. As a result, these approaches have high computational demands, which leads
to slow robot reactions to moving obstacles. To accelerate the trajectory planning for
serial manipulators in the presence of (dynamic) obstacles, there exist approaches that
leverage different machine learning techniques. In reference [21], the authors propose a
reinforcement learning-based strategy for 6-DOF manipulators, which starts with planning
an obstacle avoidance path for the terminal element of the manipulator (e.g., tool center
point (TCP)). Subsequently, different robot poses are tested along this path so as to avoid
collisions between any of the robot joints and the obstacles. In references [22,23], a method
for printing onto unknown and arbitrarily shaped 3D substrates using a 6-DOF manipulator
is introduced. Part of this challenge consists in planning a toolpath that follows the surface
of the substrate, which entails avoiding collisions with the surface while maintaining a
constant distance from it. This is useful, e.g., for landscape architecture models. To this
end, a Universal Robot 10 arm endowed with an “eye-in-hand” RealSense D435 is used.
To support the 3D printing process in real time, a neural network is trained, which relates
the position and size of a generic obstacle to a set of poses the robot needs to take in
order to avoid collision with that given obstacle [23]. In reference [24], a Q-learning-based
approach (i.e., a kind of reinforcement learning) is proposed for solving the robot arm path
planning problem while accounting for joint motions, whereby approximate regions are
used to define the new state space and joint actions instead of accurate measurements. In
reference [25], an approach based on regenerative recurrent neural networks is proposed
for solving the collision-free maneuvering problem for generic many-joint arms of up to
80 joints. The so-called Soft Actor-Critic with Hindsight Experience Replay (SAC–HER)
method [26] uses reinforcement learning to plan trajectories for a dual 3-DOF arm robot.
The planning occurs jointly for both robots, as if they were part of the same entity. As
a result, the planning is performed for 6-DOF. A similar Soft Actor-Critic (SAC)-based
method [27] extends the SAC–HER approach by using a dual 7-DOF arm robot. Due to
the complexity of the problem, this method does not always succeed in producing a viable
path due to self-collisions and other issues.

The approach proposed in this paper to dynamic obstacle avoidance uses a simple
machine learning approach based on the multilayer perceptron (a basic type of artificial
neural network) technique to estimate, in real time, the parameters of a Lamé curve
representing an obstacle avoiding toolpath between origin and target. The proposed
method does not take the joint positions of the 6-DOF robot into account. Instead, it
introduces the following constraints: (i) the orientation of the tool is fixed during the
movement so as to eliminate two degrees of freedom, (ii) the path is planned in 2D space in
a projection plane so that the robot can either avoid obstacles in the horizontal (i.e., ground)



Sensors 2021, 21, 2589 5 of 27

or a vertical plane (i.e., orthogonal to the ground) that contains the origin and target points,
and (iii) the access to the robot is physically restricted to a safe collaboration zone.

2.3. Iterative Learning and Model Predictive Control-Based Method

In reference [28], the problem of path tracking of industrial robots is addressed. The
algorithm corrects a preplanned path through a new iterative learning control (ILC) method
called the calibration based ILC, which identifies the kinematic parameters along the path
in a workspace. In reference [29], a trajectory planning method, which tracks the movement
of a human operator, is proposed. Through initial learning by demonstration, the behavior
of the robot evolves into a cooperative task, where the human coworker is allowed to
modify the motion trajectory and speed. As a result, bimanual human–robot collaboration
applications can be implemented. In reference [30], a robust cascade path-tracking control
method is proposed, which achieves good positional control performances for 6-DOF
industrial robots. The method seeks an optimal solution for tracking the desired position
profiles accurately and robustly. The model predictive control-based algorithm introduced
in reference [31] uses the distance between the end effector and one or several moving
obstacles to plan a feasible trajectory for a 6-DOF robot. Intuitively, this approach comes
close to the basic idea behind the path planning method proposed in this paper. However,
in reference [31], closed-loop control rather than machine learning is used.

2.4. Analytic, Curve-Based Path Planning Methods

Analytic, curve-based path planning methods [32] represent an alternative to the
heuristic path planning methods discussed before. The solution entails finding a curve
equation that, when plotted, avoids any obstacles between the origin and target locations.
In reference [33], a method is proposed that leverages support vector machines (SVM) to
generate a smooth collision-free path between two points in 2D or 3D space. The SVM is
used to classify the obstacles’ points in two clusters. The results are then used to fit a curve
(i.e., a smooth path) between the points from the two classes (i.e., the two clusters). The
average planning time achieved by this method for one obstacle is 175.8 ms (for the scoring
the SVM) and 3.3 s for generating a path on an unspecified computer from the early 2000s.
Other approaches use parametric curves, such as Bezier [34,35] or Clothoid [36] curves, to
generate collision-free paths for mobile robots and vehicles. These parametric curves are
flexible and can be used to generate collision-free paths in complex environments. In this
paper, the Lamé curve, which has a simpler expression than the Bezier and Clothoid curves,
is used. In addition, the Lamé curve has a fixed set of parameters that can be optimized for
a given obstacle shape. This allows to train a ML model able to estimate these parameters
more easily. In robotics, the Lamé curve has been used in smooth trajectory planning for
parallel [37] and delta [38–40] robots. In this paper, we apply the Lamé curve to compute
smooth collision-free toolpaths for an industrial robot arm.

3. The Adaptive Simplex Architecture

This section describes the extensions to the original AS architecture shown in Figure 1
that allow the use of a ML model for motion planning as the HP planner and the continuous
adaptation of that model during runtime. The proposed adaptive simplex architecture
(ASA) is shown in Figure 2. The ASA is implemented as a software module, which is
invoked using a command to generate a collision-free motion plan, be it a path or trajectory.
ASA uses an acceptance test (AT) as the decision logic, which uses sensor data to assert that
the motion plan fulfills all the requirements of the application, notably in terms of safety
and reliability (e.g., a collision-free path or trajectory). If the HP plan passes the acceptance
test, it is forwarded to a Plan Execution Module. Otherwise, the HA plan generated by
a simple, suboptimal, yet robust motion planner is forwarded to the execution module.
The inputs for which the HP planner fails the AT are added by the Data Collector to the
ML model training set managed by a Machine Learning Platform (i.e., a computational
environment that is external to the robot’s controller). As a result, the training set is
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extended by new input cases. When a sufficient number of new input cases that fail the AT
are collected, an improved ML model is trained using the extended training set. When an
improved ML model becomes available, it replaces the current ML model used by the HP
Planner during runtime.
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In the following, the key aspects and components of the proposed ASA are described
in more detail.

Model Training and Runtime Adaptation

The original SA switches control from the HP controller to the HA controller perma-
nently upon the first violation of the recovery region in order to ensure the safety of a
critical system (e.g., an airplane). By contrast, the ASA emphasizes performance while
maintaining safety. Therefore, it switches dynamically back and forth between the HP and
HA planner. This dynamic behavior is facilitated by a reliable acceptance test (AT), which
is capable of checking whether the HP planner’s output is correct and, therefore, safe.
The purpose of emulating motion planning algorithms using ML models is to speed up
the generation of motion plans during runtime thanks to the low algorithmic complexity
of model scoring compared to that of heuristic, graph-based motion planning. Since a
ML model may provide correct predictions for some inputs and incorrect predictions for
others, the goal is to maximize the use of the faster HP planner while maintaining safety.
An optimal, yet possibly slow computational motion planning algorithm can be used to
train a ML model that is used as the HP planner, whereas a simple, fast, and reliable
motion-planning algorithm can be used as the HA planner. This latter algorithm can be a
faster, less accurate version of the same algorithm that is used to train the ML model.

Figure 3 illustrates the procedure by which a ML model (denoted as fML) is first
trained using an optimal computational motion planning algorithm (denoted as fopt), then
deployed as a HP planner, then retrained using an extended training set and updated
during runtime. An expert generates a first training dataset using fopt. These data are used
to train a first version of fML, which is deployed as the HP planner. During operation, the
input cases that fail the AT are collected and sent to the Machine Learning Platform. For
every new input case, fopt is run to produce a complete training record, which is added
to the training set. Using the extended training set, a new fML is retrained, e.g., at regular
intervals or whenever the amount of new input cases justifies retraining. Over time, the
reliability of fML improves, and the retraining process can be suspended when the reliability
of the model has reached a satisfactory level. Retraining can be resumed when the system
encounters a new situation that requires it to continue learning.
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In the next section, the main features of the ASA are illustrated based on a dynamic
path planning application with obstacle avoidance.

4. Application

To evaluate the adaptive simplex architecture, a dynamic path planning application
with obstacle avoidance for a 6-DOF manipulator is considered (see Figure 4).
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The moving obstacle can take arbitrary shapes and be composed of one or more
distinct objects. It is assumed that a 3D sensor generates a point cloud around which a 3D-
bounding box (or bounding volume) aligned with the axes of the robot’s base coordinate
system is computed. The point cloud and the bounding box are updated in real time to
facilitate collision avoidance through fast path replanning. The path is computed in the
robot’s base coordinate system with respect to the robot’s tool center point (TCP). Given an
origin and a target point, the problem consists of finding a smooth toolpath that avoids a
moving object while minimizing the length of that path. Smooth toolpaths facilitate the
computation of smooth trajectories, which help to mitigate joint stiffness and overshoot,
and to reduce extra strain on robot actuators [41]. Shorter paths also reduce wear and
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energy consumption. Some authors note that path smoothness is a factor in the social
perception of robots, with smoother paths being more acceptable [42].

To solve this path planning problem, an analytic solution based on Lamé curves is
considered. Within the scope of this work, the advantage of an analytical approach, which
can be formulated as a parameter optimization problem, over a heuristic, graph-based
approach is that the former facilitates a simple formulation as a machine learning problem
with practical applicability in human–robot collaboration scenarios.

Figure 5 shows the Lamé curve equation and the different shapes that it can take,
depending on the a, b, and n parameters. Assuming that the path from an origin point to a
target point in the robot’s base coordinate system intersects an obstacle (see Figure 4), the
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∑N−1
i=1

√
(x′ i+1 − x′ i)

2 +
(
y′ i+1 − y′ i

)2
)

, where

x′ i = b
(

1−
∣∣∣ x′ i

a

∣∣∣n) 1
n

, x′origin ≤ x′ i ≤ x′target

subject to
∣∣∣ x′

a

∣∣∣n + ∣∣∣ y′
b

∣∣∣n < 1, (x′, y′) ∈ B.

(1)
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In Equation (1), N denotes the number of discrete segments along the elliptical path
between the origin and target, as illustrated in Figure 6, and B denotes a set of representative
points on the bounding box, as shown in Figure 6. The representative points on the 2D-
bounding box in Figure 6 coincide with the intersection points on the 3D-bounding box
illustrated in Figure 4. In Figure 6, when the obstacle is avoided in a vertical plane, the
Y′-axis corresponds to the Z-axis in the robot’s base coordinate system. In general, the
coordinate system in Figure 6 corresponds to the plane in which the curve is drawn, with
the origin and target points lying on the X-axis of that coordinate system.
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As the obstacle moves, the Lamé curve parameters b and n have to be recomputed in
real time so as to satisfy Equation (1). To this end, at every step i, with 1 ≤ i < N, a new
Lamé curve is generated, which satisfies the condition that all representative points of
the bounding box be inside the curve. As a result, the toolpath will adapt to the current
position and size of the bounding box around the obstacle.

4.1. Optimal Algorithm for Determining the Lamé Curve Parameters

Given the input set I = (x′origin, x′target, x′1, y′1, x′2, y′2), which describes the current
position of the TCP, the position and size of the obstacle, and the target in the section plane
from Figure 6, an optimal computational solution to the minimization problem Equation
(1) can be implemented using a backtracking algorithm (see Algorithm 1). This algorithm
iterates through all discrete combinations of the b and n parameters of the Lamé curve,
which do not violate the inequality in Equation (1), and computes the arc length resulting
from each solution. The inequality is checked in the function test, and the arc length is
computed in evalArc. These functions do not take as parameters the origin and target
of the motion, because Algorithm 1 operates with x′origin = 0 and x′target = 100, whereas
x′origin and x′target are scaled during runtime to match the origin and target of the planned
robot motion.

For small b_step and n_step values (e.g., 0.1 or lower), Algorithm 1 produces nearly
optimal solutions with respect to the arc length, albeit at the cost of a high running time.
Therefore, Algorithm 1 is run with small values for b_step and n_step only on the machine
learning platform to produce training data. For small step values, Algorithm 1 corresponds
to fopt in Figure 3. When Algorithm 1 is used as the HA planner, the two-step parameters
need to be set to larger values (e.g., b_step = 2 and n_step = 0.5) in order to keep the running
time low and, thus, to prevent jerky movements.

Algorithm 1: Lamé curve parameter optimization.

Input: x′1, y′1, x′2, y′2, b_step, n_step
Output: b, n
1. best_b = −1, best_n = −1, best_arc = 104, n = 10
2. do

a. n = n − n_step
b. b = max(y′1, y′2) + 50
c. do

a. b = b − b_step
b. t = test(x′1,y′1,x′2,y′2,b,n)
c. if t < 1

1. arc = evalArc(b,n)
2. if arc < best_arc

a. best_arc = arc
b. best_b = b
c. best_n = n

d. while b > max(y′1, y′2) and t < 1
3. while n > 1
4. return best_b, best_n

4.2. Machine Learning Model

Artificial neural networks (ANN) have been shown to approximate polynomial ob-
jective functions accurately [43,44]. This facilitates the training of ANN models to predict
solutions to linear and nonlinear optimization problems using data generated by heuristic
or exact algorithms designed to solve such problems [43,44]. Drawing on this theoretical
result, a feedforward ANN can be trained with I = (x′origin, x′target, x′1, y′1, x′2, y′2) as the
input and O = (b,n) as the output to solve Equation (1). For every input I, the computational
algorithm described in the previous section can be used to find the best combination of b
and n. To simplify the problem, x′origin and x′target can be set to 1 and 100, respectively, since
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the Lamé curve can be scaled on the X′-axis to any distance between the origin and target.
The resulting model is able to predict a near-optimal solution to Equation (1) in real time.

The architecture of the feedforward ANN used to predict the parameters of the Lamé
curve is as follows: 4 input and 2 output “min–max” normalized floating point numbers;
4 hidden layers with 32, 32, 32, and 16 neurons, respectively, and the Sigmoid activation
function. This architecture was iteratively constructed by following the “funnel” rule,
which states that the number of neurons per hidden layer should decrease from the input
towards the output. Experiments have shown that, when fewer hidden layers and neurons
are used, the network tends to overfit on the training data. The size of the network was
gradually increased until the baseline model reached a satisfactory level of performance in
terms of reliability and accuracy during testing (see Section 5.4. for detailed results).

The model was initially trained using 10,000 input cases (denoted the baseline training
set), whereby K-fold cross-validation [45] with k = 3 was used. The K-fold cross-validation
method automatically divides the data into a training and a validation set. The parameter
k determines the number of records used for training and validation, as well as the number
of training cycles. For k = 3, 67% of the records are used for training and 33% for validation,
which are sampled randomly from the data. The training procedure was repeated multiple
times with different random divisions of training and validation records until either the
0.0006 training error or the 5000-epoch threshold was reached in each individual training
cycle. The range of the input variables, which were all distributed uniformly, was chosen
as follows: x′1 within [1100], x′2 within [x′1, 100], and y′1, y′2 within [1100] (see Figure 7).
For each of the 10,000 randomly generated, uniformly distributed combinations of points
(x′1, y′1) and (x′2, y′2), the b and n parameters of the Lamé curve were computed using
Algorithm 1. The training data, including the Lamé curve parameters, were “min–max”
normalized, with min = 1 and max = 100. The resulting model was used as the initial version
of the HP planner in the ASA.
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4.3. Acceptance Test

The acceptance test (AT) used to decide whether the pair of points (x′1, y′1) and (x′2,
y′2) are inside the Lamé curve characterized by the parameters (b, n) is facilitated by the
inequality from Equation (1). If the inequality holds for a given pair of points in the section
plane from Figure 6, the test verdict is “pass”; otherwise, it is “fail”. This acceptance test
is used both as part of Algorithm 1 and to check the prediction of the ML model. The
proposed AT performs a constant number of mathematical operations, which makes it
very fast.
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4.4. Runtime Adaptation

The adaptation of the ML-model used as the HP planner (i.e., fML in Figure 3) requires
monitoring its inputs and outputs and the verdict of the AT in an operational setting. The
inputs for which the model’s outputs fail the AT are added to the training set together
with the corresponding optimal Lamé curve parameters, b and n, computed using fopt.
Since, in an operational setting, some failures are likely to occur on similar input cases,
redundant (i.e., identical or very similar) inputs must be removed from the training set to
avoid overfitting. This can be achieved by filtering out very similar inputs.

The HP planner is updated whenever a new ML model is available. Since data
generation is continuous, the model training process can be configured to update the HP
planner at regular intervals. When a new model is deployed as the HP planner, there is a
likelihood that it will perform worse than the current model. To prevent the performance
degradation of the ASA, the HP planner can be implemented as a recovery block [46], as
shown in Figure 8. When a new model becomes available, it is deployed as the primary
HP, whereas the then–current primary HP replaces the secondary HP, which is stored for
backup. If the new model performs worse than the secondary HP (i.e., the former primary
HP), then a rollback is triggered, which restores the primary and secondary HPs as they
were before the new model was deployed. This strategy helps to automate the creation
and deployment of a new ML model as the HP planner without degrading the overall
performance of the ASA.
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Adapting the ML model used as the HP planner amounts to a problem of continual
learning [47] without “catastrophic forgetting” [2]. Continual learning techniques aim at
retraining ML models so as to include new data without degrading the performance of
the original model. In reference [2], p. 3521, “catastrophic forgetting” is defined as “the
tendency for knowledge of the previously learned task(s) (e.g., task A) to be abruptly lost
as information relevant to the current task (e.g., task B) is incorporated”.

In the case of the Lamé curve parameter approximation problem, the original training
set already covers the entire problem space (i.e., the dotted square in Figure 7). However,
models trained using the uniformly distributed input set have lower performances at the
boundary of the problem space—i.e., they fail the AT more often for obstacles that are
close to the boundary of the problem space. This is because, close to the boundary, the
training data are biased towards the interior of the problem space, since there are no data
outside that space. This prevents the ANN from learning how to correctly estimate fopt at
the boundary of the problem space. This issue can be overcome by extending the problem
space and projecting the origin and target at a “safe” distance from the boundary. This,
however, requires a significant redesign of the entire solution approach. The ASA proves its
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usefulness in situations when such a redesign is not possible or undesirable by facilitating
continual learning from failure. Instead of redesigning the solution approach, the ML
model is retrained using the data collected during the operation.

5. Evaluation

This section presents an evaluation of the proposed approach inspired by two human–
robot collaboration scenarios in manufacturing. After providing some background on
the safety issues related to HRC in manufacturing, the two scenarios are described. The
ASA for dynamic obstacle avoidance is evaluated in view of the practical implementation
of these scenarios. The approach is first evaluated using a simulated redundant 6-DOF
manipulator. The robot toolpath follows a Lamé curve around a dynamically computed
3D-bounding box, which can contain one or several objects. To evaluate the practical
feasibility of the approach, the Lamé curve-based path planning method was implemented
for a Universal Robot 5 and evaluated experimentally in the Industry 4.0 Pilot Factory of
the Vienna University of Technology, Vienna, Austria [48].

5.1. Human–Robot Collaboration Safety

Collaborative robot systems can be operated without a safety fence in the proximity
of human workers, provided that every application undergoes a risk assessment according
to the current safety norms and standards. In addition to the country-specific machin-
ery directives, specialized standards and regulations for robot safety—in particular, ISO
15066 [49] and 10218 [50] (industrial robot safety requirements)—specify the regulatory
framework for safe cooperation between humans and robots in an industrial context [51].
Collaboration is one of the four modes of human–robot interactions defined by the ISO
10218 standard and requires the strictest risk assessment. In human–robot collaborations,
robot systems act as the physical interfaces of digitized production, which reach into the
work environment of humans. A first condition for the certification of a collaborative
human–robot application is the use of a specially designed collaborative robot (e.g., Univer-
sal Robot 3/5/10, KUKA iiwa, etc.). A collaborative robot is endowed with highly reliable
sensors and functionality, which allow the robot to continuously monitor and limit its
motion velocity. Such functionalities form the basic building blocks for the implementation
of the four possible collaborative operating modes foreseen by the ISO 10218 standard
for an industrial robot: safety-rated monitored stop, hand guidance, speed and distance
monitoring, power, and force limitation [51]. Although the speed and distance monitoring
mode can potentially provide effective safety features in scenarios where direct physical
contact between humans and robots is required, the current (3D) sensor technologies in
combination with complex machine learning techniques are not yet capable of fulfilling
the requirements of the ISO 10218 standard [51]. In this context, the proposed ASA for
dynamical obstacle avoidance aims to advance the state-of-the-art in safe, reliable, and
robust machine learning techniques for flexible collaborative human–robot applications
with speed and distance monitoring.

5.2. Application Scenarios

We consider two human–robot collaboration scenarios that are often encountered in
industrial applications. In the first scenario (denoted Plexibot), a collaborative robot arm is
operated behind a framed Plexiglas window with a ~20-cm opening in the lower part, as
shown in Figure 9 [52]. Through the opening, a worker can manipulate work pieces in the
same region as the robot. This assembly station layout allows higher robot speeds than a
layout in which the robot is unconfined, because the worker’s head is out of the robot’s
reach. Upon (accidently) colliding with the human hand, the robot automatically stops.
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The ASA aims to improve on this solution by preventing collisions with the worker’s
hands, thus reducing the likelihood of a safety stop, which would require human inter-
vention to unlock the robot. The 3D camera, which is already mounted on the robot arm,
can be used to generate a point cloud representing all the obstacles that are in the robot’s
way, including the worker’s hands. This reduces the eventual downtimes resulting from
recovering from safety stops while increasing the workers’ confidence in the robot and the
acceptability of collaborative robots in manufacturing. To ensure the workers’ safety at all
times, the robot toolpath follows a parameterized Lamé curve in the vertical plane with
respect to the assembly table.

In a second scenario (denoted Edubot—see Figure 10) [53,54], the focus is on a man-
ufacturing company that runs a robot operator training center. To ensure safety during
training, the company hired a specialized consultancy company to conduct a safety risk
assessment for a HRC application for educational purposes involving a Universal Robot
10. Given that no robot confinement structure was used during training and that teach-
in-based programming and testing were performed by novice users, the risk assessment
recommended that the movement range of the 6-DOF robot be constrained to prevent the
robot’s end effector from reaching higher than about 16 cm above the training table and,
thus, to prevent any collisions with the trainees’ upper body and head. In addition, the
orientation of the end effector was constrained to always point downward, and the speed of
the end effector was limited to 150 mm/s. One problem that emerges from these restrictive
safety settings is that trainees learn how to use the robot in this Cartesian-compliant mode
only to be faced with a completely different situation in productive applications, which are
not subjected to the same cartesian compliance rules, provided that all robot movements
and positions are predefined and fixed so that the risk assessment can be conducted based
on force and momentum measurements. In this context, the manufacturing company seeks
to align the safety principles used during training and the factory settings so as to facilitate
the trainees a smoother transition from educational to productive robot use.
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The ASA aims to improve on this solution by providing a fast and reliable dynamic
obstacle avoidance solution for the training setting so that the 16-cm limit can be gradually
increased, depending on the experience of the trainees, until it can be eliminated completely.
For this purpose, the robot station can be redesigned, as shown in Figure 11. The robot is
partly confined by two Plexiglas protective shields on the sides so that only the trainee
who currently works with the robot can access it from one side, while the other trainees can
watch the robot in motion from behind the shields. The collaboration zone is surveilled by
two 3D sensors that are able to detect and trace the trainees’ hands and other body parts.
The 3D sensors generate point clouds, around which bounding boxes can be computed
as inputs to the path planner. The grey trapezoid in Figure 11 is a table at ~1 m above
the ground. Using dynamic obstacle avoidance during program testing, the constraints
resulting from the initial risk assessment can be gradually lifted as the trainees gain more
theoretical knowledge and practical experience.

Sensors 2021, 21, x FOR PEER REVIEW 16 of 29 
 

 

 

The ASA aims to improve on this solution by providing a fast and reliable dynamic 
obstacle avoidance solution for the training setting so that the 16-cm limit can be gradually 
increased, depending on the experience of the trainees, until it can be eliminated com-
pletely. For this purpose, the robot station can be redesigned, as shown in Figure 11. The 
robot is partly confined by two Plexiglas protective shields on the sides so that only the 
trainee who currently works with the robot can access it from one side, while the other 
trainees can watch the robot in motion from behind the shields. The collaboration zone is 
surveilled by two 3D sensors that are able to detect and trace the trainees’ hands and other 
body parts. The 3D sensors generate point clouds, around which bounding boxes can be 
computed as inputs to the path planner. The grey trapezoid in Figure 11 is a table at ~1 m 
above the ground. Using dynamic obstacle avoidance during program testing, the con-
straints resulting from the initial risk assessment can be gradually lifted as the trainees 
gain more theoretical knowledge and practical experience. 

 
Figure 11. Edubot scenario: Proposed layout for the training robot station. 

  

Figure 11. Edubot scenario: Proposed layout for the training robot station.

In the following, the ASA is evaluated for dynamic obstacle avoidance in the vertical
and horizontal planes in view of the practical implementation of the Plexibot and Edubot
scenarios, respectively.

5.3. Simulation-Based Implementation

The performance of the ASA was evaluated using a web-based generic robot program-
ming and simulation tool called Assembly [4,5] (see Figure 12). This tool provides a mixed
textual/graphical block-based program editor and integrates an open source robot arm simu-
lator (available online: https://github.com/glumb/robot-gui) (accessed on 21 March 2021)
developed in Three.js (a JavaScript animation library based on WebGL, available online:
https://threejs.org (accessed on 21 March 2021)). In this environment, a moving obstacle in
the form of a translating and rotating cuboid was created, as shown in Figure 4. The size
of the virtual cuboid is 15/45/25 cm, which covers most human hands and lower arms in
various positions. While the obstacle rotates around all three axes by ~4.5◦ per s, a bounding
box aligned with the X-, Y-, and Z-axes of the base coordinates system is computed and
displayed around it. The coordinates of this box are used to determine the characteris-
tic points (x′1, y′2) and (x′2, y′2), as shown in Figures 4 and 6. Figure 9 shows the robot
simulator and the obstacle in the context of the Assembly programming and simulation

https://github.com/glumb/robot-gui
https://threejs.org
https://threejs.org
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environment. To train and score the different ANN models used during the evaluation,
the Brain.js JavaScript-based ML library was used (available online: https://brain.js.org
(accessed on 21 March 2021)).
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Figure 12. Generic robot arm visualization with a rotating cuboid obstacle in the Assembly [4,5] robot programming and
simulation environment.

To ensure real-time collision avoidance, each link of the robot was endowed with
nine equidistant collision checkpoints, two of which were placed in the adjacent joints.
During the motion, the planner checks at a frequency of 33 Hz whether any of the collision
checkpoints finds itself within the bounding box around the obstacle. This enables a fast
reaction by the motion planner whenever a potential collision with the obstacle is detected—
in which case, the robot stops and waits until the obstacle moves away. Note that, in the
considered human–robot collaboration scenarios, the obstacles are primarily represented
by moving hands and other body members rather than fixed objects. In this context, it is
assumed that the human will not willingly block the robot without a good reason (e.g., a
safety hazard or a planned action); in which case, the robot must stop. It is also assumed
that the human–robot collaboration applications are designed such that the origin and
target poses are not impossible to reach (e.g., due to fixed objects).

The test program moves the robot arm between two randomized locations, which
were chosen so that the path from the first (origin) to the second (target) location cross the
obstacle’s bounding box. Before each odd run, the origin is randomized in the Y–Z plane,
and, before each even run, on the X–Y plane, so that the test program can sample from
about 20,000 random origin locations (see Figure 13). The orientation of the end effectors
is also randomized, with rx ranging between [−50◦, 50◦] and ry between [130◦, 230◦]. To
evaluate the ASA’s capacity to learn, the bounding box around the rotating obstacle is
translated from one extreme of the problem space to another. As described in Section 4.4.,
the situations in which the obstacle finds itself close to the boundaries of the problem space
challenge the ML model, which needs to be retrained and redeployed in order to improve
the performance of the HP planner.

https://brain.js.org
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According to the procedure illustrated in Figure 3, after each test run, which comprised
60 robot movements between the origin and target, the input cases that failed the AT
were added to the training set, and the ML model used as the HP planner was retrained
and redeployed. Figure 13 illustrates the different test configurations used during the
evaluation. Two test rounds were conducted—one with obstacle avoidance in the vertical
plane, which corresponds to the Plexibot scenario, and another with obstacle avoidance in
the horizontal plane, which corresponds to the Edubot scenario.

5.4. Results
5.4.1. Reliability and Adaptability

Figure 14 shows the evaluation results of the two test runs (for the vertical and
horizontal test configurations) in terms of the reliability of the different ML models used as
the HP path planner and the adaptability of the ASA. For both configurations, the initial
model was trained using the baseline training set described in Section 4.2., which contains
10,000 uniformly distributed input cases. Then, after each test cycle, which comprised
60 robot movements between randomized origin and target poses, the model was retrained
using the baseline training set to which the input cases for which the model predictions
failed the AT were added. The resulting training set was filtered to remove identical or
very similar input cases. The result of a model run (or scoring) is considered to have failed
if the obstacle is not contained within the Lamé curve characterized by the parameters b
and n, as predicted by the model. In each test cycle, the model is scored 6000 times, because
the path between the origin and target is divided into 100 segments.

The failure rate chart at the top of Figure 14 illustrates the performance of the 12 models
that were tested (six for the vertical configuration and six for the horizontal configuration).
In the vertical configuration (blue curve), the initial (baseline) model yielded a failure rate of
8.31%. The retrained models iteratively improved on this result. The sixth model achieved
the best performance, with a failure rate of only 0.46%. In the horizontal configuration
(orange line), a different pattern can be observed. Here, the fifth model achieves the lowest
failure rate of 2.69%. The different patterns can be explained by the different obstacle
translation trajectories and distributions of the origin/target poses used in the vertical
and horizontal configurations (see Figure 13). Additionally, training ANNs is a stochastic
process, in which the training set is shuffled in each epoch. This process can thus lead to
different learning patterns. Nevertheless, extensive tests have shown that the proposed
retraining strategy yields a very low failure rate after five–seven retraining cycles.
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Figure 15 illustrates the obstacle silhouettes for which the models used in the vertical
test configuration failed the acceptance test. These silhouettes provide insights into how
the ANN learns and/or forgets from one retraining cycle to another. The first (baseline)
model was underfitted and therefore failed when the obstacle was close to the extremes
of the problem space. After the first and second retraining cycles, models 2 and 3 slightly
improved their failure rates at the cost of forgetting how to deal with some of the input
cases that did not challenge the baseline model. After the third retraining cycle, model 4
seemed to relearn what was forgotten by models 2 and 3. Model 5 was the first to exhibit a
clear improvement over the baseline model, whereas model 6 seemed to learn how to deal
with the extreme cases quite well.

Sensors 2021, 21, x FOR PEER REVIEW 20 of 29 
 

 

Figure 15 illustrates the obstacle silhouettes for which the models used in the vertical 
test configuration failed the acceptance test. These silhouettes provide insights into how 
the ANN learns and/or forgets from one retraining cycle to another. The first (baseline) 
model was underfitted and therefore failed when the obstacle was close to the extremes 
of the problem space. After the first and second retraining cycles, models 2 and 3 slightly 
improved their failure rates at the cost of forgetting how to deal with some of the input 
cases that did not challenge the baseline model. After the third retraining cycle, model 4 
seemed to relearn what was forgotten by models 2 and 3. Model 5 was the first to exhibit 
a clear improvement over the baseline model, whereas model 6 seemed to learn how to 
deal with the extreme cases quite well. 

 
Figure 15. Obstacle silhouettes for which the 6 ML models used in the vertical test configuration 
failed the acceptance test. 

5.4.2. Running Time, Path Length, and Path Smoothness 
To compare the performances of ML-based HP planners with those of the optimal 

computational method (i.e., fopt) and of the fast heuristic (i.e., ffast) used as the HA planner, 
a series of tests with different ASA configurations were conducted. In the first ASA con-
figuration (denoted fML + fopt), the best performing model in the vertical test configuration 
(i.e., model 6 in the previous set of tests) was used as the HP planner and Algorithm 1 
with b_step = 0.2 and n_step = 0.1 as the HA planner. Given these step sizes, Algorithm 1 
took about one second to determine the Lamé curve parameters (b, n) of the minimal arc 
length for a given obstacle configuration and could thus be considered very slow. In a 
second ASA configuration, denoted as fML + ffast, with b_step = 2 and n_step = 0.5, Algorithm 
1 became a fast, yet less accurate, heuristic compared to fopt. To provide an objective base-
line for comparison, the two versions of Algorithm 1 were also considered as standalone 
path planners (configurations denoted as fopt and ffast). 

The running time, path length, and path smoothness were measured for 60 robot 
movements between the origin and target using the vertical configuration from the previ-
ous set of tests. Between the origin and target, the ML model is scored 100 times in order 
to dynamically adapt the movement trajectory to the moving obstacle’s position. The plan-
ning time per test run, tp, is measured as the average time required by the respective plan-
ner to determine the Lamé curve parameters during one robot movement between the 
origin and target, which requires 100 replanning cycles. The waiting time per test run, tw, 
is measured as the total waiting time due to potential collisions with the robot’s joints or 
links divided by the total number of test runs (i.e., 60 in the current test configuration). 
The motion time per test run, tm, is the total time that it takes the robot to move between 
the origin and target while dynamically replanning the path and avoiding collisions. 

Figure 15. Obstacle silhouettes for which the 6 ML models used in the vertical test configuration
failed the acceptance test.



Sensors 2021, 21, 2589 18 of 27

5.4.2. Running Time, Path Length, and Path Smoothness

To compare the performances of ML-based HP planners with those of the optimal
computational method (i.e., fopt) and of the fast heuristic (i.e., ffast) used as the HA planner,
a series of tests with different ASA configurations were conducted. In the first ASA config-
uration (denoted fML + fopt), the best performing model in the vertical test configuration
(i.e., model 6 in the previous set of tests) was used as the HP planner and Algorithm 1 with
b_step = 0.2 and n_step = 0.1 as the HA planner. Given these step sizes, Algorithm 1 took
about one second to determine the Lamé curve parameters (b, n) of the minimal arc length
for a given obstacle configuration and could thus be considered very slow. In a second
ASA configuration, denoted as fML + ffast, with b_step = 2 and n_step = 0.5, Algorithm 1
became a fast, yet less accurate, heuristic compared to fopt. To provide an objective baseline
for comparison, the two versions of Algorithm 1 were also considered as standalone path
planners (configurations denoted as fopt and ffast).

The running time, path length, and path smoothness were measured for 60 robot
movements between the origin and target using the vertical configuration from the previous
set of tests. Between the origin and target, the ML model is scored 100 times in order to
dynamically adapt the movement trajectory to the moving obstacle’s position. The planning
time per test run, tp, is measured as the average time required by the respective planner to
determine the Lamé curve parameters during one robot movement between the origin and
target, which requires 100 replanning cycles. The waiting time per test run, tw, is measured
as the total waiting time due to potential collisions with the robot’s joints or links divided
by the total number of test runs (i.e., 60 in the current test configuration). The motion time
per test run, tm, is the total time that it takes the robot to move between the origin and
target while dynamically replanning the path and avoiding collisions.

To account for the different obstacle positions and orientations in measuring the path
length, a so-called path factor was computed. The path factor is expressed as pf = L/Lmin,
where L is the average length of the obstacle avoiding the path travelled by the robot’s TCP
between the origin and target, and Lmin = dist (origin, p1) + dist (p1, p2) + dist (p2, target),
where p1 = (x′1, y′1) and p1 = (x′2, y′2), as defined in Figure 6. Lmin thus represents the
shortest collision-free path, which is impractical for moving obstacles, because it “touches”
the object.

To measure the smoothness of the robot’s toolpath along the Lamé curve, a so-called
smoothness factor based on reference [42] was used. The Lamé curve parameters are
recomputed 100 times per movement between the origin and target, and each path segment
represents a linear approximation of the corresponding Lamé curve arc segment. Depend-
ing on the ASA configuration used and on the obstacle’s dynamics, the robot continuously
switches from one curve trajectory to another. If two subsequent Lamé curves differ signifi-
cantly one from another in terms of b and n, then the robot will visibly “jump” from one
curve to another, which leads to unsmooth movements. The smoothness factor (denoted
as sf) used in this evaluation is defined as the sum of the angles (in radians) between the
linear path segments along the Lamé curve with recomputed parameters divided by the
length of the respective segment.

Table 1 summarizes the results of this evaluation. The results suggest that the two ASA
configurations outperform the other two configurations in terms of time and smoothness.
In terms of planning time (tp), the fML + ffast configuration is ~1000 times faster than fopt and
~20 times faster than ffast. This suggests that the ASA can be used to replan the path up to
~3000 times per second on an Intel i7 processor compared to ~128 times when ffast is used.
At the same time, the two ASA configurations both outperformed ffast in terms of the path
length. fopt yielded the shortest average path, as expected. In terms of path smoothness,
the two ASA configurations clearly outperformed the other two configurations.
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Table 1. Evaluation results—running time, path length, and smoothness.

Measurement ASA (fML + fopt) ASA (fML + ffast) fopt ffast

tp (ms) 1621 33 37292 786
tw (ms) 38.5 42.5 178.5 108.5
tm (s) 5.78 5.20 45.5 6.97

pf 1.28 1.31 1.23 1.34
sf 0.41 0.43 0.49 0.56

Two videos illustrating the approach in the vertical and horizontal test configurations
are available online [55,56]. The two videos illustrate the performance of the ffast configura-
tion on the left-hand side and that of the fML + ffast configuration on the right-hand side.
The fML + ffast configuration produces visibly smoother and, consequently, shorter paths
than the ffast configuration. In the horizontal configuration (second video [56]), the ffast
planner leads to more situations in which the robot waits for the obstacle to move away
after a collision is detected. By contrast, thanks to its superior performance in terms of path
smoothness and speed, the fML + ffast planner helps to minimize the waiting time.

5.5. Comparative Performance

The performances of the proposed approach were compared with those of two ML-
based methods [26,27], the development of which was driven by the requirements of
human–robot collaboration, an efficient model predictive control (MPC)-based planning
algorithm for 6-DOF manipulators with dynamic obstacle avoidance [31], and the popular
Rapidly-exploring Random Trees (RRT) Connect [57] algorithm, which is integrated in the
Robotics Library [58] and other open-source motion planning libraries. The first ML-based
method, called Soft Actor-Critic with Hindsight Experience Replay (SAC–HER) [26], builds
on reinforcement learning to plan motion paths for a dual-arm robot, with each arm having
3-DOF. The planning occurs jointly for both robots, as if they were part of the same entity.
As a result, the planning is performed for 6-DOF. The second Soft Actor-Critic (SAC)-based
method [27] extends the SAC–HER approach by using a dual-arm robot, with each arm
having 7-DOF. The MPC-based algorithm [31] uses the distance between any of the six
robot joints and one or several moving obstacles to plan a feasible trajectory for a 6-DOF
robot. The method was tested using a UR 10 robot with moving objects and a full-scale
human model. Although this method does not use machine learning, it is capable of
real-time trajectory planning with dynamic obstacle avoidance.

To create a baseline for comparison, the experimental results from references [26,27,31],
which provide information about the performances of the respective planning methods,
were drawn upon. For the RRT Connect planner, an experiment in the Robotics Library [58]
simulation environment was conducted. To this end, a scenario similar to the one used
for testing the proposed approach (albeit with a fixed obstacle) was reconstructed in the
simulation environment (see Figure 16).

Table 2 reports the results of this comparison. The performances of the ASA (fML + ffast)
configuration reported in Table 1 were compared to those of the other four algorithms, as
they were reported in their respective papers. In Table 2, the replanning time is the time it
takes the respective planner to produce a motion plan repeatedly while the robot is moving.
For the methods that do not consider dynamic obstacle avoidance, planning occurs once,
and therefore, the replanning time is the same as the planning time.
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Table 2. Comparative performances of the proposed method with respect to those of four other motion planning algorithms
[26,27,31,57]. SAC: Soft Actor-Critic, DOF; degrees of freedom, ASA: adaptive simplex architecture, and MPC: model
predictive control.

Planning Method DOF Dynamic
Obstacle

(Re)Planning
Time Success Rate Path

Overhead Neurons Complexity

ASA (fML + ffast) 6 Yes 0.78 (ms) 100% * Low 118 Low
MPC 6 Yes 7.4–41.1 (ms) 100% * Low − High

SAC-3 + 3 3 + 3 (dual) No 138.5 (ms) 100% Low 7254 High
SAC-7 + 7 7 + 7 (dual) No − 89.7–92.9% Low 5815 High

RRT Connect 6 No 144–200 (ms) 100% High − High

* In some situations in which an imminent potential collision is detected, the respective planner achieves the stated reliability level by
waiting until the obstacle moves away.

In Table 1, we reported the planning and waiting times per robot movement (between
the origin and target) for the different ASA configurations. This time represents the sum
of 100 replanning cycles, which are performed during one such movement. Therefore, in
Table 2, the replanning time is computed as (tp + tw)/100. The replanning times reported
for the MPC-based method in reference [31] allow for up to 100 replanning cycles per
second, whereas the ASA can achieve up to 1000 replanning cycles per second. When
a human enters the scene, the measurements reported in reference [31] suggest that the
MPC-based method is able to replan the path up to ~25 times per second (41.1 ms per
replanning cycle). The SAC–HER method appears to be slower than the ASA and MPC.
The authors of the SAC-based method for the two 7-DOF robot arms did not report any
time-related performances. The path overhead was low for all the methods, except for
RRT Connect. As Figure 16 shows, the RRT Connect planner was not only the slowest in
the comparison but also inefficient in terms of path length. Concerning the success rate,
the ASA and MPC have 100% planning success when waiting is used. According to the
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authors of reference [31], the MPC-based method gets stuck in local optima; in which case,
the robot waits for the human to move away. This approach is similar to that used by the
ASA. Compared to the other two ML-based models, the ASA uses a much smaller neural
network. Compared to all the other models, the implementation complexity of the ASA is
low when considering the theory behind each of these methods.

5.6. Experimental Validation Using a Collaborative 6-DOF Robot

To demonstrate the feasibility of the approach, the simulation-based ASA implemen-
tation in Assembly was coupled with a UR 5 (CB series) robot arm in the Industry 4.0 Pilot
Factory of the Vienna University of Technology, Vienna, Austria [48]. Figure 17 illustrates
the experimental setup, which is based on the Flexibot scenario.
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A program that uses the Lamé curve equation to generate an elliptical toolpath
between two randomized poses was implemented in the robot’s native programming envi-
ronment, called Polyscope. The robot program is coupled with the Assembly environment,
where the ML model is used to estimate the Lamé curve parameters. For the purpose of
this experimental validation, a simple visual hand tracking library called Handtrack.js
(available online: https://github.com/victordibia/handtrack.js/ (accessed on 21 March
2021)) was used to estimate the position of the hand. Based on that information, a bounding
box was computed around the hand in the simulation environment. This facilitated the
computation of the Lamé curve parameters. The communication between the Assembly
simulation environment and Polyscope was implemented using remote procedure calls
over the XMLRPC protocol. The robot program polled the XMLRPC service provided by
Assembly every 100 ms. This service returned the Lamé curve parameters corresponding
to the current size and position of the bounding box.

Figure 18 illustrates the dynamics of the experiment. As the robot moves between
two arbitrary poses, it reacts to the position of the moving hand by adapting the current
toolpath. The following video illustrates this behavior: reference [59]. For safety reasons,
the speed of the robot was limited to 250 mm/s. Note that the communication over
XMLRPC induced latency, which can be avoided by using a hardware-based protocol, like
MODBUS. Additionally, the precision and performance of the Handtrack.js library are
average. Higher performances can be obtained using a state-of-the-art 3D sensor and a fast
object detection method. Using these technologies, the robot can operate at higher speeds
without posing any safety risks.

https://github.com/victordibia/handtrack.js/
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6. Discussion

Concerning the reliability and adaptability of the ASA, the evaluation results sug-
gest that, by simply adding the input cases for which the different model versions fail
the AT, after only four to five retraining cycles, the ANN is learning continually, which
significantly reduces the retrained model’s failure rate. This strategy does not require
human intervention for modifying the architecture of the network or adjusting any other
parameters of the training process. The ASA thus proves that it can adapt to new situations
that were not covered by the baseline training set. In combination with the recovery block
configuration from Figure 8, the failure rate of the HP planner in the ASA will stabilize that
of the best performing model, even if the performance of the retrained model deteriorates.
Alternatively, the decision to retrain the model can be taken on the basis of its historical
failure rate. The failure rate of a model that performs well in some situations is likely to
increase again when it is faced with a new geometric configuration or when the obstacles
are closer to another boundary of the problem space.

Concerning the running time, path length, and path smoothness, the evaluation
results suggest that ASA enables much faster and smoother path (re)planning than the
computational methods for determining the Lamé curve parameters at the cost of a 6.74%
longer path with respect to fopt. This enables the ASA to react very fast to moving obstacles,
which is a prerequisite for safety assurance in human–robot collaboration.

In the Plexibot application scenario, the ASA (fML + fopt) configuration with obstacle
avoidance in the vertical plane can help to prevent any accidental collisions with the
worker’s hands. This enables faster robot speeds, which fosters productivity without
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compromising safety. In this scenario, the robot is space-constrained by the Plexiglas shield,
which justifies the use of fopt as the HA planner in order to keep the robot’s path close to
the obstacle and, thus, to prevent collisions with the shield.

In the Edubot scenario, the ASA (fML + ffast) with obstacle avoidance in the horizontal
plane ensures the fastest reaction speed to the eventual interferences of the trainees with
the moving robot. In the case of potential collisions, in this scenario, the robot always takes
the path that is closer to the robot’s base in the X–Y plane. Hence, the trainees are protected
from accidental collisions with the robot by the shields in the back and on the sides, and
by the ASA in the front, without reducing the frontal collaboration zone. Thanks to the
additional safety net provided by the ASA, some of the constraints resulting from the initial
risk assessment (notably, the limitation of the range of the robot’s TCP in the vertical plane)
can be lifted gradually, depending on the trainees’ experience.

The comparisons with other path planning methods from the literature suggest that
the ASA (fML + ffast) configuration provides a simple, practical, fast, and reliable path
planning method for 6-DOF robots. This conclusion was substantiated by an experimental
validation of the proposed path planning method, which was implemented for a UR 5 robot
in an Industry 4.0 R&D environment.

6.1. Generalizability of the ASA

In this paper, the collision-free path planning problem with dynamic obstacle avoid-
ance was considered as an example application of the ASA in robotics. In doing so, the
problem was formulated as a combinatorial optimization problem that allows a parameter-
ized analytic solution in the form of the Lamé curve. The exact (i.e., optimal) algorithm
that optimizes these parameters for a given obstacle was used to generate training data for
an ANN model, which was then used as the HP planner. The exact algorithm and a faster
heuristic were then used as the HA planner. The ASA can thus be generalized to an entire
class of problems in robotics, which (1) can be formulated as combinatorial optimization
problems, (2) allow analytic or stochastic solutions with a fixed set of input and output
parameters, and (3) allow an acceptance test that can reliably assert the safety of the HP
planner’s predictions. In this sense, the ASA can, for example, also be used in combination
with existing ML-based approaches for the fast, inverse kinematic calculations of various
redundant manipulators (e.g., [60–63]) or for the ML-based corrections of the Assembly
part positions (e.g., [64]). In the former case, a reliable acceptance test is facilitated by the
direct kinematics calculations, whereas, in the latter case, CAD models can be used to check
if the output of the HP conforms to the expected part model. In path planning applications
with or without dynamic obstacle avoidance, the ASA can also be used for fast and safe
autonomous vehicle and drone navigation (see related works for references), harbor crane
guidance [65], and autonomous underwater vehicle navigation [66].

6.2. Limitations and Future Works

The retraining of ANNs, as well as other types of ML models, requires more com-
putational resources than a robot controller usually provides. Therefore, the robot needs
to be connected to a computational environment, like an industrial cloud or edge device,
where model training is carried out. This introduces security issues, the tackling of which
is beyond the scope of this work. Once these security issues are properly addressed and
the retraining can be carried out in the cloud, models trained using data from a certain
robot can be deployed on other robots as well. This will significantly accelerate the learning
process in new application contexts and dynamic operational environments.

In terms of the latency and replanning frequency, the performances of the ASA are
contingent on the performances of the 3D sensors and point cloud processing techniques
being used. A frame rate of up to 100 frames per second and 10-ms latency for point cloud
generation are typical of the current commercial 3D cameras. The generation of bounding
boxes around obstacles requires the processing of the point cloud, which adds another
~10ms of latency. One can thus expect a real-time performance of ~50 updates per second
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conditioned by a latency of ~20 ms with the currently available 3D sensor technology. An
evaluation in a real factory involving hardware sensors is currently being planned.

For the purpose of evaluating the ASA, a bounding box was generated around the
moving obstacle in real time. To overcome this limitation, the ML model used as the HP
planner can be trained with a relevant sample of points from a convex hull around an
object. This is likely to facilitate shorter and smoother paths, but it would require a larger
ML model (i.e., more layers, neurons, and training data).

7. Conclusions

This paper introduced the adaptive simplex architecture (ASA) for robotics appli-
cations, which extends the original simplex architecture from the domain of reliability
engineering by enabling the use of machine learning-based solutions to common robotics
problems, like path and trajectory planning with and without obstacle avoidance. To
demonstrate the applicability of the ASA, a novel analytic path planning method based on
the Lamé curve equation was introduced and evaluated experimentally in a simulation
environment and with a real 6-DOF robot. The results of this evaluation suggest that the
proposed approach is suitable for human–robot collaboration scenarios in manufactur-
ing, where strict safety norms and standards usually reduce the flexibility of interactions
between humans and robots.

Compared to other variants of the simplex architecture, which builds on reinforcement
learning, such as the neural simplex architecture (NSA), the ASA builds on supervised
learning. This ensures higher levels of reliability and safety during runtime, because the ML
model used as the high-performance planner can be trained using artificially generated data
generated by verified algorithms. During operation, additional training data is generated
and labeled using the outputs of a reliable acceptance test.

The proposed approach is simple to implement. This concerns all elements of the
system, from the architecture to the ML model training procedure and the geometric path
planning algorithm. This makes the approach robust and practical in a variety of human–
robot collaboration scenarios. The source code implementing the proposed approach
and that of the tools used in the evaluation is available online for free under the Apache
2.0 license (see Data Availability Statement).
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